fish-shell/src/builtins/test.rs
2024-05-01 12:58:29 +02:00

1093 lines
40 KiB
Rust

use super::prelude::*;
use crate::common;
use crate::future_feature_flags::{feature_test, FeatureFlag};
use crate::should_flog;
mod test_expressions {
use super::*;
use crate::nix::isatty;
use crate::wutil::{
file_id_for_path, fish_wcswidth, lwstat, waccess, wcstod::wcstod, wcstoi_opts, wstat,
Error, Options,
};
use once_cell::sync::Lazy;
use std::collections::HashMap;
use std::os::unix::prelude::*;
#[derive(Copy, Clone, PartialEq, Eq)]
pub(super) enum Token {
Unknown, // Arbitrary string
Unary(UnaryToken), // Takes one string/file
Binary(BinaryToken), // Takes two strings/files/numbers
UnaryBoolean(UnaryBooleanToken), // Unary truth function
BinaryBoolean(Combiner), // Binary truth function
ParenOpen, // (
ParenClose, // )
}
impl From<BinaryToken> for Token {
fn from(value: BinaryToken) -> Self {
Self::Binary(value)
}
}
impl From<UnaryToken> for Token {
fn from(value: UnaryToken) -> Self {
Self::Unary(value)
}
}
#[derive(Copy, Clone, PartialEq, Eq)]
pub(super) enum UnaryBooleanToken {
Bang, // "!", inverts sense
}
#[derive(Copy, Clone, PartialEq, Eq)]
pub(super) enum Combiner {
And, // "-a", true if left and right are both true
Or, // "-o", true if either left or right is true
}
macro_rules! define_token {
(
enum $enum:ident;
$(
$variant:ident($sub_type:ident) {
$($sub_variant:ident)+
}
)*
) => {
#[derive(Copy, Clone, PartialEq, Eq)]
pub(super) enum $enum {
$($variant($sub_type),)*
}
$(
#[derive(Copy, Clone, PartialEq, Eq)]
pub(super) enum $sub_type { $($sub_variant,)+ }
impl From<$sub_type> for Token {
fn from(value: $sub_type) -> Token {
$enum::$variant(value).into()
}
}
)*
};
}
define_token! {
enum UnaryToken;
// based on stat()
FileStat(StatPredicate) {
b // "-b", for block special files
c // "-c", for character special files
d // "-d", for directories
e // "-e", for files that exist
f // "-f", for for regular files
G // "-G", for check effective group id
g // "-g", for set-group-id
k // "-k", for sticky bit
O // "-O", for check effective user id
p // "-p", for FIFO
S // "-S", socket
s // "-s", size greater than zero
u // "-u", whether file is setuid
}
// based on access()
FilePerm(FilePermission) {
r // "-r", read permission
w // "-w", whether file write permission is allowed
x // "-x", whether file execute/search is allowed
}
// miscellaneous
FileType(FilePredicate) {
h // "-h", for symbolic links
L // "-L", same as -h
t // "-t", whether the fd is associated with a terminal
}
String(StringPredicate) {
n // "-n", non-empty string
z // "-z", true if length of string is 0
}
}
define_token! {
enum BinaryToken;
// based on inode + more distinguishing info (see FileId struct)
FileId(FileComparison) {
Newer // f1 -nt f2, true if f1 exists and is newer than f2, or there is no f2
Older // f1 -ot f2, true if f2 exists and f1 does not, or f1 is older than f2
Same // f1 -ef f2, true if f1 and f2 exist and refer to same file
}
String(StringComparison) {
Equal // "=", true if strings are identical
NotEqual // "!=", true if strings are not identical
}
Number(NumberComparison) {
Equal // "-eq", true if numbers are equal
NotEqual // "-ne", true if numbers are not equal
Greater // "-gt", true if first number is larger than second
GreaterEqual // "-ge", true if first number is at least second
Lesser // "-lt", true if first number is smaller than second
LesserEqual // "-le", true if first number is at most second
}
}
/// Our number type. We support both doubles and long longs. We have to support these separately
/// because some integers are not representable as doubles; these may come up in practice (e.g.
