Change methods to use 'self' keyword
This commit is contained in:
parent
0aa09f4fc6
commit
dc8cc5aa4d
|
@ -32,69 +32,69 @@ func NewBlock() *Block {
|
|||
}
|
||||
}
|
||||
|
||||
func (b *Block) drawBorder(buf *Buffer) {
|
||||
x := b.X + 1
|
||||
y := b.Y + 1
|
||||
func (self *Block) drawBorder(buf *Buffer) {
|
||||
x := self.X + 1
|
||||
y := self.Y + 1
|
||||
|
||||
// draw lines
|
||||
buf.Merge(NewFilledBuffer(0, 0, x, 1, Cell{HORIZONTAL_LINE, b.BorderFg, b.BorderBg}))
|
||||
buf.Merge(NewFilledBuffer(0, y, x, y+1, Cell{HORIZONTAL_LINE, b.BorderFg, b.BorderBg}))
|
||||
buf.Merge(NewFilledBuffer(0, 0, 1, y+1, Cell{VERTICAL_LINE, b.BorderFg, b.BorderBg}))
|
||||
buf.Merge(NewFilledBuffer(x, 0, x+1, y+1, Cell{VERTICAL_LINE, b.BorderFg, b.BorderBg}))
|
||||
buf.Merge(NewFilledBuffer(0, 0, x, 1, Cell{HORIZONTAL_LINE, self.BorderFg, self.BorderBg}))
|
||||
buf.Merge(NewFilledBuffer(0, y, x, y+1, Cell{HORIZONTAL_LINE, self.BorderFg, self.BorderBg}))
|
||||
buf.Merge(NewFilledBuffer(0, 0, 1, y+1, Cell{VERTICAL_LINE, self.BorderFg, self.BorderBg}))
|
||||
buf.Merge(NewFilledBuffer(x, 0, x+1, y+1, Cell{VERTICAL_LINE, self.BorderFg, self.BorderBg}))
|
||||
|
||||
// draw corners
|
||||
buf.SetCell(0, 0, Cell{TOP_LEFT, b.BorderFg, b.BorderBg})
|
||||
buf.SetCell(x, 0, Cell{TOP_RIGHT, b.BorderFg, b.BorderBg})
|
||||
buf.SetCell(0, y, Cell{BOTTOM_LEFT, b.BorderFg, b.BorderBg})
|
||||
buf.SetCell(x, y, Cell{BOTTOM_RIGHT, b.BorderFg, b.BorderBg})
|
||||
buf.SetCell(0, 0, Cell{TOP_LEFT, self.BorderFg, self.BorderBg})
|
||||
buf.SetCell(x, 0, Cell{TOP_RIGHT, self.BorderFg, self.BorderBg})
|
||||
buf.SetCell(0, y, Cell{BOTTOM_LEFT, self.BorderFg, self.BorderBg})
|
||||
buf.SetCell(x, y, Cell{BOTTOM_RIGHT, self.BorderFg, self.BorderBg})
|
||||
}
|
||||
|
||||
func (b *Block) drawLabel(buf *Buffer) {
|
||||
r := MaxString(b.Label, (b.X-3)-1)
|
||||
buf.SetString(3, 0, r, b.LabelFg, b.LabelBg)
|
||||
if b.Label == "" {
|
||||
func (self *Block) drawLabel(buf *Buffer) {
|
||||
r := MaxString(self.Label, (self.X-3)-1)
|
||||
buf.SetString(3, 0, r, self.LabelFg, self.LabelBg)
|
||||
if self.Label == "" {
|
||||
return
|
||||
}
|
||||
c := Cell{' ', b.Fg, b.Bg}
|
||||
c := Cell{' ', self.Fg, self.Bg}
|
||||
buf.SetCell(2, 0, c)
|
||||
if len(b.Label)+3 < b.X {
|
||||
buf.SetCell(len(b.Label)+3, 0, c)
|
||||
if len(self.Label)+3 < self.X {
|
||||
buf.SetCell(len(self.Label)+3, 0, c)
|
||||
} else {
|
||||
buf.SetCell(b.X-1, 0, c)
|
||||
buf.SetCell(self.X-1, 0, c)
|
||||
}
|
||||
}
|
||||
|
||||
// Resize computes Height, Width, XOffset, and YOffset given terminal dimensions.
