fish-shell/src/parser.cpp
Aaron Gyes daf5e11179 Spelling fixes
Found with scspell
2022-10-28 20:10:09 -07:00

769 lines
26 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// The fish parser. Contains functions for parsing and evaluating code.
#include "config.h" // IWYU pragma: keep
#include "parser.h"
#include <fcntl.h>
#include <stdio.h>
#include <algorithm>
#include <cwchar>
#include <functional>
#include <iterator>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include "ast.h"
#include "common.h"
#include "complete.h"
#include "env.h"
#include "event.h"
#include "expand.h"
#include "fallback.h" // IWYU pragma: keep
#include "fds.h"
#include "flog.h"
#include "function.h"
#include "job_group.h"
#include "parse_constants.h"
#include "parse_execution.h"
#include "proc.h"
#include "signal.h"
#include "wutil.h" // IWYU pragma: keep
class io_chain_t;
// Given a file path, return something nicer. Currently we just "unexpand" tildes.
static wcstring user_presentable_path(const wcstring &path, const environment_t &vars) {
return replace_home_directory_with_tilde(path, vars);
}
parser_t::parser_t(std::shared_ptr<env_stack_t> vars, bool is_principal)
: variables(std::move(vars)), is_principal_(is_principal) {
assert(variables.get() && "Null variables in parser initializer");
int cwd = open_cloexec(".", O_RDONLY);
if (cwd < 0) {
perror("Unable to open the current working directory");
return;
}
libdata().cwd_fd = std::make_shared<const autoclose_fd_t>(cwd);
}
// Out of line destructor to enable forward declaration of parse_execution_context_t
parser_t::~parser_t() = default;
parser_t &parser_t::principal_parser() {
static const std::shared_ptr<parser_t> principal{
new parser_t(env_stack_t::principal_ref(), true)};
principal->assert_can_execute();
return *principal;
}
void parser_t::assert_can_execute() const { ASSERT_IS_MAIN_THREAD(); }
int parser_t::set_var_and_fire(const wcstring &key, env_mode_flags_t mode, wcstring_list_t vals) {
int res = vars().set(key, mode, std::move(vals));
if (res == ENV_OK) {
event_fire(*this, event_t::variable_set(key));
}
return res;
}
int parser_t::set_var_and_fire(const wcstring &key, env_mode_flags_t mode, wcstring val) {
wcstring_list_t vals;
vals.push_back(std::move(val));
return set_var_and_fire(key, mode, std::move(vals));
}
void parser_t::sync_uvars_and_fire(bool always) {
if (this->syncs_uvars_) {
auto evts = this->vars().universal_sync(always);
for (const auto &evt : evts) {
event_fire(*this, evt);
}
}
}
block_t *parser_t::push_block(block_t &&block) {
block.src_lineno = parser_t::get_lineno();
block.src_filename = parser_t::current_filename();
if (block.type() != block_type_t::top) {
bool new_scope = (block.type() == block_type_t::function_call);
vars().push(new_scope);
block.wants_pop_env = true;
}
// Push it onto our list and return a pointer to it.
// Note that deques do not move their contents so this is safe.
this->block_list.push_front(std::move(block));
return &this->block_list.front();
}
void parser_t::pop_block(const block_t *expected) {
assert(expected && expected == &this->block_list.at(0) && "Unexpected block");
bool pop_env = expected->wants_pop_env;
block_list.pop_front(); // beware, this deallocates 'expected'.
if (pop_env) vars().pop();
}
const block_t *parser_t::block_at_index(size_t idx) const {
return idx < block_list.size() ? &block_list[idx] : nullptr;
}
block_t *parser_t::block_at_index(size_t idx) {
return idx < block_list.size() ? &block_list[idx] : nullptr;
}
/// Print profiling information to the specified stream.