/// inodes).
#[derive(Copy, Clone, Default, PartialEq, PartialOrd)]
struct Number {
// A number has an integral base and a floating point delta.
// Conceptually the number is base + delta.
// We enforce the property that 0 <= delta < 1.
base: i64,
delta: f64,
}
impl Number {
pub(super) fn new(base: i64, delta: f64) -> Self {
assert!((0.0..1.0).contains(&delta), "Invalid delta");
Self { base, delta }
}
// Return true if the number is a tty().
fn isatty(&self, streams: &mut IoStreams) -> bool {
if self.delta != 0.0 || self.base > i32::MAX as i64 || self.base < i32::MIN as i64 {
return false;
}
let bint = self.base as i32;
if bint == 0 {
match streams.stdin_fd {
-1 => false,
fd => isatty(fd),
}
} else if bint == 1 {
!streams.out_is_redirected && isatty(libc::STDOUT_FILENO)
} else if bint == 2 {
!streams.err_is_redirected && isatty(libc::STDERR_FILENO)
} else {
isatty(bint)
}
}
}
fn token_for_string(str: &wstr) -> Token {
TOKEN_INFOS.get(str).copied().unwrap_or(Token::Unknown)
}
static TOKEN_INFOS: Lazy<HashMap<&'static wstr, Token>> = Lazy::new(|| {
let pairs = [
(L!(""), Token::Unknown),
(L!("!"), Token::UnaryBoolean(UnaryBooleanToken::Bang)),
(L!("-b"), StatPredicate::b.into()),
(L!("-c"), StatPredicate::c.into()),
(L!("-d"), StatPredicate::d.into()),
(L!("-e"), StatPredicate::e.into()),
(L!("-f"), StatPredicate::f.into()),
(L!("-G"), StatPredicate::G.into()),
(L!("-g"), StatPredicate::g.into()),
(L!("-h"), FilePredicate::h.into()),
(L!("-k"), StatPredicate::k.into()),
(L!("-L"), FilePredicate::L.into()),
(L!("-O"), StatPredicate::O.into()),
(L!("-p"), StatPredicate::p.into()),
(L!("-S"), StatPredicate::S.into()),
(L!("-s"), StatPredicate::s.into()),
(L!("-t"), FilePredicate::t.into()),
(L!("-r"), FilePermission::r.into()),
(L!("-u"), StatPredicate::u.into()),
(L!("-w"), FilePermission::w.into()),
(L!("-x"), FilePermission::x.into()),
(L!("-n"), StringPredicate::n.into()),
(L!("-z"), StringPredicate::z.into()),
(L!("="), StringComparison::Equal.into()),
(L!("!="), StringComparison::NotEqual.into()),
(L!("-nt"), FileComparison::Newer.into()),
(L!("-ot"), FileComparison::Older.into()),
(L!("-ef"), FileComparison::Same.into()),
(L!("-eq"), NumberComparison::Equal.into()),
(L!("-ne"), NumberComparison::NotEqual.into()),
(L!("-gt"), NumberComparison::Greater.into()),
(L!("-ge"), NumberComparison::GreaterEqual.into()),
(L!("-lt"), NumberComparison::Lesser.into()),
(L!("-le"), NumberComparison::LesserEqual.into()),
(L!("-a"), Token::BinaryBoolean(Combiner::And)),
(L!("-o"), Token::BinaryBoolean(Combiner::Or)),
(L!("("), Token::ParenOpen),
(L!(")"), Token::ParenClose),
];
pairs.into_iter().collect()
});
// Grammar.
