652 lines
15 KiB
C++
652 lines
15 KiB
C++
/* Fibonacci heap for GNU compiler.
|
|
Copyright (C) 1998-2018 Free Software Foundation, Inc.
|
|
Contributed by Daniel Berlin (dan@cgsoftware.com).
|
|
Re-implemented in C++ by Martin Liska <mliska@suse.cz>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* Fibonacci heaps are somewhat complex, but, there's an article in
|
|
DDJ that explains them pretty well:
|
|
|
|
http://www.ddj.com/articles/1997/9701/9701o/9701o.htm?topic=algoritms
|
|
|
|
Introduction to algorithms by Corman and Rivest also goes over them.
|
|
|
|
The original paper that introduced them is "Fibonacci heaps and their
|
|
uses in improved network optimization algorithms" by Tarjan and
|
|
Fredman (JACM 34(3), July 1987).
|
|
|
|
Amortized and real worst case time for operations:
|
|
|
|
ExtractMin: O(lg n) amortized. O(n) worst case.
|
|
DecreaseKey: O(1) amortized. O(lg n) worst case.
|
|
Insert: O(1) amortized.
|
|
Union: O(1) amortized. */
|
|
|
|
#ifndef GCC_FIBONACCI_HEAP_H
|
|
#define GCC_FIBONACCI_HEAP_H
|
|
|
|
/* Forward definition. */
|
|
|
|
template<class K, class V>
|
|
class fibonacci_heap;
|
|
|
|
/* Fibonacci heap node class. */
|
|
|
|
template<class K, class V>
|
|
class fibonacci_node
|
|
{
|
|
typedef fibonacci_node<K,V> fibonacci_node_t;
|
|
friend class fibonacci_heap<K,V>;
|
|
|
|
public:
|
|
/* Default constructor. */
|
|
fibonacci_node (): m_parent (NULL), m_child (NULL), m_left (this),
|
|
m_right (this), m_degree (0), m_mark (0)
|
|
{
|
|
}
|
|
|
|
/* Constructor for a node with given KEY. */
|
|
fibonacci_node (K key, V *data = NULL): m_parent (NULL), m_child (NULL),
|
|
m_left (this), m_right (this), m_key (key), m_data (data),
|
|
m_degree (0), m_mark (0)
|
|
{
|
|
}
|
|
|
|
/* Compare fibonacci node with OTHER node. */
|
|
int compare (fibonacci_node_t *other)
|
|
{
|
|
if (m_key < other->m_key)
|
|
return -1;
|
|
if (m_key > other->m_key)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Compare the node with a given KEY. */
|
|
int compare_data (K key)
|
|
{
|
|
return fibonacci_node_t (key).compare (this);
|
|
}
|
|
|
|
/* Remove fibonacci heap node. */
|
|
fibonacci_node_t *remove ();
|
|
|
|
/* Link the node with PARENT. */
|
|
void link (fibonacci_node_t *parent);
|
|
|
|
/* Return key associated with the node. */
|
|
K get_key ()
|
|
{
|
|
return m_key;
|
|
}
|
|
|
|
/* Return data associated with the node. */
|
|
V *get_data ()
|
|
{
|
|
return m_data;
|
|
}
|
|
|
|
private:
|
|
/* Put node B after this node. */
|
|
void insert_after (fibonacci_node_t *b);
|
|
|
|
/* Insert fibonacci node B after this node. */
|
|
void insert_before (fibonacci_node_t *b)
|
|
{
|
|
m_left->insert_after (b);
|
|
}
|
|
|
|
/* Parent node. */
|
|
fibonacci_node *m_parent;
|
|
/* Child node. */
|
|
fibonacci_node *m_child;
|
|
/* Left sibling. */
|
|
fibonacci_node *m_left;
|
|
/* Right node. */
|
|
fibonacci_node *m_right;
|
|
/* Key associated with node. */
|
|
K m_key;
|
|
/* Data associated with node. */
|
|
V *m_data;
|
|
|
|
#if defined (__GNUC__) && (!defined (SIZEOF_INT) || SIZEOF_INT < 4)
|
|
/* Degree of the node. */
|
|
__extension__ unsigned long int m_degree : 31;
|