static void print_profile(const std::deque<profile_item_t> &items, FILE *out) {
for (size_t idx = 0; idx < items.size(); idx++) {
const profile_item_t &item = items.at(idx);
if (item.skipped || item.cmd.empty()) continue;
long long total_time = item.duration;
// Compute the self time as the total time, minus the total time consumed by subsequent
// items exactly one eval level deeper.
long long self_time = item.duration;
for (size_t i = idx + 1; i < items.size(); i++) {
const profile_item_t &nested_item = items.at(i);
if (nested_item.skipped) continue;
// If the eval level is not larger, then we have exhausted nested items.
if (nested_item.level <= item.level) break;
// If the eval level is exactly one more than our level, it is a directly nested item.
if (nested_item.level == item.level + 1) self_time -= nested_item.duration;
}
if (std::fwprintf(out, L"%lld\t%lld\t", self_time, total_time) < 0) {
wperror(L"fwprintf");
return;
}
for (size_t i = 0; i < item.level; i++) {
if (std::fwprintf(out, L"-") < 0) {
wperror(L"fwprintf");
return;
}
}
if (std::fwprintf(out, L"> %ls\n", item.cmd.c_str()) < 0) {
wperror(L"fwprintf");
return;
}
}
}
void parser_t::clear_profiling() { profile_items.clear(); }
void parser_t::emit_profiling(const char *path) const {
// Save profiling information. OK to not use CLO_EXEC here because this is called while fish is
// exiting (and hence will not fork).
FILE *f = fopen(path, "w");
if (!f) {
FLOGF(warning, _(L"Could not write profiling information to file '%s'"), path);
} else {
if (std::fwprintf(f, _(L"Time\tSum\tCommand\n"), profile_items.size()) < 0) {
wperror(L"fwprintf");
} else {
print_profile(profile_items, f);
}
if (fclose(f)) {
wperror(L"fclose");
}
}
}
completion_list_t parser_t::expand_argument_list(const wcstring &arg_list_src,
expand_flags_t eflags,
const operation_context_t &ctx) {
// Parse the string as an argument list.
auto ast = ast::ast_t::parse_argument_list(arg_list_src);
if (ast.errored()) {
// Failed to parse. Here we expect to have reported any errors in test_args.
return {};
}
// Get the root argument list and extract arguments from it.
completion_list_t result;
const ast::freestanding_argument_list_t *list =
ast.top()->as<ast::freestanding_argument_list_t>();
for (const ast::argument_t &arg : list->arguments) {
wcstring arg_src = arg.source(arg_list_src);
if (expand_string(arg_src, &result, eflags, ctx) == expand_result_t::error) {
break; // failed to expand a string
}
}
return result;
}
std::shared_ptr<parser_t> parser_t::shared() { return shared_from_this(); }
cancel_checker_t parser_t::cancel_checker() const {
return [] { return signal_check_cancel() != 0; };
}
operation_context_t parser_t::context() {
return operation_context_t{this->shared(), this->vars(), this->cancel_checker()};
}
/// Append stack trace info for the block \p b to \p trace.
static void append_block_description_to_stack_trace(const parser_t &parser, const block_t &b,
wcstring &trace) {
bool print_call_site = false;
switch (b.type()) {
case block_type_t::function_call:
case block_type_t::function_call_no_shadow: {
append_format(trace, _(L"in function '%ls'"), b.function_name.c_str());
// Print arguments on the same line.
wcstring args_str;
for (const wcstring &arg : b.function_args) {
if (!args_str.empty()) args_str.push_back(L' ');
// We can't quote the arguments because we print this in quotes.