//
// <expr> = <combining_expr>
//
// <combining_expr> = <unary_expr> and/or <combining_expr> |
// <unary_expr>
//
// <unary_expr> = bang <unary_expr> |
// <primary>
//
// <primary> = <unary_primary> arg |
// arg <binary_primary> arg |
// '(' <expr> ')'
#[derive(Default)]
pub(super) struct TestParser<'a> {
strings: &'a [WString],
errors: Vec<WString>,
error_idx: usize,
}
impl<'a> TestParser<'a> {
fn arg(&self, idx: usize) -> &'a wstr {
&self.strings[idx]
}
fn add_error(&mut self, idx: usize, text: WString) {
self.errors.push(text);
if self.errors.len() == 1 {
self.error_idx = idx;
}
}
}
type Range = std::ops::Range<usize>;
/// Base trait for expressions.
pub(super) trait Expression {
/// Evaluate returns true if the expression is true (i.e. STATUS_CMD_OK).
fn evaluate(&self, streams: &mut IoStreams, errors: &mut Vec<WString>) -> bool;
/// Return base.range.
fn range(&self) -> Range;
// Helper to convert ourselves into Some Box.
fn into_some_box(self) -> Option<Box<dyn Expression>>
where
Self: Sized + 'static,
{
Some(Box::new(self))
}
}
/// Something that is not a token of any other type.
struct JustAString {
arg: WString,
range: Range,
}
/// Single argument like -n foo.
struct UnaryPrimary {
arg: WString,
token: UnaryToken,
range: Range,
}
/// Two argument primary like foo != bar.
struct BinaryPrimary {
arg_left: WString,
arg_right: WString,
token: BinaryToken,
range: Range,
}
/// Unary operator like bang.
struct UnaryOperator {
subject: Box<dyn Expression>,
token: UnaryBooleanToken,
range: Range,
}
/// Combining expression. Contains a list of AND or OR expressions. It takes more than two so that
/// we don't have to worry about precedence in the parser.
struct CombiningExpression {
subjects: Vec<Box<dyn Expression>>,
combiners: Vec<Combiner>,
range: Range,
}
/// Parenthentical expression.
struct ParentheticalExpression {
contents: Box<dyn Expression>,
range: Range,
}
impl Expression for JustAString {
fn evaluate(&self, _streams: &mut IoStreams, _errors: &mut Vec<WString>) -> bool {
!self.arg.is_empty()
}
fn range(&self) -> Range {
self.range.clone()
}
}
impl Expression for UnaryPrimary {
fn evaluate(&self, streams: &mut IoStreams, errors: &mut Vec<WString>) -> bool {
unary_primary_evaluate(self.token, &self.arg, streams, errors)
}
fn range(&self) -> Range {
self.range.clone()
}
}
impl Expression for BinaryPrimary {
fn evaluate(&self, _streams: &mut IoStreams, errors: &mut Vec<WString>) -> bool {
binary_primary_evaluate(self.token, &self.arg_left, &self.arg_right, errors)
}
fn range(&self) -> Range {
self.range.clone()
}
}
impl Expression for UnaryOperator {
fn evaluate(&self, streams: &mut IoStreams, errors: &mut Vec<WString>) -> bool {
match self.token {
UnaryBooleanToken::Bang => !self.subject.evaluate(streams, errors),
}
}
fn range(&self) -> Range {
self.range.clone()
}
}
impl Expression for CombiningExpression {
fn evaluate(&self, streams: &mut IoStreams, errors: &mut Vec<WString>) -> bool {
let _res = self.subjects[0].evaluate(streams, errors);
assert!(!self.subjects.is_empty());
assert!(self.combiners.len() + 1 == self.subjects.len());
// One-element case.
if self.subjects.len() == 1 {
return self.subjects[0].evaluate(streams, errors);
}
// Evaluate our lists, remembering that AND has higher precedence than OR. We can
// visualize this as a sequence of OR expressions of AND expressions.
let mut idx = 0;
let max = self.subjects.len();
let mut or_result = false;
while idx < max {
if or_result {
// short circuit
break;
}
// Evaluate a stream of AND starting at given subject index. It may only have one
// element.
let mut and_result = true;
while idx < max {
// Evaluate it, short-circuiting.
and_result = and_result && self.subjects[idx].evaluate(streams, errors);
// If the combiner at this index (which corresponding to how we combine with the
// next subject) is not AND, then exit the loop.
if idx + 1 < max && self.combiners[idx] != Combiner::And {
idx += 1;
break;
}
idx += 1;
}
// OR it in.