|
/* Mark of the node. */
|
|
__extension__ unsigned long int m_mark : 1;
|
|
#else
|
|
/* Degree of the node. */
|
|
unsigned int m_degree : 31;
|
|
/* Mark of the node. */
|
|
unsigned int m_mark : 1;
|
|
#endif
|
|
};
|
|
|
|
/* Fibonacci heap class. */
|
|
template<class K, class V>
|
|
class fibonacci_heap
|
|
{
|
|
typedef fibonacci_node<K,V> fibonacci_node_t;
|
|
friend class fibonacci_node<K,V>;
|
|
|
|
public:
|
|
/* Default constructor. */
|
|
fibonacci_heap (K global_min_key): m_nodes (0), m_min (NULL), m_root (NULL),
|
|
m_global_min_key (global_min_key)
|
|
{
|
|
}
|
|
|
|
/* Destructor. */
|
|
~fibonacci_heap ()
|
|
{
|
|
while (m_min != NULL)
|
|
delete (extract_minimum_node ());
|
|
}
|
|
|
|
/* Insert new node given by KEY and DATA associated with the key. */
|
|
fibonacci_node_t *insert (K key, V *data);
|
|
|
|
/* Return true if no entry is present. */
|
|
bool empty ()
|
|
{
|
|
return m_nodes == 0;
|
|
}
|
|
|
|
/* Return the number of nodes. */
|
|
size_t nodes ()
|
|
{
|
|
return m_nodes;
|
|
}
|
|
|
|
/* Return minimal key presented in the heap. */
|
|
K min_key ()
|
|
{
|
|
if (m_min == NULL)
|
|
gcc_unreachable ();
|
|
|
|
return m_min->m_key;
|
|
}
|
|
|
|
/* For given NODE, set new KEY value. */
|
|
K replace_key (fibonacci_node_t *node, K key)
|
|
{
|
|
K okey = node->m_key;
|
|
|
|
replace_key_data (node, key, node->m_data);
|
|
return okey;
|
|
}
|
|
|
|
/* For given NODE, decrease value to new KEY. */
|
|
K decrease_key (fibonacci_node_t *node, K key)
|
|
{
|
|
gcc_assert (key <= node->m_key);
|
|
return replace_key (node, key);
|
|
}
|
|
|
|
/* For given NODE, set new KEY and DATA value. */
|
|
V *replace_key_data (fibonacci_node_t *node, K key, V *data);
|
|
|
|
/* Extract minimum node in the heap. If RELEASE is specified,
|
|
memory is released. */
|
|
V *extract_min (bool release = true);
|
|
|
|
/* Return value associated with minimum node in the heap. */
|
|
V *min ()
|
|
{
|
|
if (m_min == NULL)
|
|
return NULL;
|
|
|
|
return m_min->m_data;
|
|
}
|
|
|
|
/* Replace data associated with NODE and replace it with DATA. */
|
|
V *replace_data (fibonacci_node_t *node, V *data)
|
|
{
|
|
return replace_key_data (node, node->m_key, data);
|
|
}
|
|
|
|
/* Delete NODE in the heap. */
|
|
V *delete_node (fibonacci_node_t *node, bool release = true);
|
|
|
|
/* Union the heap with HEAPB. */
|
|
fibonacci_heap *union_with (fibonacci_heap *heapb);
|
|
|
|
private:
|
|
/* Insert new NODE given by KEY and DATA associated with the key. */
|
|
fibonacci_node_t *insert (fibonacci_node_t *node, K key, V *data);
|
|
|
|
/* Insert new NODE that has already filled key and value. */
|
|
fibonacci_node_t *insert_node (fibonacci_node_t *node);
|
|
|
|
/* Insert it into the root list. */
|
|
void insert_root (fibonacci_node_t *node);
|
|
|
|
/* Remove NODE from PARENT's child list. */
|
|
void cut (fibonacci_node_t *node, fibonacci_node_t *parent);
|
|
|
|
/* Process cut of node Y and do it recursivelly. */
|
|
void cascading_cut (fibonacci_node_t *y);
|
|
|
|
/* Extract minimum node from the heap. */
|
|
fibonacci_node_t * extract_minimum_node ();
|
|
|
|