|
||||
func (b *Block) Resize(termWidth, termHeight, termCols, termRows int) {
|
||||
b.X = int((float64(b.Grid.Dx())/float64(termCols))*float64(termWidth)) - 2
|
||||
b.Y = int((float64(b.Grid.Dy())/float64(termRows))*float64(termHeight)) - 2
|
||||
b.XOffset = int((float64(b.Grid.Min.X) / float64(termCols)) * float64(termWidth))
|
||||
b.YOffset = int((float64(b.Grid.Min.Y) / float64(termRows)) * float64(termHeight))
|
||||
func (self *Block) Resize(termWidth, termHeight, termCols, termRows int) {
|
||||
self.X = int((float64(self.Grid.Dx())/float64(termCols))*float64(termWidth)) - 2
|
||||
self.Y = int((float64(self.Grid.Dy())/float64(termRows))*float64(termHeight)) - 2
|
||||
self.XOffset = int((float64(self.Grid.Min.X) / float64(termCols)) * float64(termWidth))
|
||||
self.YOffset = int((float64(self.Grid.Min.Y) / float64(termRows)) * float64(termHeight))
|
||||
}
|
||||
|
||||
// SetGrid create a rectangle representing the block's dimensions in the grid.
|
||||
func (b *Block) SetGrid(c0, r0, c1, r1 int) {
|
||||
b.Grid = image.Rect(c0, r0, c1, r1)
|
||||
func (self *Block) SetGrid(c0, r0, c1, r1 int) {
|
||||
self.Grid = image.Rect(c0, r0, c1, r1)
|
||||
}
|
||||
|
||||
// GetXOffset implements Bufferer interface.
|
||||
func (b *Block) GetXOffset() int {
|
||||
return b.XOffset
|
||||
func (self *Block) GetXOffset() int {
|
||||
return self.XOffset
|
||||
}
|
||||
|
||||
// GetYOffset implements Bufferer interface.
|
||||
func (b *Block) GetYOffset() int {
|
||||
return b.YOffset
|
||||
func (self *Block) GetYOffset() int {
|
||||
return self.YOffset
|
||||
}
|
||||
|
||||
// Buffer implements Bufferer interface and draws background, border, and borderlabel.
|
||||
func (b *Block) Buffer() *Buffer {
|
||||
func (self *Block) Buffer() *Buffer {
|
||||
buf := NewBuffer()
|
||||
buf.SetAreaXY(b.X+2, b.Y+2)
|
||||
buf.Fill(Cell{' ', ColorDefault, b.Bg})
|
||||
buf.SetAreaXY(self.X+2, self.Y+2)
|
||||
buf.Fill(Cell{' ', ColorDefault, self.Bg})
|
||||
|
||||
b.drawBorder(buf)
|
||||
b.drawLabel(buf)
|
||||
self.drawBorder(buf)
|
||||
self.drawLabel(buf)
|
||||
|
||||
return buf
|
||||
}
|
||||
|
|
|
@ -40,60 +40,60 @@ func NewFilledBuffer(x0, y0, x1, y1 int, c Cell) *Buffer {
|
|||
}
|
||||
|
||||
// SetCell assigns a Cell to (x,y).
|
||||
func (b *Buffer) SetCell(x, y int, c Cell) {
|
||||
b.CellMap[image.Pt(x, y)] = c
|
||||
func (self *Buffer) SetCell(x, y int, c Cell) {
|
||||
self.CellMap[image.Pt(x, y)] = c
|
||||
}
|
||||
|
||||
// SetString assigns a string to a Buffer starting at (x,y).
|
||||
func (b *Buffer) SetString(x, y int, s string, fg, bg Color) {
|
||||
func (self *Buffer) SetString(x, y int, s string, fg, bg Color) {
|
||||
for i, char := range s {
|
||||
b.SetCell(x+i, y, Cell{char, fg, bg})
|
||||
self.SetCell(x+i, y, Cell{char, fg, bg})
|
||||
}
|
||||
}
|
||||
|
||||
// At returns the cell at (x,y).