// As a special-case, add the empty argument as "".
if (!arg.empty()) {
args_str.append(escape_string(arg, ESCAPE_NO_QUOTED));
} else {
args_str.append(L"\"\"");
}
}
if (!args_str.empty()) {
// TODO: Escape these.
append_format(trace, _(L" with arguments '%ls'"), args_str.c_str());
}
trace.push_back('\n');
print_call_site = true;
break;
}
case block_type_t::subst: {
append_format(trace, _(L"in command substitution\n"));
print_call_site = true;
break;
}
case block_type_t::source: {
const filename_ref_t &source_dest = b.sourced_file;
append_format(trace, _(L"from sourcing file %ls\n"),
user_presentable_path(*source_dest, parser.vars()).c_str());
print_call_site = true;
break;
}
case block_type_t::event: {
assert(b.event && "Should have an event");
wcstring description = event_get_desc(parser, *b.event);
append_format(trace, _(L"in event handler: %ls\n"), description.c_str());
print_call_site = true;
break;
}
case block_type_t::top:
case block_type_t::begin:
case block_type_t::switch_block:
case block_type_t::while_block:
case block_type_t::for_block:
case block_type_t::if_block:
case block_type_t::breakpoint:
case block_type_t::variable_assignment:
break;
}
if (print_call_site) {
// Print where the function is called.
const auto &file = b.src_filename;
if (file) {
append_format(trace, _(L"\tcalled on line %d of file %ls\n"), b.src_lineno,
user_presentable_path(*file, parser.vars()).c_str());
} else if (parser.libdata().within_fish_init) {
append_format(trace, _(L"\tcalled during startup\n"));
}
}
}
wcstring parser_t::stack_trace() const {
wcstring trace;
for (const auto &b : blocks()) {
append_block_description_to_stack_trace(*this, b, trace);
// Stop at event handler. No reason to believe that any other code is relevant.
//
// It might make sense in the future to continue printing the stack trace of the code
// that invoked the event, if this is a programmatic event, but we can't currently
// detect that.
if (b.type() == block_type_t::event) break;
}
return trace;
}
bool parser_t::is_function() const {
for (const auto &b : block_list) {
if (b.is_function_call()) {
return true;
} else if (b.type() == block_type_t::source) {
// If a function sources a file, don't descend further.
break;
}
}
return false;
}
bool parser_t::is_block() const {
// Note historically this has descended into 'source', unlike 'is_function'.
for (const auto &b : block_list) {
if (b.type() != block_type_t::top && b.type() != block_type_t::subst) {
return true;
}
}
return false;
}
bool parser_t::is_breakpoint() const {
for (const auto &b : block_list) {
if (b.type() == block_type_t::breakpoint) {
return true;
}
}
return false;
}
bool parser_t::is_command_substitution() const {
for (const auto &b : block_list) {
if (b.type() == block_type_t::subst) {
return true;
} else if (b.type() == block_type_t::source) {
// If a function sources a file, don't descend further.
break;
}
}
return false;
}
maybe_t<wcstring> parser_t::get_function_name(int level) {
if (level == 0) {
// Return the function name for the level preceding the most recent breakpoint. If there
// isn't one return the function name for the current level.
// Walk until we find a breakpoint, then take the next function.
bool found_breakpoint = false;
for (const auto &b : block_list) {
if (b.type() == block_type_t::breakpoint) {
found_breakpoint = true;
} else if (found_breakpoint && b.is_function_call()) {
return b.function_name;
}
}
return none(); // couldn't find a breakpoint frame
}
// Level 1 is the topmost function call. Level 2 is its caller. Etc.
int funcs_seen = 0;
for (const auto &b : block_list) {
if (b.is_function_call()) {
funcs_seen++;
if (funcs_seen == level) {
return b.function_name;
}
} else if (b.type() == block_type_t::source && level == 1) {
// Historical: If we want the topmost function, but we are really in a file sourced by a
// function, don't consider ourselves to be in a function.
break;
}
}
return none();
}
int parser_t::get_lineno() const {
int lineno = -1;
if (execution_context) {
lineno = execution_context->get_current_line_number();
}
return lineno;
}
filename_ref_t parser_t::current_filename() const {
for (const auto &b : block_list) {
if (b.is_function_call()) {
auto props = function_get_props(b.function_name);
return props ? props->definition_file : nullptr;
} else if (b.type() == block_type_t::source) {
return b.sourced_file;
}
}
// Fall back to the file being sourced.
