1672 lines
48 KiB
C
1672 lines
48 KiB
C
/* Instruction scheduling pass. This file contains definitions used
|
||
internally in the scheduler.
|
||
Copyright (C) 2006-2018 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#ifndef GCC_SEL_SCHED_IR_H
|
||
#define GCC_SEL_SCHED_IR_H
|
||
|
||
/* For state_t. */
|
||
/* For reg_note. */
|
||
|
||
/* tc_t is a short for target context. This is a state of the target
|
||
backend. */
|
||
typedef void *tc_t;
|
||
|
||
/* List data types used for av sets, fences, paths, and boundaries. */
|
||
|
||
/* Forward declarations for types that are part of some list nodes. */
|
||
struct _list_node;
|
||
|
||
/* List backend. */
|
||
typedef struct _list_node *_list_t;
|
||
#define _LIST_NEXT(L) ((L)->next)
|
||
|
||
/* Instruction data that is part of vinsn type. */
|
||
struct idata_def;
|
||
typedef struct idata_def *idata_t;
|
||
|
||
/* A virtual instruction, i.e. an instruction as seen by the scheduler. */
|
||
struct vinsn_def;
|
||
typedef struct vinsn_def *vinsn_t;
|
||
|
||
/* RTX list.
|
||
This type is the backend for ilist. */
|
||
typedef _list_t _xlist_t;
|
||
#define _XLIST_X(L) ((L)->u.x)
|
||
#define _XLIST_NEXT(L) (_LIST_NEXT (L))
|
||
|
||
/* Instruction. */
|
||
typedef rtx_insn *insn_t;
|
||
|
||
/* List of insns. */
|
||
typedef _list_t ilist_t;
|
||
#define ILIST_INSN(L) ((L)->u.insn)
|
||
#define ILIST_NEXT(L) (_LIST_NEXT (L))
|
||
|
||
/* This lists possible transformations that done locally, i.e. in
|
||
moveup_expr. */
|
||
enum local_trans_type
|
||
{
|
||
TRANS_SUBSTITUTION,
|
||
TRANS_SPECULATION
|
||
};
|
||
|
||
/* This struct is used to record the history of expression's
|
||
transformations. */
|
||
struct expr_history_def_1
|
||
{
|
||
/* UID of the insn. */
|
||
unsigned uid;
|
||
|
||
/* How the expression looked like. */
|
||
vinsn_t old_expr_vinsn;
|
||
|
||
/* How the expression looks after the transformation. */
|
||
vinsn_t new_expr_vinsn;
|
||
|
||
/* And its speculative status. */
|
||
ds_t spec_ds;
|
||
|
||
/* Type of the transformation. */
|
||
enum local_trans_type type;
|
||
};
|
||
|
||
typedef struct expr_history_def_1 expr_history_def;
|
||
|
||
|
||
/* Expression information. */
|
||
struct _expr
|
||
{
|
||
/* Insn description. */
|
||
vinsn_t vinsn;
|
||
|
||
/* SPEC is the degree of speculativeness.
|
||
FIXME: now spec is increased when an rhs is moved through a
|
||
conditional, thus showing only control speculativeness. In the
|
||
future we'd like to count data spec separately to allow a better
|
||
control on scheduling. */
|
||
int spec;
|
||
|
||
/* Degree of speculativeness measured as probability of executing
|
||
instruction's original basic block given relative to
|
||
the current scheduling point. */
|
||
int usefulness;
|
||
|
||
/* A priority of this expression. */
|
||
int priority;
|
||
|
||
/* A priority adjustment of this expression. */
|
||
int priority_adj;
|
||
|
||
/* Number of times the insn was scheduled. */
|
||
int sched_times;
|
||
|
||
/* A basic block index this was originated from. Zero when there is
|
||
more than one originator. */
|
||
int orig_bb_index;
|
||
|
||
/* Instruction should be of SPEC_DONE_DS type in order to be moved to this
|
||
point. */
|
||
ds_t spec_done_ds;
|
||
|
||
/* SPEC_TO_CHECK_DS hold speculation types that should be checked
|
||
(used only during move_op ()). */
|
||
ds_t spec_to_check_ds;
|
||
|
||
/* Cycle on which original insn was scheduled. Zero when it has not yet
|
||
been scheduled or more than one originator. */
|
||
int orig_sched_cycle;
|
||
|
||
/* This vector contains the history of insn's transformations. */
|
||
vec<expr_history_def> history_of_changes;
|
||
|
||
/* True (1) when original target (register or memory) of this instruction
|
||
is available for scheduling, false otherwise. -1 means we're not sure;
|
||
please run find_used_regs to clarify. */
|
||
signed char target_available;
|
||
|
||
/* True when this expression needs a speculation check to be scheduled.
|
||
This is used during find_used_regs. */
|
||
BOOL_BITFIELD needs_spec_check_p : 1;
|
||
|
||
/* True when the expression was substituted. Used for statistical
|
||
purposes. */
|
||
BOOL_BITFIELD was_substituted : 1;
|
||
|
||
/* True when the expression was renamed. */
|
||
BOOL_BITFIELD was_renamed : 1;
|
||
|
||
/* True when expression can't be moved. */
|
||
BOOL_BITFIELD cant_move : 1;
|
||
};
|
||
|
||
typedef struct _expr expr_def;
|
||
typedef expr_def *expr_t;
|
||
|
||
#define EXPR_VINSN(EXPR) ((EXPR)->vinsn)
|
||
#define EXPR_INSN_RTX(EXPR) (VINSN_INSN_RTX (EXPR_VINSN (EXPR)))
|
||
#define EXPR_PATTERN(EXPR) (VINSN_PATTERN (EXPR_VINSN (EXPR)))
|
||
#define EXPR_LHS(EXPR) (VINSN_LHS (EXPR_VINSN (EXPR)))
|
||
#define EXPR_RHS(EXPR) (VINSN_RHS (EXPR_VINSN (EXPR)))
|
||
#define EXPR_TYPE(EXPR) (VINSN_TYPE (EXPR_VINSN (EXPR)))
|
||
#define EXPR_SEPARABLE_P(EXPR) (VINSN_SEPARABLE_P (EXPR_VINSN (EXPR)))
|
||
|
||
#define EXPR_SPEC(EXPR) ((EXPR)->spec)
|
||
#define EXPR_USEFULNESS(EXPR) ((EXPR)->usefulness)
|
||
#define EXPR_PRIORITY(EXPR) ((EXPR)->priority)
|
||
#define EXPR_PRIORITY_ADJ(EXPR) ((EXPR)->priority_adj)
|
||
#define EXPR_SCHED_TIMES(EXPR) ((EXPR)->sched_times)
|
||
#define EXPR_ORIG_BB_INDEX(EXPR) ((EXPR)->orig_bb_index)
|
||
#define EXPR_ORIG_SCHED_CYCLE(EXPR) ((EXPR)->orig_sched_cycle)
|
||
#define EXPR_SPEC_DONE_DS(EXPR) ((EXPR)->spec_done_ds)
|
||
#define EXPR_SPEC_TO_CHECK_DS(EXPR) ((EXPR)->spec_to_check_ds)
|
||
#define EXPR_HISTORY_OF_CHANGES(EXPR) ((EXPR)->history_of_changes)
|
||
#define EXPR_TARGET_AVAILABLE(EXPR) ((EXPR)->target_available)
|
||
#define EXPR_NEEDS_SPEC_CHECK_P(EXPR) ((EXPR)->needs_spec_check_p)
|
||
#define EXPR_WAS_SUBSTITUTED(EXPR) ((EXPR)->was_substituted)
|
||
#define EXPR_WAS_RENAMED(EXPR) ((EXPR)->was_renamed)
|
||
#define EXPR_CANT_MOVE(EXPR) ((EXPR)->cant_move)
|
||
|
||
/* Insn definition for list of original insns in find_used_regs. */
|
||
struct _def
|
||
{
|
||
insn_t orig_insn;
|
||
|
||
/* FIXME: Get rid of CROSSES_CALL in each def, since if we're moving up
|
||
rhs from two different places, but only one of the code motion paths
|
||
crosses a call, we can't use any of the call_used_regs, no matter which
|
||
path or whether all paths crosses a call. Thus we should move CROSSES_CALL
|
||
to static params. */
|
||
bool crosses_call;
|
||
};
|
||
typedef struct _def *def_t;
|
||
|
||
|
||
/* Availability sets are sets of expressions we're scheduling. */
|
||
typedef _list_t av_set_t;
|
||
#define _AV_SET_EXPR(L) (&(L)->u.expr)
|
||
#define _AV_SET_NEXT(L) (_LIST_NEXT (L))
|
||
|
||
|
||
/* Boundary of the current fence group. */
|
||
struct _bnd
|
||
{
|
||
/* The actual boundary instruction. */
|
||
insn_t to;
|
||
|
||
/* Its path to the fence. */
|
||
ilist_t ptr;
|
||
|
||
/* Availability set at the boundary. */
|
||
av_set_t av;
|
||
|
||
/* This set moved to the fence. */
|
||
av_set_t av1;
|
||
|
||
/* Deps context at this boundary. As long as we have one boundary per fence,
|
||
this is just a pointer to the same deps context as in the corresponding
|
||
fence. */
|
||
deps_t dc;
|
||
};
|
||
typedef struct _bnd *bnd_t;
|
||
#define BND_TO(B) ((B)->to)
|
||
|
||
/* PTR stands not for pointer as you might think, but as a Path To Root of the
|
||
current instruction group from boundary B. */
|
||
#define BND_PTR(B) ((B)->ptr)
|
||
#define BND_AV(B) ((B)->av)
|
||
#define BND_AV1(B) ((B)->av1)
|
||
#define BND_DC(B) ((B)->dc)
|
||
|
||
/* List of boundaries. */
|
||
typedef _list_t blist_t;
|
||
#define BLIST_BND(L) (&(L)->u.bnd)
|
||
#define BLIST_NEXT(L) (_LIST_NEXT (L))
|
||
|
||
|
||
/* Fence information. A fence represents current scheduling point and also
|
||
blocks code motion through it when pipelining. */
|
||
struct _fence
|
||
{
|
||
/* Insn before which we gather an instruction group.*/
|
||
insn_t insn;
|
||
|
||
/* Modeled state of the processor pipeline. */
|
||
state_t state;
|
||
|
||
/* Current cycle that is being scheduled on this fence. */
|
||
int cycle;
|
||
|
||
/* Number of insns that were scheduled on the current cycle.