|
||||
func (b *Buffer) At(x, y int) Cell {
|
||||
return b.CellMap[image.Pt(x, y)]
|
||||
func (self *Buffer) At(x, y int) Cell {
|
||||
return self.CellMap[image.Pt(x, y)]
|
||||
}
|
||||
|
||||
// SetArea assigns a new rect area to Buffer b.
|
||||
func (b *Buffer) SetArea(r image.Rectangle) {
|
||||
b.Area.Max = r.Max
|
||||
b.Area.Min = r.Min
|
||||
// SetArea assigns a new rect area to self.
|
||||
func (self *Buffer) SetArea(r image.Rectangle) {
|
||||
self.Area.Max = r.Max
|
||||
self.Area.Min = r.Min
|
||||
}
|
||||
|
||||
// SetAreaXY sets the Buffer bounds from (0,0) to (x,y).
|
||||
func (b *Buffer) SetAreaXY(x, y int) {
|
||||
b.Area.Min.Y = 0
|
||||
b.Area.Min.X = 0
|
||||
b.Area.Max.Y = y
|
||||
b.Area.Max.X = x
|
||||
func (self *Buffer) SetAreaXY(x, y int) {
|
||||
self.Area.Min.Y = 0
|
||||
self.Area.Min.X = 0
|
||||
self.Area.Max.Y = y
|
||||
self.Area.Max.X = x
|
||||
}
|
||||
|
||||
// Merge merges the given buffers onto the current Buffer.
|
||||
func (b *Buffer) Merge(bs ...*Buffer) {
|
||||
func (self *Buffer) Merge(bs ...*Buffer) {
|
||||
for _, buf := range bs {
|
||||
for p, c := range buf.CellMap {
|
||||
b.SetCell(p.X, p.Y, c)
|
||||
self.SetCell(p.X, p.Y, c)
|
||||
}
|
||||
b.SetArea(b.Area.Union(buf.Area))
|
||||
self.SetArea(self.Area.Union(buf.Area))
|
||||
}
|
||||
}
|
||||
|
||||
// MergeWithOffset merges a Buffer onto another with an offset.
|
||||
func (b *Buffer) MergeWithOffset(buf *Buffer, xOffset, yOffset int) {
|
||||
func (self *Buffer) MergeWithOffset(buf *Buffer, xOffset, yOffset int) {
|
||||
for p, c := range buf.CellMap {
|
||||
b.SetCell(p.X+xOffset, p.Y+yOffset, c)
|
||||
self.SetCell(p.X+xOffset, p.Y+yOffset, c)
|
||||
}
|
||||
rect := image.Rect(xOffset, yOffset, buf.Area.Max.X+xOffset, buf.Area.Max.Y+yOffset)
|
||||
b.SetArea(b.Area.Union(rect))
|
||||
self.SetArea(self.Area.Union(rect))
|
||||
}
|
||||
|
||||
// Fill fills the Buffer with a Cell.
|
||||
func (b *Buffer) Fill(c Cell) {
|
||||
for x := b.Area.Min.X; x < b.Area.Max.X; x++ {
|
||||
for y := b.Area.Min.Y; y < b.Area.Max.Y; y++ {
|
||||
b.SetCell(x, y, c)
|
||||
func (self *Buffer) Fill(c Cell) {
|
||||
for x := self.Area.Min.X; x < self.Area.Max.X; x++ {
|
||||
for y := self.Area.Min.Y; y < self.Area.Max.Y; y++ {
|
||||
self.SetCell(x, y, c)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -21,27 +21,27 @@ func NewGauge() *Gauge {
|
|||
}
|
||||
|
||||
// Buffer implements Bufferer interface.