/* Remove root NODE from the heap. */
|
|
void remove_root (fibonacci_node_t *node);
|
|
|
|
/* Consolidate heap. */
|
|
void consolidate ();
|
|
|
|
/* Number of nodes. */
|
|
size_t m_nodes;
|
|
/* Minimum node of the heap. */
|
|
fibonacci_node_t *m_min;
|
|
/* Root node of the heap. */
|
|
fibonacci_node_t *m_root;
|
|
/* Global minimum given in the heap construction. */
|
|
K m_global_min_key;
|
|
};
|
|
|
|
/* Remove fibonacci heap node. */
|
|
|
|
template<class K, class V>
|
|
fibonacci_node<K,V> *
|
|
fibonacci_node<K,V>::remove ()
|
|
{
|
|
fibonacci_node<K,V> *ret;
|
|
|
|
if (this == m_left)
|
|
ret = NULL;
|
|
else
|
|
ret = m_left;
|
|
|
|
if (m_parent != NULL && m_parent->m_child == this)
|
|
m_parent->m_child = ret;
|
|
|
|
m_right->m_left = m_left;
|
|
m_left->m_right = m_right;
|
|
|
|
m_parent = NULL;
|
|
m_left = this;
|
|
m_right = this;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Link the node with PARENT. */
|
|
|
|
template<class K, class V>
|
|
void
|
|
fibonacci_node<K,V>::link (fibonacci_node<K,V> *parent)
|
|
{
|
|
if (parent->m_child == NULL)
|
|
parent->m_child = this;
|
|
else
|
|
parent->m_child->insert_before (this);
|
|
m_parent = parent;
|
|
parent->m_degree++;
|
|
m_mark = 0;
|
|
}
|
|
|
|
/* Put node B after this node. */
|
|
|
|
template<class K, class V>
|
|
void
|
|
fibonacci_node<K,V>::insert_after (fibonacci_node<K,V> *b)
|
|
{
|
|
fibonacci_node<K,V> *a = this;
|
|
|
|
if (a == a->m_right)
|
|
{
|
|
a->m_right = b;
|
|
a->m_left = b;
|
|
b->m_right = a;
|
|
b->m_left = a;
|
|
}
|
|
else
|
|
{
|
|
b->m_right = a->m_right;
|
|
a->m_right->m_left = b;
|
|
a->m_right = b;
|
|
b->m_left = a;
|
|
}
|
|
}
|
|
|
|
/* Insert new node given by KEY and DATA associated with the key. */
|
|
|
|
template<class K, class V>
|
|
fibonacci_node<K,V>*
|
|
fibonacci_heap<K,V>::insert (K key, V *data)
|
|
{
|
|
/* Create the new node. */
|
|
fibonacci_node<K,V> *node = new fibonacci_node_t (key, data);
|
|
|
|
return insert_node (node);
|
|
}
|
|
|
|
/* Insert new NODE given by DATA associated with the key. */
|
|
|
|
template<class K, class V>
|
|
fibonacci_node<K,V>*
|
|
fibonacci_heap<K,V>::insert (fibonacci_node_t *node, K key, V *data)
|
|
{
|
|
/* Set the node's data. */
|
|
node->m_data = data;
|
|
node->m_key = key;
|
|
|
|
return insert_node (node);
|
|
}
|
|
|
|
/* Insert new NODE that has already filled key and value. */
|
|
|
|
template<class K, class V>
|
|
fibonacci_node<K,V>*
|
|
fibonacci_heap<K,V>::insert_node (fibonacci_node_t *node)
|
|
{
|
|
/* Insert it into the root list. */
|
|
insert_root (node);
|
|
|
|
/* If their was no minimum, or this key is less than the min,
|
|
it's the new min. */
|
|
if (m_min == NULL || node->m_key < m_min->m_key)
|
|
m_min = node;
|
|
|
|
m_nodes++;
|
|
|
|
return node;
|
|
}
|
|
|
|
/* For given NODE, set new KEY and DATA value. */
|
|
|
|
template<class K, class V>
|
|
V*
|
|
fibonacci_heap<K,V>::replace_key_data (fibonacci_node<K,V> *node, K key,
|
|
V *data)
|
|
{
|
|
K okey;
|
|
fibonacci_node<K,V> *y;
|
|
V *odata = node->m_data;
|
|
|
|
/* If we wanted to, we do a real increase by redeleting and
|
|
inserting. */
|
|