or_result = or_result || and_result;
}
return or_result;
}
fn range(&self) -> Range {
self.range.clone()
}
}
impl Expression for ParentheticalExpression {
fn evaluate(&self, streams: &mut IoStreams, errors: &mut Vec<WString>) -> bool {
self.contents.evaluate(streams, errors)
}
fn range(&self) -> Range {
self.range.clone()
}
}
impl<'a> TestParser<'a> {
fn error(&mut self, idx: usize, text: WString) -> Option<Box<dyn Expression>> {
self.add_error(idx, text);
None
}
fn parse_unary_expression(
&mut self,
start: usize,
end: usize,
) -> Option<Box<dyn Expression>> {
if start >= end {
return self.error(start, sprintf!("Missing argument at index %u", start + 1));
}
if let Token::UnaryBoolean(token) = token_for_string(self.arg(start)) {
let subject = self.parse_unary_expression(start + 1, end)?;
let range = start..subject.range().end;
return UnaryOperator {
subject,
token,
range,
}
.into_some_box();
}
self.parse_primary(start, end)
}
/// Parse a combining expression (AND, OR).
fn parse_combining_expression(
&mut self,
start: usize,
end: usize,
) -> Option<Box<dyn Expression>> {
if start >= end {
return None;
}
let mut subjects = Vec::new();
let mut combiners = Vec::new();
let mut idx = start;
let mut first = true;
while idx < end {
if !first {
// This is not the first expression, so we expect a combiner.
let Token::BinaryBoolean(combiner) = token_for_string(self.arg(idx)) else {
/* Not a combiner, we're done */
self.errors.insert(
0,
sprintf!(
"Expected a combining operator like '-a' at index %u",
idx + 1
),
);
self.error_idx = idx;
break;
};
combiners.push(combiner);
idx += 1;
}
// Parse another expression.
let Some(expr) = self.parse_unary_expression(idx, end) else {
self.add_error(idx, sprintf!("Missing argument at index %u", idx + 1));
if !first {
// Clean up the dangling combiner, since it never got its right hand expression.
combiners.pop();
}
break;
};
// Go to the end of this expression.
idx = expr.range().end;
subjects.push(expr);
first = false;
}
if subjects.is_empty() {
return None; // no subjects
}
// Our new expression takes ownership of all expressions we created. The base token we pass is
// irrelevant.
CombiningExpression {
subjects,
combiners,
range: start..idx,
}
.into_some_box()
}
fn parse_unary_primary(&mut self, start: usize, end: usize) -> Option<Box<dyn Expression>> {
// We need two arguments.
if start >= end {
return self.error(start, sprintf!("Missing argument at index %u", start + 1));
}
if start + 1 >= end {
return self.error(
start + 1,
sprintf!("Missing argument at index %u", start + 2),
);
}
// All our unary primaries are prefix, so the operator is at start.
let Token::Unary(token) = token_for_string(self.arg(start)) else {
return None;
};
UnaryPrimary {
arg: self.arg(start + 1).to_owned(),
token,
range: start..start + 2,
}
.into_some_box()
}
fn parse_just_a_string(&mut self, start: usize, end: usize) -> Option<Box<dyn Expression>> {
// Handle a string as a unary primary that is not a token of any other type.
// e.g. 'test foo -a bar' should evaluate to true.
// We need one argument.
if start >= end {
return self.error(start, sprintf!("Missing argument at index %u", start + 1));
}
let tok = token_for_string(self.arg(start));
if tok != Token::Unknown {
return self.error(
start,
sprintf!("Unexpected argument type at index %u", start + 1),
);
}
if feature_test(FeatureFlag::test_require_arg) {
return self.error(start, sprintf!("Unknown option at index %u", start));
}
return JustAString {
arg: self.arg(start).to_owned(),
range: start..start + 1,
}
.into_some_box();
}
fn parse_binary_primary(
&mut self,
start: usize,
end: usize,
) -> Option<Box<dyn Expression>> {
// We need three arguments.