|
||||
func (g *Gauge) Buffer() *Buffer {
|
||||
buf := g.Block.Buffer()
|
||||
func (self *Gauge) Buffer() *Buffer {
|
||||
buf := self.Block.Buffer()
|
||||
|
||||
// plot bar
|
||||
width := g.Percent * g.X / 100
|
||||
for y := 1; y <= g.Y; y++ {
|
||||
width := self.Percent * self.X / 100
|
||||
for y := 1; y <= self.Y; y++ {
|
||||
for x := 1; x <= width; x++ {
|
||||
buf.SetCell(x, y, Cell{' ', g.GaugeColor, g.GaugeColor})
|
||||
buf.SetCell(x, y, Cell{' ', self.GaugeColor, self.GaugeColor})
|
||||
}
|
||||
}
|
||||
|
||||
// plot percentage
|
||||
s := strconv.Itoa(g.Percent) + "%" + g.Description
|
||||
s = MaxString(s, g.X)
|
||||
y := (g.Y + 1) / 2
|
||||
x := ((g.X - len(s)) + 1) / 2
|
||||
s := strconv.Itoa(self.Percent) + "%" + self.Description
|
||||
s = MaxString(s, self.X)
|
||||
y := (self.Y + 1) / 2
|
||||
x := ((self.X - len(s)) + 1) / 2
|
||||
for i, char := range s {
|
||||
bg := g.Bg
|
||||
fg := g.Fg
|
||||
bg := self.Bg
|
||||
fg := self.Fg
|
||||
if x+i < width {
|
||||
fg = g.GaugeColor
|
||||
fg = self.GaugeColor
|
||||
bg = AttrReverse
|
||||
}
|
||||
buf.SetCell(1+x+i, y, Cell{char, fg, bg})
|
||||
|
|
|
@ -25,7 +25,7 @@ func NewGrid() *Grid {
|
|||
}
|
||||
|
||||
// Set assigns a widget and its grid dimensions to Grid.
|
||||
func (g *Grid) Set(x0, y0, x1, y1 int, widget GridBufferer) {
|
||||
func (self *Grid) Set(x0, y0, x1, y1 int, widget GridBufferer) {
|
||||
if widget == nil {
|
||||
return
|
||||
}
|
||||
|
@ -34,33 +34,33 @@ func (g *Grid) Set(x0, y0, x1, y1 int, widget GridBufferer) {
|
|||
}
|
||||
|
||||
widget.SetGrid(x0, y0, x1, y1)
|
||||
widget.Resize(g.Width, g.Height, g.Cols, g.Rows)
|
||||
widget.Resize(self.Width, self.Height, self.Cols, self.Rows)
|
||||
|
||||
g.Widgets = append(g.Widgets, widget)
|
||||
self.Widgets = append(self.Widgets, widget)
|
||||
}
|
||||
|
||||
// Resize resizes each widget in the grid.
|
||||
func (g *Grid) Resize() {
|
||||
for _, w := range g.Widgets {
|
||||
w.Resize(g.Width, g.Height, g.Cols, g.Rows)
|
||||
func (self *Grid) Resize() {
|
||||
for _, w := range self.Widgets {
|
||||
w.Resize(self.Width, self.Height, self.Cols, self.Rows)
|
||||
}
|
||||
}
|
||||
|
||||
// Buffer implements the Bufferer interface by merging each widget in Grid into one buffer.
|
||||
func (g *Grid) Buffer() *Buffer {
|
||||
buf := NewFilledBuffer(0, 0, g.Width, g.Height, Cell{' ', ColorDefault, Theme.Bg})
|
||||
for _, w := range g.Widgets {
|
||||
func (self *Grid) Buffer() *Buffer {
|
||||
buf := NewFilledBuffer(0, 0, self.Width, self.Height, Cell{' ', ColorDefault, Theme.Bg})
|
||||
for _, w := range self.Widgets {
|
||||
buf.MergeWithOffset(w.Buffer(), w.GetXOffset(), w.GetYOffset())
|
||||
}
|
||||
return buf
|
||||
}
|
||||
|
||||
// GetXOffset implements Bufferer interface.
|
||||
func (g *Grid) GetXOffset() int {
|
||||
func (self *Grid) GetXOffset() int {
|
||||
return 0
|
||||
}
|
||||
|
||||
// GetYOffset implements Bufferer interface.
|
||||
func (g *Grid) GetYOffset() int {
|
||||
func (self *Grid) GetYOffset() int {
|
||||
return 0
|
||||
}
|
||||
|
|
|
@ -30,21 +30,21 @@ func NewLineGraph() *LineGraph {
|
|||
}
|
||||
|
||||
// Buffer implements Bufferer interface.