|
||
This information has to be local to a fence. */
|
||
int cycle_issued_insns;
|
||
|
||
/* At the end of fill_insns () this field holds the list of the instructions
|
||
that are inner boundaries of the scheduled parallel group. */
|
||
ilist_t bnds;
|
||
|
||
/* Deps context at this fence. It is used to model dependencies at the
|
||
fence so that insn ticks can be properly evaluated. */
|
||
deps_t dc;
|
||
|
||
/* Target context at this fence. Used to save and load any local target
|
||
scheduling information when changing fences. */
|
||
tc_t tc;
|
||
|
||
/* A vector of insns that are scheduled but not yet completed. */
|
||
vec<rtx_insn *, va_gc> *executing_insns;
|
||
|
||
/* A vector indexed by UIDs that caches the earliest cycle on which
|
||
an insn can be scheduled on this fence. */
|
||
int *ready_ticks;
|
||
|
||
/* Its size. */
|
||
int ready_ticks_size;
|
||
|
||
/* Insn, which has been scheduled last on this fence. */
|
||
rtx_insn *last_scheduled_insn;
|
||
|
||
/* The last value of can_issue_more variable on this fence. */
|
||
int issue_more;
|
||
|
||
/* If non-NULL force the next scheduled insn to be SCHED_NEXT. */
|
||
rtx_insn *sched_next;
|
||
|
||
/* True if fill_insns processed this fence. */
|
||
BOOL_BITFIELD processed_p : 1;
|
||
|
||
/* True if fill_insns actually scheduled something on this fence. */
|
||
BOOL_BITFIELD scheduled_p : 1;
|
||
|
||
/* True when the next insn scheduled here would start a cycle. */
|
||
BOOL_BITFIELD starts_cycle_p : 1;
|
||
|
||
/* True when the next insn scheduled here would be scheduled after a stall. */
|
||
BOOL_BITFIELD after_stall_p : 1;
|
||
};
|
||
typedef struct _fence *fence_t;
|
||
|
||
#define FENCE_INSN(F) ((F)->insn)
|
||
#define FENCE_STATE(F) ((F)->state)
|
||
#define FENCE_BNDS(F) ((F)->bnds)
|
||
#define FENCE_PROCESSED_P(F) ((F)->processed_p)
|
||
#define FENCE_SCHEDULED_P(F) ((F)->scheduled_p)
|
||
#define FENCE_ISSUED_INSNS(F) ((F)->cycle_issued_insns)
|
||
#define FENCE_CYCLE(F) ((F)->cycle)
|
||
#define FENCE_STARTS_CYCLE_P(F) ((F)->starts_cycle_p)
|
||
#define FENCE_AFTER_STALL_P(F) ((F)->after_stall_p)
|
||
#define FENCE_DC(F) ((F)->dc)
|
||
#define FENCE_TC(F) ((F)->tc)
|
||
#define FENCE_LAST_SCHEDULED_INSN(F) ((F)->last_scheduled_insn)
|
||
#define FENCE_ISSUE_MORE(F) ((F)->issue_more)
|
||
#define FENCE_EXECUTING_INSNS(F) ((F)->executing_insns)
|
||
#define FENCE_READY_TICKS(F) ((F)->ready_ticks)
|
||
#define FENCE_READY_TICKS_SIZE(F) ((F)->ready_ticks_size)
|
||
#define FENCE_SCHED_NEXT(F) ((F)->sched_next)
|
||
|
||
/* List of fences. */
|
||
typedef _list_t flist_t;
|
||
#define FLIST_FENCE(L) (&(L)->u.fence)
|
||
#define FLIST_NEXT(L) (_LIST_NEXT (L))
|
||
|
||
/* List of fences with pointer to the tail node. */
|
||
struct flist_tail_def
|
||
{
|
||
flist_t head;
|
||
flist_t *tailp;
|
||
};
|
||
|
||
typedef struct flist_tail_def *flist_tail_t;
|
||
#define FLIST_TAIL_HEAD(L) ((L)->head)
|
||
#define FLIST_TAIL_TAILP(L) ((L)->tailp)
|
||
|
||
/* List node information. A list node can be any of the types above. */
|
||
struct _list_node
|
||
{
|
||
_list_t next;
|
||
|
||
union
|
||
{
|
||
rtx x;
|
||
insn_t insn;
|
||
struct _bnd bnd;
|
||
expr_def expr;
|
||
struct _fence fence;
|
||
struct _def def;
|
||
void *data;
|
||
} u;
|
||
};
|
||
|
||
|
||
/* _list_t functions.