for idx in start..start + 3 {
if idx >= end {
return self.error(idx, sprintf!("Missing argument at index %u", idx + 1));
}
}
// All our binary primaries are infix, so the operator is at start + 1.
let Token::Binary(token) = token_for_string(self.arg(start + 1)) else {
return None;
};
BinaryPrimary {
arg_left: self.arg(start).to_owned(),
arg_right: self.arg(start + 2).to_owned(),
token,
range: start..start + 3,
}
.into_some_box()
}
fn parse_parenthetical(&mut self, start: usize, end: usize) -> Option<Box<dyn Expression>> {
// We need at least three arguments: open paren, argument, close paren.
if start + 3 >= end {
return None;
}
// Must start with an open expression.
if token_for_string(self.arg(start)) != Token::ParenOpen {
return None;
}
// Parse a subexpression.
let subexpr = self.parse_expression(start + 1, end)?;
// Parse a close paren.
let close_index = subexpr.range().end;
assert!(close_index <= end);
if close_index == end {
return self.error(
close_index,
sprintf!("Missing close paren at index %u", close_index + 1),
);
}
if token_for_string(self.arg(close_index)) != Token::ParenClose {
return self.error(
close_index,
sprintf!("Expected close paren at index %u", close_index + 1),
);
}
// Success.
ParentheticalExpression {
contents: subexpr,
range: start..close_index + 1,
}
.into_some_box()
}
fn parse_primary(&mut self, start: usize, end: usize) -> Option<Box<dyn Expression>> {
if start >= end {
return self.error(start, sprintf!("Missing argument at index %u", start + 1));
}
let mut expr = None;
if expr.is_none() {
expr = self.parse_parenthetical(start, end);
}
if expr.is_none() {
expr = self.parse_unary_primary(start, end);
}
if expr.is_none() {
expr = self.parse_binary_primary(start, end);
}
if expr.is_none() {
expr = self.parse_just_a_string(start, end);
}
expr
}
// See IEEE 1003.1 breakdown of the behavior for different parameter counts.
fn parse_3_arg_expression(
&mut self,
start: usize,
end: usize,
) -> Option<Box<dyn Expression>> {
assert!(end - start == 3);
let center_token = token_for_string(self.arg(start + 1));
if matches!(center_token, Token::Binary(_)) {
self.parse_binary_primary(start, end)
} else if let Token::BinaryBoolean(combiner) = center_token {
let left = self.parse_unary_expression(start, start + 1)?;
let right = self.parse_unary_expression(start + 2, start + 3)?;
// Transfer ownership to the vector of subjects.
CombiningExpression {
subjects: vec![left, right],
combiners: vec![combiner],
range: start..end,
}
.into_some_box()
} else {
self.parse_unary_expression(start, end)
}
}
fn parse_4_arg_expression(
&mut self,
start: usize,
end: usize,
) -> Option<Box<dyn Expression>> {
assert!(end - start == 4);
let first_token = token_for_string(self.arg(start));
if let Token::UnaryBoolean(token) = first_token {
let subject = self.parse_3_arg_expression(start + 1, end)?;
UnaryOperator {
subject,
token,
range: start..end,
}
.into_some_box()
} else if first_token == Token::ParenOpen {
self.parse_parenthetical(start, end)
} else {
self.parse_combining_expression(start, end)
}
}
fn parse_expression(&mut self, start: usize, end: usize) -> Option<Box<dyn Expression>> {
if start >= end {
return self.error(start, sprintf!("Missing argument at index %u", start + 1));
}
let argc = end - start;
match argc {
0 => {
panic!("argc should not be zero"); // should have been caught by the above test
}
1 => self.error(
start + 1,
sprintf!("Missing argument at index %u", start + 2),
),
2 => self.parse_unary_expression(start, end),
3 => self.parse_3_arg_expression(start, end),
4 => self.parse_4_arg_expression(start, end),
_ => self.parse_combining_expression(start, end),
}
}
pub fn parse_args(
args: &[WString],
err: &mut WString,
program_name: &wstr,
) -> Option<Box<dyn Expression>> {
let mut parser = TestParser {
strings: args,
errors: Vec::new(),
error_idx: 0,
};
let mut result = parser.parse_expression(0, args.len());
// Historic assumption from C++: if we have no errors then we must have a result.
assert!(!parser.errors.is_empty() || result.is_some());
// Handle errors.