|
||||
func (lc *LineGraph) Buffer() *Buffer {
|
||||
buf := lc.Block.Buffer()
|
||||
func (self *LineGraph) Buffer() *Buffer {
|
||||
buf := self.Block.Buffer()
|
||||
// we render each data point on to the canvas then copy over the braille to the buffer at the end
|
||||
// fyi braille characters have 2x4 dots for each character
|
||||
c := drawille.NewCanvas()
|
||||
// used to keep track of the braille colors until the end when we render the braille to the buffer
|
||||
colors := make([][]Color, lc.X+2)
|
||||
colors := make([][]Color, self.X+2)
|
||||
for i := range colors {
|
||||
colors[i] = make([]Color, lc.Y+2)
|
||||
colors[i] = make([]Color, self.Y+2)
|
||||
}
|
||||
|
||||
// sort the series so that overlapping data will overlap the same way each time
|
||||
seriesList := make([]string, len(lc.Data))
|
||||
seriesList := make([]string, len(self.Data))
|
||||
i := 0
|
||||
for seriesName := range lc.Data {
|
||||
for seriesName := range self.Data {
|
||||
seriesList[i] = seriesName
|
||||
i++
|
||||
}
|
||||
|
@ -53,21 +53,21 @@ func (lc *LineGraph) Buffer() *Buffer {
|
|||
// draw lines in reverse order so that the first color defined in the colorscheme is on top
|
||||
for i := len(seriesList) - 1; i >= 0; i-- {
|
||||
seriesName := seriesList[i]
|
||||
seriesData := lc.Data[seriesName]
|
||||
seriesLineColor, ok := lc.LineColor[seriesName]
|
||||
seriesData := self.Data[seriesName]
|
||||
seriesLineColor, ok := self.LineColor[seriesName]
|
||||
if !ok {
|
||||
seriesLineColor = lc.DefaultLineColor
|
||||
seriesLineColor = self.DefaultLineColor
|
||||
}
|
||||
|
||||
// coordinates of last point
|
||||
lastY, lastX := -1, -1
|
||||
// assign colors to `colors` and lines/points to the canvas
|
||||
for i := len(seriesData) - 1; i >= 0; i-- {
|
||||
x := ((lc.X + 1) * 2) - 1 - (((len(seriesData) - 1) - i) * lc.Zoom)
|
||||
y := ((lc.Y + 1) * 4) - 1 - int((float64((lc.Y)*4)-1)*(seriesData[i]/100))
|
||||
x := ((self.X + 1) * 2) - 1 - (((len(seriesData) - 1) - i) * self.Zoom)
|
||||
y := ((self.Y + 1) * 4) - 1 - int((float64((self.Y)*4)-1)*(seriesData[i]/100))
|
||||
if x < 0 {
|
||||
// render the line to the last point up to the wall
|
||||
if x > 0-lc.Zoom {
|
||||
if x > 0-self.Zoom {
|
||||
for _, p := range drawille.Line(lastX, lastY, x, y) {
|
||||
if p.X > 0 {
|
||||
c.Set(p.X, p.Y)
|
||||
|
@ -97,7 +97,7 @@ func (lc *LineGraph) Buffer() *Buffer {
|
|||
continue
|
||||
}
|
||||
if char != 10240 { // empty braille character
|
||||
buf.SetCell(x, y, Cell{char, colors[x][y], lc.Bg})
|
||||
buf.SetCell(x, y, Cell{char, colors[x][y], self.Bg})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -106,17 +106,17 @@ func (lc *LineGraph) Buffer() *Buffer {
|
|||
// renders key ontop
|
||||
for j, seriesName := range seriesList {
|
||||
// sorts lines again
|
||||
seriesData := lc.Data[seriesName]
|
||||
seriesLineColor, ok := lc.LineColor[seriesName]
|
||||
seriesData := self.Data[seriesName]
|
||||
seriesLineColor, ok := self.LineColor[seriesName]
|
||||
if !ok {
|
||||
seriesLineColor = lc.DefaultLineColor
|
||||
seriesLineColor = self.DefaultLineColor
|
||||
}
|
||||
|
||||
// render key ontop, but let braille be drawn over space characters
|
||||
str := fmt.Sprintf("%s %3.0f%%", seriesName, seriesData[len(seriesData)-1])
|
||||
for k, char := range str {
|
||||
if char != ' ' {
|
||||
buf.SetCell(3+k, j+2, Cell{char, seriesLineColor, lc.Bg})
|
||||
buf.SetCell(3+k, j+2, Cell{char, seriesLineColor, self.Bg})
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -18,8 +18,8 @@ type Sparklines struct {
|
|||
}
|
||||
|
||||
// Add appends a given Sparkline to the *Sparklines.