return libdata().current_filename;
}
bool parser_t::function_stack_is_overflowing() const {
// We are interested in whether the count of functions on the stack exceeds
// FISH_MAX_STACK_DEPTH. We don't separately track the number of functions, but we can have a
// fast path through the eval_level. If the eval_level is in bounds, so must be the stack depth.
if (eval_level <= FISH_MAX_STACK_DEPTH) {
return false;
}
// Count the functions.
int depth = 0;
for (const auto &b : block_list) {
depth += b.is_function_call();
}
return depth > FISH_MAX_STACK_DEPTH;
}
wcstring parser_t::current_line() {
if (!execution_context) {
return wcstring();
}
int source_offset = execution_context->get_current_source_offset();
if (source_offset < 0) {
return wcstring();
}
const int lineno = this->get_lineno();
filename_ref_t file = this->current_filename();
wcstring prefix;
// If we are not going to print a stack trace, at least print the line number and filename.
if (!is_interactive() || is_function()) {
if (file) {
append_format(prefix, _(L"%ls (line %d): "),
user_presentable_path(*file, vars()).c_str(), lineno);
} else if (libdata().within_fish_init) {
append_format(prefix, L"%ls (line %d): ", _(L"Startup"), lineno);
} else {
append_format(prefix, L"%ls (line %d): ", _(L"Standard input"), lineno);
}
}
bool skip_caret = is_interactive() && !is_function();
// Use an error with empty text.
assert(source_offset >= 0);
parse_error_t empty_error = {};
empty_error.source_start = source_offset;
wcstring line_info = empty_error.describe_with_prefix(execution_context->get_source(), prefix,
is_interactive(), skip_caret);
if (!line_info.empty()) {
line_info.push_back(L'\n');
}
line_info.append(this->stack_trace());
return line_info;
}
void parser_t::job_add(shared_ptr<job_t> job) {
assert(job != nullptr);
assert(!job->processes.empty());
job_list.push_front(std::move(job));
}
void parser_t::job_promote(job_t *job) {
job_list_t::iterator loc;
for (loc = job_list.begin(); loc != job_list.end(); ++loc) {
if (loc->get() == job) {
break;
}
}
assert(loc != job_list.end());
// Move the job to the beginning.
std::rotate(job_list.begin(), loc, std::next(loc));
}
const job_t *parser_t::job_with_id(job_id_t id) const {
for (const auto &job : job_list) {
if (id <= 0 || job->job_id() == id) return job.get();
}
return nullptr;
}
job_t *parser_t::job_get_from_pid(pid_t pid) const {
for (const auto &job : jobs()) {
for (const process_ptr_t &p : job->processes) {
if (p->pid == pid) {
return job.get();
}
}
}
return nullptr;
}
profile_item_t *parser_t::create_profile_item() {
if (g_profiling_active) {
profile_items.emplace_back();
return &profile_items.back();
}
return nullptr;
}
eval_res_t parser_t::eval(const wcstring &cmd, const io_chain_t &io,
const job_group_ref_t &job_group, enum block_type_t block_type) {
// Parse the source into a tree, if we can.
parse_error_list_t error_list;
if (parsed_source_ref_t ps = parse_source(wcstring{cmd}, parse_flag_none, &error_list)) {
return this->eval(ps, io, job_group, block_type);
} else {
// Get a backtrace. This includes the message.
wcstring backtrace_and_desc;
this->get_backtrace(cmd, error_list, backtrace_and_desc);
// Print it.
std::fwprintf(stderr, L"%ls\n", backtrace_and_desc.c_str());
// Set a valid status.
this->set_last_statuses(statuses_t::just(STATUS_ILLEGAL_CMD));
bool break_expand = true;
return eval_res_t{proc_status_t::from_exit_code(STATUS_ILLEGAL_CMD), break_expand};
}
}
eval_res_t parser_t::eval(const parsed_source_ref_t &ps, const io_chain_t &io,
const job_group_ref_t &job_group, enum block_type_t block_type) {
assert(block_type == block_type_t::top || block_type == block_type_t::subst);
const auto *job_list = ps->ast.top()->as<ast::job_list_t>();
if (!job_list->empty()) {
// Execute the top job list.