|
||
All of _*list_* functions are used through accessor macros, thus
|
||
we can't move them in sel-sched-ir.c. */
|
||
extern object_allocator<_list_node> sched_lists_pool;
|
||
|
||
static inline _list_t
|
||
_list_alloc (void)
|
||
{
|
||
return sched_lists_pool.allocate ();
|
||
}
|
||
|
||
static inline void
|
||
_list_add (_list_t *lp)
|
||
{
|
||
_list_t l = _list_alloc ();
|
||
|
||
_LIST_NEXT (l) = *lp;
|
||
*lp = l;
|
||
}
|
||
|
||
static inline void
|
||
_list_remove_nofree (_list_t *lp)
|
||
{
|
||
_list_t n = *lp;
|
||
|
||
*lp = _LIST_NEXT (n);
|
||
}
|
||
|
||
static inline void
|
||
_list_remove (_list_t *lp)
|
||
{
|
||
_list_t n = *lp;
|
||
|
||
*lp = _LIST_NEXT (n);
|
||
sched_lists_pool.remove (n);
|
||
}
|
||
|
||
static inline void
|
||
_list_clear (_list_t *l)
|
||
{
|
||
while (*l)
|
||
_list_remove (l);
|
||
}
|
||
|
||
|
||
/* List iterator backend. */
|
||
struct _list_iterator
|
||
{
|
||
/* The list we're iterating. */
|
||
_list_t *lp;
|
||
|
||
/* True when this iterator supprts removing. */
|
||
bool can_remove_p;
|
||
|
||
/* True when we've actually removed something. */
|
||
bool removed_p;
|
||
};
|
||
|
||
static inline void
|
||
_list_iter_start (_list_iterator *ip, _list_t *lp, bool can_remove_p)
|
||
{
|
||
ip->lp = lp;
|
||
ip->can_remove_p = can_remove_p;
|
||
ip->removed_p = false;
|
||
}
|
||
|
||
static inline void
|
||
_list_iter_next (_list_iterator *ip)
|
||
{
|
||
if (!ip->removed_p)
|
||
ip->lp = &_LIST_NEXT (*ip->lp);
|
||
else
|
||
ip->removed_p = false;
|
||
}
|
||
|
||
static inline void
|
||
_list_iter_remove (_list_iterator *ip)
|
||
{
|
||
gcc_assert (!ip->removed_p && ip->can_remove_p);
|
||
_list_remove (ip->lp);
|
||
ip->removed_p = true;
|
||
}
|
||
|
||
static inline void
|
||
_list_iter_remove_nofree (_list_iterator *ip)
|
||
{
|
||
gcc_assert (!ip->removed_p && ip->can_remove_p);
|
||
_list_remove_nofree (ip->lp);
|
||
ip->removed_p = true;
|
||
}
|
||
|
||
/* General macros to traverse a list. FOR_EACH_* interfaces are
|
||
implemented using these. */
|
||
#define _FOR_EACH(TYPE, ELEM, I, L) \
|
||
for (_list_iter_start (&(I), &(L), false); \
|
||
_list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
|
||
_list_iter_next (&(I)))
|
||
|
||
#define _FOR_EACH_1(TYPE, ELEM, I, LP) \
|
||
for (_list_iter_start (&(I), (LP), true); \
|
||
_list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
|
||
_list_iter_next (&(I)))
|
||
|
||
|
||
/* _xlist_t functions. */
|
||
|
||
static inline void
|
||
_xlist_add (_xlist_t *lp, rtx x)
|
||
{
|
||
_list_add (lp);
|
||
_XLIST_X (*lp) = x;
|
||
}
|
||
|
||
#define _xlist_remove(LP) (_list_remove (LP))
|
||
#define _xlist_clear(LP) (_list_clear (LP))
|
||
|
||
static inline bool
|
||
_xlist_is_in_p (_xlist_t l, rtx x)
|
||
{
|
||
while (l)
|
||
{
|
||
if (_XLIST_X (l) == x)
|
||
return true;
|
||
l = _XLIST_NEXT (l);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Used through _FOR_EACH. */
|
||
static inline bool
|
||
_list_iter_cond_x (_xlist_t l, rtx *xp)
|
||
{
|
||
if (l)
|
||
{
|
||
*xp = _XLIST_X (l);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
#define _xlist_iter_remove(IP) (_list_iter_remove (IP))
|
||
|
||
typedef _list_iterator _xlist_iterator;
|
||
#define _FOR_EACH_X(X, I, L) _FOR_EACH (x, (X), (I), (L))
|
||
#define _FOR_EACH_X_1(X, I, LP) _FOR_EACH_1 (x, (X), (I), (LP))
|
||
|
||
|
||
/* ilist_t functions. */
|
||
|
||
static inline void
|
||
ilist_add (ilist_t *lp, insn_t insn)
|
||
{
|
||
_list_add (lp);
|
||
ILIST_INSN (*lp) = insn;
|
||
}
|
||
#define ilist_remove(LP) (_list_remove (LP))
|
||
#define ilist_clear(LP) (_list_clear (LP))
|
||
|
||
static inline bool
|
||
ilist_is_in_p (ilist_t l, insn_t insn)
|
||
{
|
||
while (l)
|
||
{
|
||
if (ILIST_INSN (l) == insn)
|
||
return true;
|
||
l = ILIST_NEXT (l);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Used through _FOR_EACH. */
|
||
static inline bool
|
||
_list_iter_cond_insn (ilist_t l, insn_t *ip)
|
||
{
|
||
if (l)
|
||
{
|
||
*ip = ILIST_INSN (l);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
#define ilist_iter_remove(IP) (_list_iter_remove (IP))
|
||
|
||
typedef _list_iterator ilist_iterator;
|
||
#define FOR_EACH_INSN(INSN, I, L) _FOR_EACH (insn, (INSN), (I), (L))
|
||
#define FOR_EACH_INSN_1(INSN, I, LP) _FOR_EACH_1 (insn, (INSN), (I), (LP))
|
||
|
||
|
||
/* Av set iterators. */
|
||
typedef _list_iterator av_set_iterator;
|
||
#define FOR_EACH_EXPR(EXPR, I, AV) _FOR_EACH (expr, (EXPR), (I), (AV))
|
||
#define FOR_EACH_EXPR_1(EXPR, I, AV) _FOR_EACH_1 (expr, (EXPR), (I), (AV))
|
||
|
||
inline bool
|
||
_list_iter_cond_expr (av_set_t av, expr_t *exprp)
|
||
{
|
||
if (av)
|
||
{
|
||
*exprp = _AV_SET_EXPR (av);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Def list iterators. */
|
||
typedef _list_t def_list_t;
|
||
typedef _list_iterator def_list_iterator;
|
||
|
||
#define DEF_LIST_NEXT(L) (_LIST_NEXT (L))
|
||
#define DEF_LIST_DEF(L) (&(L)->u.def)
|
||
|
||
#define FOR_EACH_DEF(DEF, I, DEF_LIST) _FOR_EACH (def, (DEF), (I), (DEF_LIST))
|
||
|
||
static inline bool
|
||
_list_iter_cond_def (def_list_t def_list, def_t *def)
|
||
{
|
||
if (def_list)
|
||
{
|
||
*def = DEF_LIST_DEF (def_list);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* InstructionData. Contains information about insn pattern. */
|
||
struct idata_def
|
||
{
|
||
/* Type of the insn.
|
||
o CALL_INSN - Call insn
|
||
o JUMP_INSN - Jump insn
|
||
o INSN - INSN that cannot be cloned
|
||
o USE - INSN that can be cloned
|
||
o SET - INSN that can be cloned and separable into lhs and rhs
|
||
o PC - simplejump. Insns that simply redirect control flow should not
|
||
have any dependencies. Sched-deps.c, though, might consider them as
|
||
producers or consumers of certain registers. To avoid that we handle
|
||
dependency for simple jumps ourselves. */
|
||
int type;
|
||
|
||
/* If insn is a SET, this is its left hand side. */
|
||
rtx lhs;
|
||
|
||
/* If insn is a SET, this is its right hand side. */
|
||
rtx rhs;
|
||
|
||
/* Registers that are set/used by this insn. This info is now gathered
|
||
via sched-deps.c. The downside of this is that we also use live info
|
||
from flow that is accumulated in the basic blocks. These two infos
|
||
can be slightly inconsistent, hence in the beginning we make a pass
|
||
through CFG and calculating the conservative solution for the info in
|
||
basic blocks. When this scheduler will be switched to use dataflow,
|
||
this can be unified as df gives us both per basic block and per
|
||
instruction info. Actually, we don't do that pass and just hope
|
||
for the best. */
|
||
regset reg_sets;
|
||
|
||
regset reg_clobbers;
|
||
|
||
regset reg_uses;
|
||
};
|
||
|
||
#define IDATA_TYPE(ID) ((ID)->type)
|
||
#define IDATA_LHS(ID) ((ID)->lhs)
|
||
#define IDATA_RHS(ID) ((ID)->rhs)
|
||
#define IDATA_REG_SETS(ID) ((ID)->reg_sets)
|
||
#define IDATA_REG_USES(ID) ((ID)->reg_uses)
|
||
#define IDATA_REG_CLOBBERS(ID) ((ID)->reg_clobbers)
|
||
|
||
/* Type to represent all needed info to emit an insn.
|
||
This is a virtual equivalent of the insn.
|
||
Every insn in the stream has an associated vinsn. This is used
|
||
to reduce memory consumption basing on the fact that many insns
|
||
don't change through the scheduler.
|
||
|
||
vinsn can be either normal or unique.
|
||
* Normal vinsn is the one, that can be cloned multiple times and typically
|
||
corresponds to normal instruction.