// For now we only show the first error.
if !parser.errors.is_empty() || result.as_ref().unwrap().range().end < args.len() {
let mut narg = 0;
let mut len_to_err = 0;
if parser.errors.is_empty() {
parser.error_idx = result.as_ref().unwrap().range().end;
}
let mut commandline = WString::new();
for arg in args {
if narg > 0 {
commandline.push(' ');
}
commandline.push_utfstr(arg);
narg += 1;
if narg == parser.error_idx {
len_to_err = fish_wcswidth(&commandline);
}
}
err.push_utfstr(program_name);
err.push_str(": ");
if !parser.errors.is_empty() {
err.push_utfstr(&parser.errors[0]);
} else {
sprintf!(=> err, "unexpected argument at index %lu: '%ls'",
result.as_ref().unwrap().range().end + 1,
args[result.as_ref().unwrap().range().end]);
}
err.push('\n');
err.push_utfstr(&commandline);
err.push('\n');
err.push_utfstr(&sprintf!("%*ls%ls\n", len_to_err + 1, " ", "^"));
}
if result.is_some() {
// It's also an error if there are any unused arguments. This is not detected by
// parse_expression().
assert!(result.as_ref().unwrap().range().end <= args.len());
if result.as_ref().unwrap().range().end < args.len() {
result = None;
}
}
result
}
}
// Parse a double from arg.
fn parse_double(argstr: &wstr) -> Result<f64, Error> {
let mut arg = argstr;
// Consume leading spaces.
while !arg.is_empty() && arg.char_at(0).is_whitespace() {
arg = arg.slice_from(1);
}
if arg.is_empty() {
return Err(Error::Empty);
}
let mut consumed = 0;
let res = wcstod(arg, '.', &mut consumed)?;
// Consume trailing spaces.
let mut end = arg.slice_from(consumed);
while !end.is_empty() && end.char_at(0).is_whitespace() {
end = end.slice_from(1);
}
if end.len() < argstr.len() && end.is_empty() {
Ok(res)
} else {
Err(Error::InvalidChar)
}
}
// IEEE 1003.1 says nothing about what it means for two strings to be "algebraically equal". For
// example, should we interpret 0x10 as 0, 10, or 16? Here we use only base 10 and use wcstoll,
// which allows for leading + and -, and whitespace. This is consistent, albeit a bit more lenient
// since we allow trailing whitespace, with other implementations such as bash.
fn parse_number(arg: &wstr, number: &mut Number, errors: &mut Vec<WString>) -> bool {
let floating = parse_double(arg);
let integral: Result<i64, Error> = fish_wcstol(arg);
if let Ok(int) = integral {
// Here the value is just an integer; ignore the floating point parse because it may be
// invalid (e.g. not a representable integer).
*number = Number::new(int, 0.0);
true
} else if floating.is_ok_and(|f| f.is_finite())
&& integral.is_err_and(|i| i != Error::Overflow)
{
// Here we parsed an (in range) floating point value that could not be parsed as an integer.
// Break the floating point value into base and delta. Ensure that base is <= the floating
// point value.
//
// Note that a non-finite number like infinity or NaN doesn't work for us, so we checked
// above.
let floating = floating.unwrap();
let intpart = floating.floor();
let delta = floating - intpart;
*number = Number::new(intpart as i64, delta);
true
} else {
// We could not parse a float or an int.
// Check for special fish_wcsto* value or show standard EINVAL/ERANGE error.
// TODO: the C++ here was pretty confusing. In particular we used an errno of -1 to mean
// "invalid char" but the input string may be something like "inf".
if integral == Err(Error::InvalidChar) && floating.is_err() {
// Historically fish has printed a special message if a prefix of the invalid string was an integer.