if (node->compare_data (key) > 0)
|
|
{
|
|
delete_node (node, false);
|
|
|
|
node = new (node) fibonacci_node_t ();
|
|
insert (node, key, data);
|
|
|
|
return odata;
|
|
}
|
|
|
|
okey = node->m_key;
|
|
node->m_data = data;
|
|
node->m_key = key;
|
|
y = node->m_parent;
|
|
|
|
/* Short-circuit if the key is the same, as we then don't have to
|
|
do anything. Except if we're trying to force the new node to
|
|
be the new minimum for delete. */
|
|
if (okey == key && okey != m_global_min_key)
|
|
return odata;
|
|
|
|
/* These two compares are specifically <= 0 to make sure that in the case
|
|
of equality, a node we replaced the data on, becomes the new min. This
|
|
is needed so that delete's call to extractmin gets the right node. */
|
|
if (y != NULL && node->compare (y) <= 0)
|
|
{
|
|
cut (node, y);
|
|
cascading_cut (y);
|
|
}
|
|
|
|
if (node->compare (m_min) <= 0)
|
|
m_min = node;
|
|
|
|
return odata;
|
|
}
|
|
|
|
/* Extract minimum node in the heap. Delete fibonacci node if RELEASE
|
|
is true. */
|
|
|
|
template<class K, class V>
|
|
V*
|
|
fibonacci_heap<K,V>::extract_min (bool release)
|
|
{
|
|
fibonacci_node<K,V> *z;
|
|
V *ret = NULL;
|
|
|
|
/* If we don't have a min set, it means we have no nodes. */
|
|
if (m_min != NULL)
|
|
{
|
|
/* Otherwise, extract the min node, free the node, and return the
|
|
node's data. */
|
|
z = extract_minimum_node ();
|
|
ret = z->m_data;
|
|
|
|
if (release)
|
|
delete (z);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Delete NODE in the heap, if RELEASE is specified memory is released. */
|
|
|
|
template<class K, class V>
|
|
V*
|
|
fibonacci_heap<K,V>::delete_node (fibonacci_node<K,V> *node, bool release)
|
|
{
|
|
V *ret = node->m_data;
|
|
|
|
/* To perform delete, we just make it the min key, and extract. */
|
|
replace_key (node, m_global_min_key);
|
|
if (node != m_min)
|
|
{
|
|
fprintf (stderr, "Can't force minimum on fibheap.\n");
|
|
abort ();
|
|
}
|
|
extract_min (release);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Union the heap with HEAPB. One of the heaps is going to be deleted. */
|
|
|
|
template<class K, class V>
|
|
fibonacci_heap<K,V>*
|
|
fibonacci_heap<K,V>::union_with (fibonacci_heap<K,V> *heapb)
|
|
{
|
|
fibonacci_heap<K,V> *heapa = this;
|
|
|
|
fibonacci_node<K,V> *a_root, *b_root;
|
|
|
|
/* If one of the heaps is empty, the union is just the other heap. */
|
|
if ((a_root = heapa->m_root) == NULL)
|
|
{
|
|
delete (heapa);
|
|
return heapb;
|
|
}
|
|
if ((b_root = heapb->m_root) == NULL)
|
|
{
|
|
delete (heapb);
|
|
return heapa;
|
|
}
|
|
|
|
/* Merge them to the next nodes on the opposite chain. */
|
|
a_root->m_left->m_right = b_root;
|
|
b_root->m_left->m_right = a_root;
|
|
std::swap (a_root->m_left, b_root->m_left);
|
|
heapa->m_nodes += heapb->m_nodes;
|
|
|
|
/* And set the new minimum, if it's changed. */
|
|
if (heapb->m_min->compare (heapa->m_min) < 0)
|
|
heapa->m_min = heapb->m_min;
|
|
|
|
/* Set m_min to NULL to not to delete live fibonacci nodes. */
|
|
heapb->m_min = NULL;
|
|
delete (heapb);
|
|
|
|
return heapa;
|
|
}
|
|
|
|
/* Insert it into the root list. */
|
|
|
|