|
||
|
||
* Unique vinsn derivates from CALL, ASM, JUMP (for a while) and other
|
||
unusual stuff. Such a vinsn is described by its INSN field, which is a
|
||
reference to the original instruction. */
|
||
struct vinsn_def
|
||
{
|
||
/* Associated insn. */
|
||
rtx_insn *insn_rtx;
|
||
|
||
/* Its description. */
|
||
struct idata_def id;
|
||
|
||
/* Hash of vinsn. It is computed either from pattern or from rhs using
|
||
hash_rtx. It is not placed in ID for faster compares. */
|
||
unsigned hash;
|
||
|
||
/* Hash of the insn_rtx pattern. */
|
||
unsigned hash_rtx;
|
||
|
||
/* Smart pointer counter. */
|
||
int count;
|
||
|
||
/* Cached cost of the vinsn. To access it please use vinsn_cost (). */
|
||
int cost;
|
||
|
||
/* Mark insns that may trap so we don't move them through jumps. */
|
||
bool may_trap_p;
|
||
};
|
||
|
||
#define VINSN_INSN_RTX(VI) ((VI)->insn_rtx)
|
||
#define VINSN_PATTERN(VI) (PATTERN (VINSN_INSN_RTX (VI)))
|
||
|
||
#define VINSN_ID(VI) (&((VI)->id))
|
||
#define VINSN_HASH(VI) ((VI)->hash)
|
||
#define VINSN_HASH_RTX(VI) ((VI)->hash_rtx)
|
||
#define VINSN_TYPE(VI) (IDATA_TYPE (VINSN_ID (VI)))
|
||
#define VINSN_SEPARABLE_P(VI) (VINSN_TYPE (VI) == SET)
|
||
#define VINSN_CLONABLE_P(VI) (VINSN_SEPARABLE_P (VI) || VINSN_TYPE (VI) == USE)
|
||
#define VINSN_UNIQUE_P(VI) (!VINSN_CLONABLE_P (VI))
|
||
#define VINSN_LHS(VI) (IDATA_LHS (VINSN_ID (VI)))
|
||
#define VINSN_RHS(VI) (IDATA_RHS (VINSN_ID (VI)))
|
||
#define VINSN_REG_SETS(VI) (IDATA_REG_SETS (VINSN_ID (VI)))
|
||
#define VINSN_REG_USES(VI) (IDATA_REG_USES (VINSN_ID (VI)))
|
||
#define VINSN_REG_CLOBBERS(VI) (IDATA_REG_CLOBBERS (VINSN_ID (VI)))
|
||
#define VINSN_COUNT(VI) ((VI)->count)
|
||
#define VINSN_MAY_TRAP_P(VI) ((VI)->may_trap_p)
|
||
|
||
|
||
/* An entry of the hashtable describing transformations happened when
|
||
moving up through an insn. */
|
||
struct transformed_insns
|
||
{
|
||
/* Previous vinsn. Used to find the proper element. */
|
||
vinsn_t vinsn_old;
|
||
|
||
/* A new vinsn. */
|
||
vinsn_t vinsn_new;
|
||
|
||
/* Speculative status. */
|
||
ds_t ds;
|
||
|
||
/* Type of transformation happened. */
|
||
enum local_trans_type type;
|
||
|
||
/* Whether a conflict on the target register happened. */
|
||
BOOL_BITFIELD was_target_conflict : 1;
|
||
|
||
/* Whether a check was needed. */
|
||
BOOL_BITFIELD needs_check : 1;
|
||
};
|
||
|
||
/* Indexed by INSN_LUID, the collection of all data associated with
|
||
a single instruction that is in the stream. */
|
||
struct _sel_insn_data
|
||
{
|
||
/* The expression that contains vinsn for this insn and some
|
||
flow-sensitive data like priority. */
|
||
expr_def expr;
|
||
|
||
/* If (WS_LEVEL == GLOBAL_LEVEL) then AV is empty. */
|
||
int ws_level;
|
||
|
||
/* A number that helps in defining a traversing order for a region. */
|
||
int seqno;
|
||
|
||
/* A liveness data computed above this insn. */
|
||
regset live;
|
||
|
||
/* An INSN_UID bit is set when deps analysis result is already known. */
|
||
bitmap analyzed_deps;
|
||
|
||
/* An INSN_UID bit is set when a hard dep was found, not set when
|
||
no dependence is found. This is meaningful only when the analyzed_deps
|
||
bitmap has its bit set. */
|
||
bitmap found_deps;
|
||
|
||
/* An INSN_UID bit is set when this is a bookkeeping insn generated from
|
||
a parent with this uid. If a parent is a bookkeeping copy, all its
|
||
originators are transitively included in this set. */
|
||
bitmap originators;
|
||
|
||
/* A hashtable caching the result of insn transformations through this one. */
|
||
htab_t transformed_insns;
|
||
|
||
/* A context incapsulating this insn. */
|
||
struct deps_desc deps_context;
|
||
|
||
/* This field is initialized at the beginning of scheduling and is used
|
||
to handle sched group instructions. If it is non-null, then it points
|
||
to the instruction, which should be forced to schedule next. Such
|
||
instructions are unique. */
|
||
insn_t sched_next;
|
||
|
||
/* Cycle at which insn was scheduled. It is greater than zero if insn was
|
||
scheduled. This is used for bundling. */
|
||
int sched_cycle;
|
||
|
||
/* Cycle at which insn's data will be fully ready. */
|
||
int ready_cycle;
|
||
|
||
/* Speculations that are being checked by this insn. */
|
||
ds_t spec_checked_ds;
|
||
|
||
/* Whether the live set valid or not. */
|
||
BOOL_BITFIELD live_valid_p : 1;
|
||
/* Insn is an ASM. */
|
||
BOOL_BITFIELD asm_p : 1;
|
||
|
||
/* True when an insn is scheduled after we've determined that a stall is
|
||
required.
|
||
This is used when emulating the Haifa scheduler for bundling. */
|
||
BOOL_BITFIELD after_stall_p : 1;
|
||
};
|
||
|
||
typedef struct _sel_insn_data sel_insn_data_def;
|
||
typedef sel_insn_data_def *sel_insn_data_t;
|
||
|
||
extern vec<sel_insn_data_def> s_i_d;
|
||
|
||
/* Accessor macros for s_i_d. */
|
||
#define SID(INSN) (&s_i_d[INSN_LUID (INSN)])
|
||
#define SID_BY_UID(UID) (&s_i_d[LUID_BY_UID (UID)])
|
||
|
||
extern sel_insn_data_def insn_sid (insn_t);
|
||
|
||
#define INSN_ASM_P(INSN) (SID (INSN)->asm_p)
|
||
#define INSN_SCHED_NEXT(INSN) (SID (INSN)->sched_next)
|
||
#define INSN_ANALYZED_DEPS(INSN) (SID (INSN)->analyzed_deps)
|
||
#define INSN_FOUND_DEPS(INSN) (SID (INSN)->found_deps)
|
||
#define INSN_DEPS_CONTEXT(INSN) (SID (INSN)->deps_context)
|
||
#define INSN_ORIGINATORS(INSN) (SID (INSN)->originators)
|
||
#define INSN_ORIGINATORS_BY_UID(UID) (SID_BY_UID (UID)->originators)
|
||
#define INSN_TRANSFORMED_INSNS(INSN) (SID (INSN)->transformed_insns)
|
||
|
||
#define INSN_EXPR(INSN) (&SID (INSN)->expr)
|
||
#define INSN_LIVE(INSN) (SID (INSN)->live)
|
||
#define INSN_LIVE_VALID_P(INSN) (SID (INSN)->live_valid_p)
|
||
#define INSN_VINSN(INSN) (EXPR_VINSN (INSN_EXPR (INSN)))
|
||
#define INSN_TYPE(INSN) (VINSN_TYPE (INSN_VINSN (INSN)))
|
||
#define INSN_SIMPLEJUMP_P(INSN) (INSN_TYPE (INSN) == PC)
|
||
#define INSN_LHS(INSN) (VINSN_LHS (INSN_VINSN (INSN)))
|
||
#define INSN_RHS(INSN) (VINSN_RHS (INSN_VINSN (INSN)))
|
||
#define INSN_REG_SETS(INSN) (VINSN_REG_SETS (INSN_VINSN (INSN)))
|
||
#define INSN_REG_CLOBBERS(INSN) (VINSN_REG_CLOBBERS (INSN_VINSN (INSN)))
|
||
#define INSN_REG_USES(INSN) (VINSN_REG_USES (INSN_VINSN (INSN)))
|
||
#define INSN_SCHED_TIMES(INSN) (EXPR_SCHED_TIMES (INSN_EXPR (INSN)))
|
||
#define INSN_SEQNO(INSN) (SID (INSN)->seqno)
|
||
#define INSN_AFTER_STALL_P(INSN) (SID (INSN)->after_stall_p)
|
||
#define INSN_SCHED_CYCLE(INSN) (SID (INSN)->sched_cycle)
|
||
#define INSN_READY_CYCLE(INSN) (SID (INSN)->ready_cycle)
|
||
#define INSN_SPEC_CHECKED_DS(INSN) (SID (INSN)->spec_checked_ds)
|
||
|
||
/* A global level shows whether an insn is valid or not. */
|
||
extern int global_level;
|
||
|
||
#define INSN_WS_LEVEL(INSN) (SID (INSN)->ws_level)
|
||
|
||
extern av_set_t get_av_set (insn_t);
|
||
extern int get_av_level (insn_t);
|
||
|
||
#define AV_SET(INSN) (get_av_set (INSN))
|
||
#define AV_LEVEL(INSN) (get_av_level (INSN))
|
||
#define AV_SET_VALID_P(INSN) (AV_LEVEL (INSN) == global_level)
|
||
|
||
/* A list of fences currently in the works. */
|
||
extern flist_t fences;
|
||
|
||
/* A NOP pattern used as a placeholder for real insns. */
|
||
extern rtx nop_pattern;
|
||
|
||
/* An insn that 'contained' in EXIT block. */
|
||
extern rtx_insn *exit_insn;
|
||
|
||
/* Provide a separate luid for the insn. */
|
||
#define INSN_INIT_TODO_LUID (1)
|
||
|
||
/* Initialize s_s_i_d. */
|
||
#define INSN_INIT_TODO_SSID (2)
|
||
|
||
/* Initialize data for simplejump. */
|
||
#define INSN_INIT_TODO_SIMPLEJUMP (4)
|
||
|
||
/* Return true if INSN is a local NOP. The nop is local in the sense that
|
||
it was emitted by the scheduler as a temporary insn and will soon be
|
||
deleted. These nops are identified by their pattern. */
|
||
#define INSN_NOP_P(INSN) (PATTERN (INSN) == nop_pattern)
|
||
|
||
/* Return true if INSN is linked into instruction stream.