|
||||
func (s *Sparklines) Add(sl Sparkline) {
|
||||
s.Lines = append(s.Lines, &sl)
|
||||
func (self *Sparklines) Add(sl Sparkline) {
|
||||
self.Lines = append(self.Lines, &sl)
|
||||
}
|
||||
|
||||
// NewSparkline returns an unrenderable single sparkline that intended to be added into a Sparklines.
|
||||
|
@ -39,37 +39,37 @@ func NewSparklines(ss ...*Sparkline) *Sparklines {
|
|||
}
|
||||
|
||||
// Buffer implements Bufferer interface.
|
||||
func (sl *Sparklines) Buffer() *Buffer {
|
||||
buf := sl.Block.Buffer()
|
||||
func (self *Sparklines) Buffer() *Buffer {
|
||||
buf := self.Block.Buffer()
|
||||
|
||||
lc := len(sl.Lines) // lineCount
|
||||
lc := len(self.Lines) // lineCount
|
||||
|
||||
// renders each sparkline and its titles
|
||||
for i, line := range sl.Lines {
|
||||
for i, line := range self.Lines {
|
||||
|
||||
// prints titles
|
||||
title1Y := 2 + (sl.Y/lc)*i
|
||||
title2Y := (2 + (sl.Y/lc)*i) + 1
|
||||
title1 := MaxString(line.Title1, sl.X)
|
||||
title2 := MaxString(line.Title2, sl.X)
|
||||
buf.SetString(1, title1Y, title1, line.TitleColor|AttrBold, sl.Bg)
|
||||
buf.SetString(1, title2Y, title2, line.TitleColor|AttrBold, sl.Bg)
|
||||
title1Y := 2 + (self.Y/lc)*i
|
||||
title2Y := (2 + (self.Y/lc)*i) + 1
|
||||
title1 := MaxString(line.Title1, self.X)
|
||||
title2 := MaxString(line.Title2, self.X)
|
||||
buf.SetString(1, title1Y, title1, line.TitleColor|AttrBold, self.Bg)
|
||||
buf.SetString(1, title2Y, title2, line.TitleColor|AttrBold, self.Bg)
|
||||
|
||||
sparkY := (sl.Y / lc) * (i + 1)
|
||||
sparkY := (self.Y / lc) * (i + 1)
|
||||
// finds max data in current view used for relative heights
|
||||
max := 1
|
||||
for i := len(line.Data) - 1; i >= 0 && sl.X-((len(line.Data)-1)-i) >= 1; i-- {
|
||||
for i := len(line.Data) - 1; i >= 0 && self.X-((len(line.Data)-1)-i) >= 1; i-- {
|
||||
if line.Data[i] > max {
|
||||
max = line.Data[i]
|
||||
}
|
||||
}
|
||||
// prints sparkline
|
||||
for x := sl.X; x >= 1; x-- {
|
||||
for x := self.X; x >= 1; x-- {
|
||||
char := SPARKS[0]
|
||||
if (sl.X - x) < len(line.Data) {
|
||||
char = SPARKS[int((float64(line.Data[(len(line.Data)-1)-(sl.X-x)])/float64(max))*7)]
|
||||
if (self.X - x) < len(line.Data) {
|
||||
char = SPARKS[int((float64(line.Data[(len(line.Data)-1)-(self.X-x)])/float64(max))*7)]
|
||||
}
|
||||
buf.SetCell(x, sparkY, Cell{char, line.LineColor, sl.Bg})
|
||||
buf.SetCell(x, sparkY, Cell{char, line.LineColor, self.Bg})
|
||||
}
|
||||
}
|
||||
|
||||
|
|
148
termui/table.go
148
termui/table.go
|
@ -22,82 +22,82 @@ type Table struct {
|
|||
|
||||
// NewTable returns a new Table instance
|
||||
func NewTable() *Table {
|
||||
t := &Table{
|
||||
self := &Table{
|
||||
Block: NewBlock(),
|
||||
Cursor: Theme.TableCursor,
|
||||
SelectedRow: 0,
|
||||
TopRow: 0,
|
||||
UniqueCol: 0,
|
||||
}
|
||||
t.ColResizer = t.ColResize
|
||||
return t
|
||||
self.ColResizer = self.ColResize
|
||||
return self
|
||||
}
|
||||
|
||||
// ColResize is the default column resizer, but can be overriden.