template<class K, class V>
|
|
void
|
|
fibonacci_heap<K,V>::insert_root (fibonacci_node_t *node)
|
|
{
|
|
/* If the heap is currently empty, the new node becomes the singleton
|
|
circular root list. */
|
|
if (m_root == NULL)
|
|
{
|
|
m_root = node;
|
|
node->m_left = node;
|
|
node->m_right = node;
|
|
return;
|
|
}
|
|
|
|
/* Otherwise, insert it in the circular root list between the root
|
|
and it's right node. */
|
|
m_root->insert_after (node);
|
|
}
|
|
|
|
/* Remove NODE from PARENT's child list. */
|
|
|
|
template<class K, class V>
|
|
void
|
|
fibonacci_heap<K,V>::cut (fibonacci_node<K,V> *node,
|
|
fibonacci_node<K,V> *parent)
|
|
{
|
|
node->remove ();
|
|
parent->m_degree--;
|
|
insert_root (node);
|
|
node->m_parent = NULL;
|
|
node->m_mark = 0;
|
|
}
|
|
|
|
/* Process cut of node Y and do it recursivelly. */
|
|
|
|
template<class K, class V>
|
|
void
|
|
fibonacci_heap<K,V>::cascading_cut (fibonacci_node<K,V> *y)
|
|
{
|
|
fibonacci_node<K,V> *z;
|
|
|
|
while ((z = y->m_parent) != NULL)
|
|
{
|
|
if (y->m_mark == 0)
|
|
{
|
|
y->m_mark = 1;
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
cut (y, z);
|
|
y = z;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Extract minimum node from the heap. */
|
|
|
|
template<class K, class V>
|
|
fibonacci_node<K,V>*
|
|
fibonacci_heap<K,V>::extract_minimum_node ()
|
|
{
|
|
fibonacci_node<K,V> *ret = m_min;
|
|
fibonacci_node<K,V> *x, *y, *orig;
|
|
|
|
/* Attach the child list of the minimum node to the root list of the heap.
|
|
If there is no child list, we don't do squat. */
|
|
for (x = ret->m_child, orig = NULL; x != orig && x != NULL; x = y)
|
|
{
|
|
if (orig == NULL)
|
|
orig = x;
|
|
y = x->m_right;
|
|
x->m_parent = NULL;
|
|
insert_root (x);
|
|
}
|
|
|
|
/* Remove the old root. */
|
|
remove_root (ret);
|
|
m_nodes--;
|
|
|
|
/* If we are left with no nodes, then the min is NULL. */
|
|
if (m_nodes == 0)
|
|
m_min = NULL;
|
|
else
|
|
{
|
|
/* Otherwise, consolidate to find new minimum, as well as do the reorg
|
|
work that needs to be done. */
|
|
m_min = ret->m_right;
|
|
consolidate ();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Remove root NODE from the heap. */
|
|
|
|
template<class K, class V>
|
|
void
|
|
fibonacci_heap<K,V>::remove_root (fibonacci_node<K,V> *node)
|
|
{
|
|
if (node->m_left == node)
|
|
m_root = NULL;
|
|
else
|
|
m_root = node->remove ();
|
|
}
|
|
|
|
/* Consolidate heap. */
|
|
|
|
template<class K, class V>
|
|
void fibonacci_heap<K,V>::consolidate ()
|
|
{
|
|
int D = 1 + 8 * sizeof (long);
|
|
auto_vec<fibonacci_node<K,V> *> a (D);
|
|
a.safe_grow_cleared (D);
|
|
fibonacci_node<K,V> *w, *x, *y;
|
|
int i, d;
|
|
|
|
while ((w = m_root) != NULL)
|
|
{
|
|
x = w;
|
|
remove_root (w);
|
|
d = x->m_degree;
|
|
while (a[d] != NULL)
|
|
{
|
|
y = a[d];
|
|
if (x->compare (y) > 0)
|
|
std::swap (x, y);
|
|
y->link (x);
|
|
a[d] = NULL;
|
|
d++;
|
|
}
|
|
a[d] = x;
|
|
}
|
|
m_min = NULL;
|
|
for (i = 0; i < D; i++)
|
|
if (a[i] != NULL)
|
|
{
|
|
insert_root (a[i]);
|
|
if (m_min == NULL || a[i]->compare (m_min) < 0)
|
|
m_min = a[i];
|
|
}
|
|
}
|
|
|
|
#endif // GCC_FIBONACCI_HEAP_H
|