|
||
NB: It is impossible for INSN to have one field null and the other not
|
||
null: gcc_assert ((PREV_INSN (INSN) == NULL_RTX)
|
||
== (NEXT_INSN (INSN) == NULL_RTX)) is valid. */
|
||
#define INSN_IN_STREAM_P(INSN) (PREV_INSN (INSN) && NEXT_INSN (INSN))
|
||
|
||
/* Return true if INSN is in current fence. */
|
||
#define IN_CURRENT_FENCE_P(INSN) (flist_lookup (fences, INSN) != NULL)
|
||
|
||
/* Marks loop as being considered for pipelining. */
|
||
#define MARK_LOOP_FOR_PIPELINING(LOOP) ((LOOP)->aux = (void *)(size_t)(1))
|
||
#define LOOP_MARKED_FOR_PIPELINING_P(LOOP) ((size_t)((LOOP)->aux))
|
||
|
||
/* Saved loop preheader to transfer when scheduling the loop. */
|
||
#define LOOP_PREHEADER_BLOCKS(LOOP) ((size_t)((LOOP)->aux) == 1 \
|
||
? NULL \
|
||
: ((vec<basic_block> *) (LOOP)->aux))
|
||
#define SET_LOOP_PREHEADER_BLOCKS(LOOP,BLOCKS) ((LOOP)->aux \
|
||
= (BLOCKS != NULL \
|
||
? BLOCKS \
|
||
: (LOOP)->aux))
|
||
|
||
extern bitmap blocks_to_reschedule;
|
||
|
||
|
||
/* A variable to track which part of rtx we are scanning in
|
||
sched-deps.c: sched_analyze_insn (). */
|
||
enum deps_where_t
|
||
{
|
||
DEPS_IN_INSN,
|
||
DEPS_IN_LHS,
|
||
DEPS_IN_RHS,
|
||
DEPS_IN_NOWHERE
|
||
};
|
||
|
||
|
||
/* Per basic block data for the whole CFG. */
|
||
struct sel_global_bb_info_def
|
||
{
|
||
/* For each bb header this field contains a set of live registers.
|
||
For all other insns this field has a NULL.
|
||
We also need to know LV sets for the instructions, that are immediately
|
||
after the border of the region. */
|
||
regset lv_set;
|
||
|
||
/* Status of LV_SET.
|
||
true - block has usable LV_SET.
|
||
false - block's LV_SET should be recomputed. */
|
||
bool lv_set_valid_p;
|
||
};
|
||
|
||
typedef sel_global_bb_info_def *sel_global_bb_info_t;
|
||
|
||
|
||
/* Per basic block data. This array is indexed by basic block index. */
|
||
extern vec<sel_global_bb_info_def> sel_global_bb_info;
|
||
|
||
extern void sel_extend_global_bb_info (void);
|
||
extern void sel_finish_global_bb_info (void);
|
||
|
||
/* Get data for BB. */
|
||
#define SEL_GLOBAL_BB_INFO(BB) \
|
||
(&sel_global_bb_info[(BB)->index])
|
||
|
||
/* Access macros. */
|
||
#define BB_LV_SET(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set)
|
||
#define BB_LV_SET_VALID_P(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set_valid_p)
|
||
|
||
/* Per basic block data for the region. */
|
||
struct sel_region_bb_info_def
|
||
{
|
||
/* This insn stream is constructed in such a way that it should be
|
||
traversed by PREV_INSN field - (*not* NEXT_INSN). */
|
||
rtx_insn *note_list;
|
||
|
||
/* Cached availability set at the beginning of a block.
|
||
See also AV_LEVEL () for conditions when this av_set can be used. */
|
||
av_set_t av_set;
|
||
|
||
/* If (AV_LEVEL == GLOBAL_LEVEL) then AV is valid. */
|
||
int av_level;
|
||
};
|
||
|
||
typedef sel_region_bb_info_def *sel_region_bb_info_t;
|
||
|
||
|
||
/* Per basic block data. This array is indexed by basic block index. */
|
||
extern vec<sel_region_bb_info_def> sel_region_bb_info;
|
||
|
||
/* Get data for BB. */
|
||
#define SEL_REGION_BB_INFO(BB) (&sel_region_bb_info[(BB)->index])
|
||
|
||
/* Get BB's note_list.
|
||
A note_list is a list of various notes that was scattered across BB
|
||
before scheduling, and will be appended at the beginning of BB after
|
||
scheduling is finished. */
|
||
#define BB_NOTE_LIST(BB) (SEL_REGION_BB_INFO (BB)->note_list)
|
||
|
||
#define BB_AV_SET(BB) (SEL_REGION_BB_INFO (BB)->av_set)
|
||
#define BB_AV_LEVEL(BB) (SEL_REGION_BB_INFO (BB)->av_level)
|
||
#define BB_AV_SET_VALID_P(BB) (BB_AV_LEVEL (BB) == global_level)
|
||
|
||
/* Used in bb_in_ebb_p. */
|
||
extern bitmap_head *forced_ebb_heads;
|
||
|
||
/* The loop nest being pipelined. */
|
||
extern struct loop *current_loop_nest;
|
||
|
||
/* Saves pipelined blocks. Bitmap is indexed by bb->index. */
|
||
extern sbitmap bbs_pipelined;
|
||
|
||
/* Various flags. */
|
||
extern bool enable_moveup_set_path_p;
|
||
extern bool pipelining_p;
|
||
extern bool bookkeeping_p;
|
||
extern int max_insns_to_rename;
|
||
extern bool preheader_removed;
|
||
|
||
/* Software lookahead window size.