return this->eval_node(ps, *job_list, io, job_group, block_type);
} else {
auto status = proc_status_t::from_exit_code(get_last_status());
bool break_expand = false;
bool was_empty = true;
bool no_status = true;
return eval_res_t{status, break_expand, was_empty, no_status};
}
}
template <typename T>
eval_res_t parser_t::eval_node(const parsed_source_ref_t &ps, const T &node,
const io_chain_t &block_io, const job_group_ref_t &job_group,
block_type_t block_type) {
static_assert(
std::is_same<T, ast::statement_t>::value || std::is_same<T, ast::job_list_t>::value,
"Unexpected node type");
// Only certain blocks are allowed.
assert((block_type == block_type_t::top || block_type == block_type_t::subst) &&
"Invalid block type");
// If fish itself got a cancel signal, then we want to unwind back to the principal parser.
// If we are the principal parser and our block stack is empty, then we want to clear the
// signal.
// Note this only happens in interactive sessions. In non-interactive sessions, SIGINT will
// cause fish to exit.
if (int sig = signal_check_cancel()) {
if (is_principal_ && block_list.empty()) {
signal_clear_cancel();
} else {
return proc_status_t::from_signal(sig);
}
}
// A helper to detect if we got a signal.
// This includes both signals sent to fish (user hit control-C while fish is foreground) and
// signals from the job group (e.g. some external job terminated with SIGQUIT).
auto check_cancel_signal = [=] {
// Did fish itself get a signal?
int sig = signal_check_cancel();
// Has this job group been cancelled?
if (!sig && job_group) sig = job_group->get_cancel_signal();
return sig;
};
// If we have a job group which is cancelled, then do nothing.
if (int sig = check_cancel_signal()) {
return proc_status_t::from_signal(sig);
}
job_reap(*this, false); // not sure why we reap jobs here
// Start it up
operation_context_t op_ctx = this->context();
block_t *scope_block = this->push_block(block_t::scope_block(block_type));
// Propagate our job group.
op_ctx.job_group = job_group;
// Replace the context's cancel checker with one that checks the job group's signal.
op_ctx.cancel_checker = [=] { return check_cancel_signal() != 0; };
// Create and set a new execution context.
using exc_ctx_ref_t = std::unique_ptr<parse_execution_context_t>;
scoped_push<exc_ctx_ref_t> exc(&execution_context,
make_unique<parse_execution_context_t>(ps, op_ctx, block_io));
// Check the exec count so we know if anything got executed.
const size_t prev_exec_count = libdata().exec_count;
const size_t prev_status_count = libdata().status_count;
end_execution_reason_t reason = execution_context->eval_node(node, scope_block);
const size_t new_exec_count = libdata().exec_count;
const size_t new_status_count = libdata().status_count;
exc.restore();
this->pop_block(scope_block);
job_reap(*this, false); // reap again
if (int sig = check_cancel_signal()) {
return proc_status_t::from_signal(sig);
} else {
auto status = proc_status_t::from_exit_code(this->get_last_status());
bool break_expand = (reason == end_execution_reason_t::error);
bool was_empty = !break_expand && prev_exec_count == new_exec_count;
bool no_status = prev_status_count == new_status_count;
return eval_res_t{status, break_expand, was_empty, no_status};
}
}
// Explicit instantiations. TODO: use overloads instead?
template eval_res_t parser_t::eval_node(const parsed_source_ref_t &, const ast::statement_t &,
const io_chain_t &, const job_group_ref_t &, block_type_t);
template eval_res_t parser_t::eval_node(const parsed_source_ref_t &, const ast::job_list_t &,
const io_chain_t &, const job_group_ref_t &, block_type_t);
void parser_t::get_backtrace(const wcstring &src, const parse_error_list_t &errors,
wcstring &output) const {
if (!errors.empty()) {
const parse_error_t &err = errors.at(0);
// Determine if we want to try to print a caret to point at the source error. The
// err.source_start <= src.size() check is due to the nasty way that slices work, which is
// by rewriting the source.