// Compute that now.
let options = Options {
mradix: Some(10),
..Default::default()
};
if let Ok(prefix_int) = wcstoi_opts(arg, options) {
let _: i64 = prefix_int; // to help type inference
errors.push(wgettext_fmt!(
"Integer %lld in '%ls' followed by non-digit",
prefix_int,
arg
));
} else {
errors.push(wgettext_fmt!("Argument is not a number: '%ls'", arg));
}
} else if floating.map_or(false, |x| x.is_nan()) {
// NaN is an error as far as we're concerned.
errors.push(wgettext!("Not a number").to_owned());
} else if floating.map_or(false, |x| x.is_infinite()) {
errors.push(wgettext!("Number is infinite").to_owned());
} else if integral == Err(Error::Overflow) {
errors.push(wgettext_fmt!("Result too large: %ls", arg));
} else {
errors.push(wgettext_fmt!("Invalid number: %ls", arg));
}
false
}
}
fn binary_primary_evaluate(
token: BinaryToken,
left: &wstr,
right: &wstr,
errors: &mut Vec<WString>,
) -> bool {
match token {
BinaryToken::String(StringComparison::Equal) => left == right,
BinaryToken::String(StringComparison::NotEqual) => left != right,
BinaryToken::FileId(comparison) => {
let left = file_id_for_path(left);
let right = file_id_for_path(right);
match comparison {
FileComparison::Newer => right.older_than(&left),
FileComparison::Older => left.older_than(&right),
FileComparison::Same => left == right,
}
}
BinaryToken::Number(comparison) => {
let mut ln = Number::default();
let mut rn = Number::default();
if !parse_number(left, &mut ln, errors) || !parse_number(right, &mut rn, errors) {
return false;
}
match comparison {
NumberComparison::Equal => ln == rn,
NumberComparison::NotEqual => ln != rn,
NumberComparison::Greater => ln > rn,
NumberComparison::GreaterEqual => ln >= rn,
NumberComparison::Lesser => ln < rn,
NumberComparison::LesserEqual => ln <= rn,
}
}
}
}
fn unary_primary_evaluate(
token: UnaryToken,
arg: &wstr,
streams: &mut IoStreams,
errors: &mut Vec<WString>,
) -> bool {
match token {
#[allow(clippy::unnecessary_cast)] // mode_t is u32 on many platforms, but not all
UnaryToken::FileStat(stat_token) => {
let Ok(md) = wstat(arg) else {
return false;
};
const S_ISUID: u32 = libc::S_ISUID as u32;
const S_ISGID: u32 = libc::S_ISGID as u32;
const S_ISVTX: u32 = libc::S_ISVTX as u32;
match stat_token {
// "-b", for block special files
StatPredicate::b => md.file_type().is_block_device(),
// "-c", for character special files
StatPredicate::c => md.file_type().is_char_device(),
// "-d", for directories
StatPredicate::d => md.file_type().is_dir(),
// "-e", for files that exist
StatPredicate::e => true,
// "-f", for regular files
StatPredicate::f => md.file_type().is_file(),
// "-G", for check effective group id
StatPredicate::G => md.gid() == crate::nix::getegid(),
// "-g", for set-group-id
StatPredicate::g => md.permissions().mode() & S_ISGID != 0,
// "-k", for sticky bit
StatPredicate::k => md.permissions().mode() & S_ISVTX != 0,
// "-O", for check effective user id
StatPredicate::O => md.uid() == crate::nix::geteuid(),
// "-p", for FIFO
StatPredicate::p => md.file_type().is_fifo(),
// "-S", socket
StatPredicate::S => md.file_type().is_socket(),
// "-s", size greater than zero
StatPredicate::s => md.len() > 0,
// "-u", whether file is setuid
StatPredicate::u => md.permissions().mode() & S_ISUID != 0,
}
}
UnaryToken::FileType(file_type) => {
match file_type {
// "-h", for symbolic links
// "-L", same as -h
FilePredicate::h | FilePredicate::L => {
lwstat(arg).is_ok_and(|md| md.file_type().is_symlink())
}
// "-t", whether the fd is associated with a terminal
FilePredicate::t => {
let mut num = Number::default();
parse_number(arg, &mut num, errors) && num.isatty(streams)
}
}
}
UnaryToken::FilePerm(permission) => {
let mode = match permission {
// "-r", read permission
FilePermission::r => libc::R_OK,
// "-w", whether file write permission is allowed
FilePermission::w => libc::W_OK,
// "-x", whether file execute/search is allowed
FilePermission::x => libc::X_OK,
};
waccess(arg, mode) == 0
}
UnaryToken::String(predicate) => match predicate {
// "-n", non-empty string
StringPredicate::n => !arg.is_empty(),
// "-z", true if length of string is 0
StringPredicate::z => arg.is_empty(),
},
}
}
}
/// Evaluate a conditional expression given the arguments. For POSIX conformance this
/// supports a more limited range of functionality.