|
||
According to the results in Nakatani and Ebcioglu [1993], window size of 16
|
||
is enough to extract most ILP in integer code. */
|
||
#define MAX_WS (PARAM_VALUE (PARAM_SELSCHED_MAX_LOOKAHEAD))
|
||
|
||
extern regset sel_all_regs;
|
||
|
||
|
||
/* Successor iterator backend. */
|
||
struct succ_iterator
|
||
{
|
||
/* True if we're at BB end. */
|
||
bool bb_end;
|
||
|
||
/* An edge on which we're iterating. */
|
||
edge e1;
|
||
|
||
/* The previous edge saved after skipping empty blocks. */
|
||
edge e2;
|
||
|
||
/* Edge iterator used when there are successors in other basic blocks. */
|
||
edge_iterator ei;
|
||
|
||
/* Successor block we're traversing. */
|
||
basic_block bb;
|
||
|
||
/* Flags that are passed to the iterator. We return only successors
|
||
that comply to these flags. */
|
||
short flags;
|
||
|
||
/* When flags include SUCCS_ALL, this will be set to the exact type
|
||
of the successor we're traversing now. */
|
||
short current_flags;
|
||
|
||
/* If skip to loop exits, save here information about loop exits. */
|
||
int current_exit;
|
||
vec<edge> loop_exits;
|
||
};
|
||
|
||
/* A structure returning all successor's information. */
|
||
struct succs_info
|
||
{
|
||
/* Flags that these succcessors were computed with. */
|
||
short flags;
|
||
|
||
/* Successors that correspond to the flags. */
|
||
insn_vec_t succs_ok;
|
||
|
||
/* Their probabilities. As of now, we don't need this for other
|
||
successors. */
|
||
vec<int> probs_ok;
|
||
|
||
/* Other successors. */
|
||
insn_vec_t succs_other;
|
||
|
||
/* Probability of all successors. */
|
||
int all_prob;
|
||
|
||
/* The number of all successors. */
|
||
int all_succs_n;
|
||
|
||
/* The number of good successors. */
|
||
int succs_ok_n;
|
||
};
|
||
|
||
/* Some needed definitions. */
|
||
extern basic_block after_recovery;
|
||
|
||
extern rtx_insn *sel_bb_head (basic_block);
|
||
extern rtx_insn *sel_bb_end (basic_block);
|
||
extern bool sel_bb_empty_p (basic_block);
|
||
extern bool in_current_region_p (basic_block);
|
||
|
||
/* True when BB is a header of the inner loop. */
|
||
static inline bool
|
||
inner_loop_header_p (basic_block bb)
|
||
{
|
||
struct loop *inner_loop;
|
||
|
||
if (!current_loop_nest)
|
||
return false;
|
||
|
||
if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
return false;
|
||
|
||
inner_loop = bb->loop_father;
|
||
if (inner_loop == current_loop_nest)
|
||
return false;
|
||
|
||
/* If successor belongs to another loop. */
|
||
if (bb == inner_loop->header
|
||
&& flow_bb_inside_loop_p (current_loop_nest, bb))
|
||
{
|
||
/* Could be '=' here because of wrong loop depths. */
|
||
gcc_assert (loop_depth (inner_loop) >= loop_depth (current_loop_nest));
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return exit edges of LOOP, filtering out edges with the same dest bb. */
|
||
static inline vec<edge>
|
||
get_loop_exit_edges_unique_dests (const struct loop *loop)
|
||
{
|
||
vec<edge> edges = vNULL;
|
||
struct loop_exit *exit;
|
||
|
||
gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& current_loops->state & LOOPS_HAVE_RECORDED_EXITS);
|
||
|
||
for (exit = loop->exits->next; exit->e; exit = exit->next)
|
||
{
|
||
int i;
|
||
edge e;
|
||
bool was_dest = false;
|
||
|
||
for (i = 0; edges.iterate (i, &e); i++)
|
||
if (e->dest == exit->e->dest)
|
||
{
|
||
was_dest = true;
|
||
break;
|
||
}
|
||
|
||
if (!was_dest)
|
||
edges.safe_push (exit->e);
|
||
}
|
||
return edges;
|
||
}
|
||
|
||
static bool
|
||
sel_bb_empty_or_nop_p (basic_block bb)
|
||
{
|
||
insn_t first = sel_bb_head (bb), last;
|
||
|
||
if (first == NULL_RTX)
|
||
return true;
|
||
|
||
if (!INSN_NOP_P (first))
|
||
return false;
|
||
|
||
if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
return false;
|
||
|
||
last = sel_bb_end (bb);
|
||
if (first != last)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Collect all loop exits recursively, skipping empty BBs between them.
|
||
E.g. if BB is a loop header which has several loop exits,
|
||
traverse all of them and if any of them turns out to be another loop header
|
||
(after skipping empty BBs), add its loop exits to the resulting vector
|
||
as well. */
|
||
static inline vec<edge>
|
||
get_all_loop_exits (basic_block bb)
|
||
{
|
||
vec<edge> exits = vNULL;
|
||
|
||
/* If bb is empty, and we're skipping to loop exits, then
|
||
consider bb as a possible gate to the inner loop now. */
|
||
while (sel_bb_empty_or_nop_p (bb)
|
||
&& in_current_region_p (bb)
|
||
&& EDGE_COUNT (bb->succs) > 0)
|
||
{
|
||
bb = single_succ (bb);
|
||
|
||
/* This empty block could only lead outside the region. */
|
||
gcc_assert (! in_current_region_p (bb));
|
||
}
|
||
|
||
/* And now check whether we should skip over inner loop. */
|
||
if (inner_loop_header_p (bb))
|
||
{
|
||
struct loop *this_loop;
|
||
struct loop *pred_loop = NULL;
|
||
int i;
|
||
edge e;
|
||
|
||
for (this_loop = bb->loop_father;
|
||
this_loop && this_loop != current_loop_nest;
|
||
this_loop = loop_outer (this_loop))
|
||
pred_loop = this_loop;
|
||
|
||
this_loop = pred_loop;
|
||
gcc_assert (this_loop != NULL);
|
||
|
||
exits = get_loop_exit_edges_unique_dests (this_loop);
|
||
|
||
/* Traverse all loop headers. */
|
||
for (i = 0; exits.iterate (i, &e); i++)
|
||
if (in_current_region_p (e->dest)
|
||
|| inner_loop_header_p (e->dest))
|
||
{
|
||
vec<edge> next_exits = get_all_loop_exits (e->dest);
|
||
|
||
if (next_exits.exists ())
|
||
{
|
||
int j;
|
||
edge ne;
|
||
|
||
/* Add all loop exits for the current edge into the
|
||
resulting vector. */
|
||
for (j = 0; next_exits.iterate (j, &ne); j++)
|
||
exits.safe_push (ne);
|
||
|
||
/* Remove the original edge. */
|
||
exits.ordered_remove (i);
|
||
|
||
/* Decrease the loop counter so we won't skip anything. */
|
||
i--;
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
|
||
return exits;
|
||
}
|
||
|
||
/* Flags to pass to compute_succs_info and FOR_EACH_SUCC.
|
||
Any successor will fall into exactly one category. */
|
||
|
||
/* Include normal successors. */
|
||
#define SUCCS_NORMAL (1)
|
||
|
||
/* Include back-edge successors. */
|
||
#define SUCCS_BACK (2)
|
||
|
||
/* Include successors that are outside of the current region. */
|
||
#define SUCCS_OUT (4)
|
||
|
||
/* When pipelining of the outer loops is enabled, skip innermost loops
|
||
to their exits. */
|
||
#define SUCCS_SKIP_TO_LOOP_EXITS (8)
|
||
|
||
/* Include all successors. */
|
||
#define SUCCS_ALL (SUCCS_NORMAL | SUCCS_BACK | SUCCS_OUT)
|
||
|
||
/* We need to return a succ_iterator to avoid 'unitialized' warning
|
||
during bootstrap. */
|
||
static inline succ_iterator
|
||
_succ_iter_start (insn_t *succp, insn_t insn, int flags)
|
||
{
|
||
succ_iterator i;
|
||
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
|
||
gcc_assert (INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn));
|
||
|
||
i.flags = flags;
|
||
|
||
/* Avoid 'uninitialized' warning. */
|
||
*succp = NULL;
|
||
i.e1 = NULL;
|
||
i.e2 = NULL;
|
||
i.bb = bb;
|
||
i.current_flags = 0;
|
||
i.current_exit = -1;
|
||
i.loop_exits.create (0);
|
||
|
||
if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun) && BB_END (bb) != insn)
|
||
{
|
||
i.bb_end = false;
|
||
|
||
/* Avoid 'uninitialized' warning. */
|
||
i.ei.index = 0;
|
||
i.ei.container = 0;
|
||
}
|
||
else
|
||
{
|
||
i.ei = ei_start (bb->succs);
|
||
i.bb_end = true;
|
||
}
|
||
|
||
return i;
|
||
}
|
||
|
||
static inline bool
|
||
_succ_iter_cond (succ_iterator *ip, insn_t *succp, insn_t insn,
|
||
bool check (edge, succ_iterator *))
|
||
{
|
||
if (!ip->bb_end)
|
||
{
|
||
/* When we're in a middle of a basic block, return
|
||
the next insn immediately, but only when SUCCS_NORMAL is set. */
|
||
if (*succp != NULL || (ip->flags & SUCCS_NORMAL) == 0)
|
||
return false;
|
||
|
||
*succp = NEXT_INSN (insn);
|
||
ip->current_flags = SUCCS_NORMAL;
|
||
return true;
|
||
}
|
||
else
|
||
{
|
||
while (1)
|
||
{
|
||
edge e_tmp = NULL;
|
||
|
||
/* First, try loop exits, if we have them. */
|
||
if (ip->loop_exits.exists ())
|
||
{
|
||
do
|
||
{
|
||
ip->loop_exits.iterate (ip->current_exit, &e_tmp);
|
||
ip->current_exit++;
|
||
}
|
||
while (e_tmp && !check (e_tmp, ip));
|
||
|
||
if (!e_tmp)
|
||
ip->loop_exits.release ();
|
||
}
|
||
|
||
/* If we have found a successor, then great. */
|
||
if (e_tmp)
|
||
{
|
||
ip->e1 = e_tmp;
|
||
break;
|
||
}
|
||
|
||
/* If not, then try the next edge. */
|
||
while (ei_cond (ip->ei, &(ip->e1)))
|
||
{
|
||
basic_block bb = ip->e1->dest;
|
||
|
||
/* Consider bb as a possible loop header. */
|
||
if ((ip->flags & SUCCS_SKIP_TO_LOOP_EXITS)
|
||
&& flag_sel_sched_pipelining_outer_loops
|
||
&& (!in_current_region_p (bb)
|
||
|| BLOCK_TO_BB (ip->bb->index)
|
||
< BLOCK_TO_BB (bb->index)))
|
||
{
|
||
/* Get all loop exits recursively. */
|
||
ip->loop_exits = get_all_loop_exits (bb);
|
||
|
||
if (ip->loop_exits.exists ())
|
||
{
|
||
ip->current_exit = 0;
|
||
/* Move the iterator now, because we won't do
|
||
succ_iter_next until loop exits will end. */
|
||
ei_next (&(ip->ei));
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* bb is not a loop header, check as usual. */
|
||
if (check (ip->e1, ip))
|
||
break;
|
||
|
||
ei_next (&(ip->ei));
|
||
}
|
||
|
||
/* If loop_exits are non null, we have found an inner loop;
|
||
do one more iteration to fetch an edge from these exits. */
|
||
if (ip->loop_exits.exists ())
|
||
continue;
|
||
|
||
/* Otherwise, we've found an edge in a usual way. Break now. */
|
||
break;
|
||
}
|
||
|
||
if (ip->e1)
|
||
{
|
||
basic_block bb = ip->e2->dest;
|
||
|
||
if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || bb == after_recovery)
|
||
*succp = exit_insn;
|
||
else
|
||
{
|
||
*succp = sel_bb_head (bb);
|
||
|
||
gcc_assert (ip->flags != SUCCS_NORMAL
|
||
|| *succp == NEXT_INSN (bb_note (bb)));
|
||
gcc_assert (BLOCK_FOR_INSN (*succp) == bb);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
else
|
||
return false;
|
||
}
|
||
}
|
||
|
||
static inline void
|
||
_succ_iter_next (succ_iterator *ip)
|
||
{
|
||
gcc_assert (!ip->e2 || ip->e1);
|
||
|
||
if (ip->bb_end && ip->e1 && !ip->loop_exits.exists ())
|
||
ei_next (&(ip->ei));
|
||
}
|
||
|
||
/* Returns true when E1 is an eligible successor edge, possibly skipping
|
||
empty blocks. When E2P is not null, the resulting edge is written there.