size_t which_line = 0;
bool skip_caret = true;
if (err.source_start != SOURCE_LOCATION_UNKNOWN && err.source_start <= src.size()) {
// Determine which line we're on.
which_line = 1 + std::count(src.begin(), src.begin() + err.source_start, L'\n');
// Don't include the caret if we're interactive, this is the first line of text, and our
// source is at its beginning, because then it's obvious.
skip_caret = (is_interactive() && which_line == 1 && err.source_start == 0);
}
wcstring prefix;
filename_ref_t filename = this->current_filename();
if (filename) {
if (which_line > 0) {
prefix =
format_string(_(L"%ls (line %lu): "),
user_presentable_path(*filename, vars()).c_str(), which_line);
} else {
prefix =
format_string(_(L"%ls: "), user_presentable_path(*filename, vars()).c_str());
}
} else {
prefix = L"fish: ";
}
const wcstring description =
err.describe_with_prefix(src, prefix, is_interactive(), skip_caret);
if (!description.empty()) {
output.append(description);
output.push_back(L'\n');
}
output.append(this->stack_trace());
}
}
block_t::block_t(block_type_t t) : block_type(t) {}
wcstring block_t::description() const {
wcstring result;
switch (this->type()) {
case block_type_t::while_block: {
result.append(L"while");
break;
}
case block_type_t::for_block: {
result.append(L"for");
break;
}
case block_type_t::if_block: {
result.append(L"if");
break;
}
case block_type_t::function_call: {
result.append(L"function_call");
break;
}
case block_type_t::function_call_no_shadow: {
result.append(L"function_call_no_shadow");
break;
}
case block_type_t::switch_block: {
result.append(L"switch");
break;
}
case block_type_t::subst: {
result.append(L"substitution");
break;
}
case block_type_t::top: {
result.append(L"top");
break;
}
case block_type_t::begin: {
result.append(L"begin");
break;
}
case block_type_t::source: {
result.append(L"source");
break;
}
case block_type_t::event: {
result.append(L"event");
break;
}
case block_type_t::breakpoint: {
result.append(L"breakpoint");
break;
}
case block_type_t::variable_assignment: {
result.append(L"variable_assignment");
break;
}
}
if (this->src_lineno >= 0) {
append_format(result, L" (line %d)", this->src_lineno);
}
if (this->src_filename) {
append_format(result, L" (file %ls)", this->src_filename->c_str());
}
return result;
}
// Various block constructors.
block_t block_t::if_block() { return block_t(block_type_t::if_block); }
block_t block_t::event_block(event_t evt) {
block_t b{block_type_t::event};
b.event.reset(new event_t(std::move(evt)));
return b;
}
block_t block_t::function_block(wcstring name, wcstring_list_t args, bool shadows) {
block_t b{shadows ? block_type_t::function_call : block_type_t::function_call_no_shadow};
b.function_name = std::move(name);
b.function_args = std::move(args);
return b;
}
block_t block_t::source_block(filename_ref_t src) {
block_t b{block_type_t::source};
b.sourced_file = std::move(src);
return b;
}
block_t block_t::for_block() { return block_t{block_type_t::for_block}; }
block_t block_t::while_block() { return block_t{block_type_t::while_block}; }
block_t block_t::switch_block() { return block_t{block_type_t::switch_block}; }
block_t block_t::scope_block(block_type_t type) {
assert(
(type == block_type_t::begin || type == block_type_t::top || type == block_type_t::subst) &&
"Invalid scope type");
return block_t(type);
}
block_t block_t::breakpoint_block() { return block_t(block_type_t::breakpoint); }
block_t block_t::variable_assignment_block() { return block_t(block_type_t::variable_assignment); }