/// Return status is the final shell status, i.e. 0 for true, 1 for false and 2 for error.
pub fn test(parser: &Parser, streams: &mut IoStreams, argv: &mut [&wstr]) -> Option<c_int> {
// The first argument should be the name of the command ('test').
if argv.is_empty() {
return STATUS_INVALID_ARGS;
}
// Whether we are invoked with bracket '[' or not.
let program_name = argv[0];
let is_bracket = program_name == "[";
let mut argc = argv.len() - 1;
// If we're bracket, the last argument ought to be ]; we ignore it. Note that argc is the number
// of arguments after the command name; thus argv[argc] is the last argument.
if is_bracket {
if argv[argc] == "]" {
// Ignore the closing bracket from now on.
argc -= 1;
} else {
streams
.err
.appendln(wgettext!("[: the last argument must be ']'"));
builtin_print_error_trailer(parser, streams.err, program_name);
return STATUS_INVALID_ARGS;
}
}
// Collect the arguments into a list.
let args: Vec<WString> = argv[1..argc + 1]
.iter()
.map(|&arg| arg.to_owned())
.collect();
let args: &[WString] = &args;
if feature_test(FeatureFlag::test_require_arg) {
if argc == 0 {
streams.err.appendln(wgettext_fmt!(
"%ls: Expected at least one argument",
program_name
));
builtin_print_error_trailer(parser, streams.err, program_name);
return STATUS_INVALID_ARGS;
} else if argc == 1 {
if args[0] == "-n" {
return STATUS_CMD_ERROR;
} else if args[0] == "-z" {
return STATUS_CMD_OK;
}
}
} else if argc == 0 {
if should_flog!(deprecated_test) {
streams.err.appendln(wgettext_fmt!(
"%ls: called with no arguments. This will be an error in future.",
program_name
));
streams.err.append(parser.current_line());
}
return STATUS_INVALID_ARGS; // Per 1003.1, exit false.
} else if argc == 1 {
if should_flog!(deprecated_test) {
if args[0] != "-z" {
streams.err.appendln(wgettext_fmt!(
"%ls: called with one argument. This will return false in future.",
program_name
));
streams.err.append(parser.current_line());
}
}
// Per 1003.1, exit true if the arg is non-empty.
return if args[0].is_empty() {
STATUS_CMD_ERROR
} else {
STATUS_CMD_OK
};
}
// Try parsing
let mut err = WString::new();
let expr = test_expressions::TestParser::parse_args(args, &mut err, program_name);
let Some(expr) = expr else {
streams.err.append(err);
streams.err.append(parser.current_line());
return STATUS_CMD_ERROR;
};
let mut eval_errors = Vec::new();
let result = expr.evaluate(streams, &mut eval_errors);
if !eval_errors.is_empty() {
if !common::should_suppress_stderr_for_tests() {
for eval_error in eval_errors {
streams.err.appendln(&eval_error);
}
// Add a backtrace but not the "see help" message
// because this isn't about passing the wrong options.
streams.err.append(parser.current_line());
}
return STATUS_INVALID_ARGS;
}
if result {
STATUS_CMD_OK
} else {
STATUS_CMD_ERROR
}
}