|
||
FLAGS are used to specify whether back edges and out-of-region edges
|
||
should be considered. */
|
||
static inline bool
|
||
_eligible_successor_edge_p (edge e1, succ_iterator *ip)
|
||
{
|
||
edge e2 = e1;
|
||
basic_block bb;
|
||
int flags = ip->flags;
|
||
bool src_outside_rgn = !in_current_region_p (e1->src);
|
||
|
||
gcc_assert (flags != 0);
|
||
|
||
if (src_outside_rgn)
|
||
{
|
||
/* Any successor of the block that is outside current region is
|
||
ineligible, except when we're skipping to loop exits. */
|
||
gcc_assert (flags & (SUCCS_OUT | SUCCS_SKIP_TO_LOOP_EXITS));
|
||
|
||
if (flags & SUCCS_OUT)
|
||
return false;
|
||
}
|
||
|
||
bb = e2->dest;
|
||
|
||
/* Skip empty blocks, but be careful not to leave the region. */
|
||
while (1)
|
||
{
|
||
if (!sel_bb_empty_p (bb))
|
||
{
|
||
edge ne;
|
||
basic_block nbb;
|
||
|
||
if (!sel_bb_empty_or_nop_p (bb))
|
||
break;
|
||
|
||
ne = EDGE_SUCC (bb, 0);
|
||
nbb = ne->dest;
|
||
|
||
if (!in_current_region_p (nbb)
|
||
&& !(flags & SUCCS_OUT))
|
||
break;
|
||
|
||
e2 = ne;
|
||
bb = nbb;
|
||
continue;
|
||
}
|
||
|
||
if (!in_current_region_p (bb)
|
||
&& !(flags & SUCCS_OUT))
|
||
return false;
|
||
|
||
if (EDGE_COUNT (bb->succs) == 0)
|
||
return false;
|
||
|
||
e2 = EDGE_SUCC (bb, 0);
|
||
bb = e2->dest;
|
||
}
|
||
|
||
/* Save the second edge for later checks. */
|
||
ip->e2 = e2;
|
||
|
||
if (in_current_region_p (bb))
|
||
{
|
||
/* BLOCK_TO_BB sets topological order of the region here.
|
||
It is important to use real predecessor here, which is ip->bb,
|
||
as we may well have e1->src outside current region,
|
||
when skipping to loop exits. */
|
||
bool succeeds_in_top_order = (BLOCK_TO_BB (ip->bb->index)
|
||
< BLOCK_TO_BB (bb->index));
|
||
|
||
/* This is true for the all cases except the last one. */
|
||
ip->current_flags = SUCCS_NORMAL;
|
||
|
||
/* We are advancing forward in the region, as usual. */
|
||
if (succeeds_in_top_order)
|
||
{
|
||
/* We are skipping to loop exits here. */
|
||
gcc_assert (!src_outside_rgn
|
||
|| flag_sel_sched_pipelining_outer_loops);
|
||
return !!(flags & SUCCS_NORMAL);
|
||
}
|
||
|
||
/* This is a back edge. During pipelining we ignore back edges,
|
||
but only when it leads to the same loop. It can lead to the header
|
||
of the outer loop, which will also be the preheader of
|
||
the current loop. */
|
||
if (pipelining_p
|
||
&& e1->src->loop_father == bb->loop_father)
|
||
return !!(flags & SUCCS_NORMAL);
|
||
|
||
/* A back edge should be requested explicitly. */
|
||
ip->current_flags = SUCCS_BACK;
|
||
return !!(flags & SUCCS_BACK);
|
||
}
|
||
|
||
ip->current_flags = SUCCS_OUT;
|
||
return !!(flags & SUCCS_OUT);
|
||
}
|
||
|
||
#define FOR_EACH_SUCC_1(SUCC, ITER, INSN, FLAGS) \
|
||
for ((ITER) = _succ_iter_start (&(SUCC), (INSN), (FLAGS)); \
|
||
_succ_iter_cond (&(ITER), &(SUCC), (INSN), _eligible_successor_edge_p); \
|
||
_succ_iter_next (&(ITER)))
|
||
|
||
#define FOR_EACH_SUCC(SUCC, ITER, INSN) \
|
||
FOR_EACH_SUCC_1 (SUCC, ITER, INSN, SUCCS_NORMAL)
|
||
|
||
/* Return the current edge along which a successor was built. */
|
||
#define SUCC_ITER_EDGE(ITER) ((ITER)->e1)
|
||
|
||
/* Return the next block of BB not running into inconsistencies. */
|
||
static inline basic_block
|
||
bb_next_bb (basic_block bb)
|
||
{
|
||
switch (EDGE_COUNT (bb->succs))
|
||
{
|
||
case 0:
|
||
return bb->next_bb;
|
||
|
||
case 1:
|
||
return single_succ (bb);
|
||
|
||
case 2:
|
||
return FALLTHRU_EDGE (bb)->dest;
|
||
|
||
default:
|
||
return bb->next_bb;
|
||
}
|
||
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
|
||
|
||
/* Functions that are used in sel-sched.c. */
|
||
|
||
/* List functions. */
|
||
extern ilist_t ilist_copy (ilist_t);
|
||
extern ilist_t ilist_invert (ilist_t);
|
||
extern void blist_add (blist_t *, insn_t, ilist_t, deps_t);
|
||
extern void blist_remove (blist_t *);
|
||
extern void flist_tail_init (flist_tail_t);
|
||
|
||
extern fence_t flist_lookup (flist_t, insn_t);
|
||
extern void flist_clear (flist_t *);
|
||
extern void def_list_add (def_list_t *, insn_t, bool);
|
||
|
||
/* Target context functions. */
|
||
extern tc_t create_target_context (bool);
|
||
extern void set_target_context (tc_t);
|
||
extern void reset_target_context (tc_t, bool);
|
||
|
||
/* Deps context functions. */
|
||
extern void advance_deps_context (deps_t, insn_t);
|
||
|
||
/* Fences functions. */
|
||
extern void init_fences (insn_t);
|
||
extern void add_clean_fence_to_fences (flist_tail_t, insn_t, fence_t);
|
||
extern void add_dirty_fence_to_fences (flist_tail_t, insn_t, fence_t);
|
||
extern void move_fence_to_fences (flist_t, flist_tail_t);
|
||
|
||
/* Pool functions. */
|
||
extern regset get_regset_from_pool (void);
|
||
extern regset get_clear_regset_from_pool (void);
|
||
extern void return_regset_to_pool (regset);
|
||
extern void free_regset_pool (void);
|
||
|
||
extern insn_t get_nop_from_pool (insn_t);
|
||
extern void return_nop_to_pool (insn_t, bool);
|
||
extern void free_nop_pool (void);
|
||
|
||
/* Vinsns functions. */
|
||
extern bool vinsn_separable_p (vinsn_t);
|
||
extern bool vinsn_cond_branch_p (vinsn_t);
|
||
extern void recompute_vinsn_lhs_rhs (vinsn_t);
|
||
extern int sel_vinsn_cost (vinsn_t);
|
||
extern insn_t sel_gen_insn_from_rtx_after (rtx, expr_t, int, insn_t);
|
||
extern insn_t sel_gen_recovery_insn_from_rtx_after (rtx, expr_t, int, insn_t);
|
||
extern insn_t sel_gen_insn_from_expr_after (expr_t, vinsn_t, int, insn_t);
|
||
extern insn_t sel_move_insn (expr_t, int, insn_t);
|
||
extern void vinsn_attach (vinsn_t);
|
||
extern void vinsn_detach (vinsn_t);
|
||
extern vinsn_t vinsn_copy (vinsn_t, bool);
|
||
extern bool vinsn_equal_p (vinsn_t, vinsn_t);
|
||
|
||
/* EXPR functions. */
|
||
extern void copy_expr (expr_t, expr_t);
|
||
extern void copy_expr_onside (expr_t, expr_t);
|
||
extern void merge_expr_data (expr_t, expr_t, insn_t);
|
||
extern void merge_expr (expr_t, expr_t, insn_t);
|
||
extern void clear_expr (expr_t);
|
||
extern unsigned expr_dest_regno (expr_t);
|
||
extern rtx expr_dest_reg (expr_t);
|
||
extern int find_in_history_vect (vec<expr_history_def> ,
|
||
rtx, vinsn_t, bool);
|
||
extern void insert_in_history_vect (vec<expr_history_def> *,
|
||
unsigned, enum local_trans_type,
|
||
vinsn_t, vinsn_t, ds_t);
|
||
extern void mark_unavailable_targets (av_set_t, av_set_t, regset);
|
||
extern int speculate_expr (expr_t, ds_t);
|
||
|
||
/* Av set functions. */
|
||
extern void av_set_add (av_set_t *, expr_t);
|
||
extern void av_set_iter_remove (av_set_iterator *);
|
||
extern expr_t av_set_lookup (av_set_t, vinsn_t);
|
||
extern expr_t merge_with_other_exprs (av_set_t *, av_set_iterator *, expr_t);
|
||
extern bool av_set_is_in_p (av_set_t, vinsn_t);
|
||
extern av_set_t av_set_copy (av_set_t);
|
||
extern void av_set_union_and_clear (av_set_t *, av_set_t *, insn_t);
|
||
extern void av_set_union_and_live (av_set_t *, av_set_t *, regset, regset, insn_t);
|
||
extern void av_set_clear (av_set_t *);
|
||
extern void av_set_leave_one_nonspec (av_set_t *);
|
||
extern expr_t av_set_element (av_set_t, int);
|
||
extern void av_set_substract_cond_branches (av_set_t *);
|
||
extern void av_set_split_usefulness (av_set_t, int, int);
|
||
extern void av_set_code_motion_filter (av_set_t *, av_set_t);
|
||
|
||
extern void sel_save_haifa_priorities (void);
|
||
|
||
extern void sel_init_global_and_expr (bb_vec_t);
|
||
extern void sel_finish_global_and_expr (void);
|
||
|
||
extern regset compute_live (insn_t);
|
||
extern bool register_unavailable_p (regset, rtx);
|
||
|
||
/* Dependence analysis functions. */
|
||
extern void sel_clear_has_dependence (void);
|
||
extern ds_t has_dependence_p (expr_t, insn_t, ds_t **);
|
||
|
||
extern int tick_check_p (expr_t, deps_t, fence_t);
|
||
|
||
/* Functions to work with insns. */
|
||
extern bool lhs_of_insn_equals_to_dest_p (insn_t, rtx);
|
||
extern bool insn_eligible_for_subst_p (insn_t);
|
||
extern void get_dest_and_mode (rtx, rtx *, machine_mode *);
|
||
|
||
extern bool bookkeeping_can_be_created_if_moved_through_p (insn_t);
|
||
extern bool sel_remove_insn (insn_t, bool, bool);
|
||
extern bool bb_header_p (insn_t);
|
||
extern void sel_init_invalid_data_sets (insn_t);
|
||
extern bool insn_at_boundary_p (insn_t);
|
||
|
||
/* Basic block and CFG functions. */
|
||
|
||
extern rtx_insn *sel_bb_head (basic_block);
|
||
extern bool sel_bb_head_p (insn_t);
|
||
extern rtx_insn *sel_bb_end (basic_block);
|
||
extern bool sel_bb_end_p (insn_t);
|
||
extern bool sel_bb_empty_p (basic_block);
|
||
|
||
extern bool in_current_region_p (basic_block);
|
||
extern basic_block fallthru_bb_of_jump (const rtx_insn *);
|
||
|
||
extern void sel_init_bbs (bb_vec_t);
|
||
extern void sel_finish_bbs (void);
|
||
|
||
extern struct succs_info * compute_succs_info (insn_t, short);
|
||
extern void free_succs_info (struct succs_info *);
|
||
extern bool sel_insn_has_single_succ_p (insn_t, int);
|
||
extern bool sel_num_cfg_preds_gt_1 (insn_t);
|
||
extern int get_seqno_by_preds (rtx_insn *);
|
||
|
||
extern bool bb_ends_ebb_p (basic_block);
|
||
extern bool in_same_ebb_p (insn_t, insn_t);
|
||
|
||
extern bool tidy_control_flow (basic_block, bool);
|
||
extern void free_bb_note_pool (void);
|
||
|
||
extern void purge_empty_blocks (void);
|
||
extern basic_block sel_split_edge (edge);
|
||
extern basic_block sel_create_recovery_block (insn_t);
|
||
extern bool sel_redirect_edge_and_branch (edge, basic_block);
|
||
extern void sel_redirect_edge_and_branch_force (edge, basic_block);
|
||
extern void sel_init_pipelining (void);
|
||
extern void sel_finish_pipelining (void);
|
||
extern void sel_sched_region (int);
|
||
extern loop_p get_loop_nest_for_rgn (unsigned int);
|
||
extern bool considered_for_pipelining_p (struct loop *);
|
||
extern void make_region_from_loop_preheader (vec<basic_block> *&);
|
||
extern void sel_add_loop_preheaders (bb_vec_t *);
|
||
extern bool sel_is_loop_preheader_p (basic_block);
|
||
extern void clear_outdated_rtx_info (basic_block);
|
||
extern void free_data_sets (basic_block);
|
||
extern void exchange_data_sets (basic_block, basic_block);
|
||
extern void copy_data_sets (basic_block, basic_block);
|
||
|
||
extern void sel_register_cfg_hooks (void);
|
||
extern void sel_unregister_cfg_hooks (void);
|
||
|
||
/* Expression transformation routines. */
|
||
extern rtx_insn *create_insn_rtx_from_pattern (rtx, rtx);
|
||
extern vinsn_t create_vinsn_from_insn_rtx (rtx_insn *, bool);
|
||
extern rtx_insn *create_copy_of_insn_rtx (rtx);
|
||
extern void change_vinsn_in_expr (expr_t, vinsn_t);
|
||
|
||
/* Various initialization functions. */
|
||
extern void init_lv_sets (void);
|
||
extern void free_lv_sets (void);
|
||
extern void setup_nop_and_exit_insns (void);
|
||
extern void free_nop_and_exit_insns (void);
|
||
extern void free_data_for_scheduled_insn (insn_t);
|
||
extern void setup_nop_vinsn (void);
|
||
extern void free_nop_vinsn (void);
|
||
extern void sel_set_sched_flags (void);
|
||
extern void sel_setup_sched_infos (void);
|
||
extern void alloc_sched_pools (void);
|
||
extern void free_sched_pools (void);
|
||
|
||
#endif /* GCC_SEL_SCHED_IR_H */
|