|
||||
// ColResize calculates the width of each column.
|
||||
func (t *Table) ColResize() {
|
||||
func (self *Table) ColResize() {
|
||||
// calculate gap size based on total width
|
||||
t.Gap = 3
|
||||
if t.X < 50 {
|
||||
t.Gap = 1
|
||||
} else if t.X < 75 {
|
||||
t.Gap = 2
|
||||
self.Gap = 3
|
||||
if self.X < 50 {
|
||||
self.Gap = 1
|
||||
} else if self.X < 75 {
|
||||
self.Gap = 2
|
||||
}
|
||||
|
||||
cur := 0
|
||||
for _, w := range t.ColWidths {
|
||||
cur += t.Gap
|
||||
t.CellXPos = append(t.CellXPos, cur)
|
||||
for _, w := range self.ColWidths {
|
||||
cur += self.Gap
|
||||
self.CellXPos = append(self.CellXPos, cur)
|
||||
cur += w
|
||||
}
|
||||
}
|
||||
|
||||
// Buffer implements the Bufferer interface.
|
||||
func (t *Table) Buffer() *Buffer {
|
||||
buf := t.Block.Buffer()
|
||||
func (self *Table) Buffer() *Buffer {
|
||||
buf := self.Block.Buffer()
|
||||
|
||||
// removes gap at the bottom of the current view if there is one
|
||||
if t.TopRow > len(t.Rows)-(t.Y-1) {
|
||||
t.TopRow = len(t.Rows) - (t.Y - 1)
|
||||
if self.TopRow > len(self.Rows)-(self.Y-1) {
|
||||
self.TopRow = len(self.Rows) - (self.Y - 1)
|
||||
}
|
||||
|
||||
t.ColResizer()
|
||||
self.ColResizer()
|
||||
|
||||
// prints header
|
||||
for i, width := range t.ColWidths {
|
||||
for i, width := range self.ColWidths {
|
||||
if width == 0 {
|
||||
break
|
||||
}
|
||||
r := MaxString(t.Header[i], t.X-6)
|
||||
buf.SetString(t.CellXPos[i], 1, r, t.Fg|AttrBold, t.Bg)
|
||||
r := MaxString(self.Header[i], self.X-6)
|
||||
buf.SetString(self.CellXPos[i], 1, r, self.Fg|AttrBold, self.Bg)
|
||||
}
|
||||
|
||||
// prints each row
|
||||
for rowNum := t.TopRow; rowNum < t.TopRow+t.Y-1 && rowNum < len(t.Rows); rowNum++ {
|
||||
row := t.Rows[rowNum]
|
||||
y := (rowNum + 2) - t.TopRow
|
||||
for rowNum := self.TopRow; rowNum < self.TopRow+self.Y-1 && rowNum < len(self.Rows); rowNum++ {
|
||||
row := self.Rows[rowNum]
|
||||
y := (rowNum + 2) - self.TopRow
|
||||
|
||||
// prints cursor
|
||||
bg := t.Bg
|
||||
if (t.SelectedItem == "" && rowNum == t.SelectedRow) || (t.SelectedItem != "" && t.SelectedItem == row[t.UniqueCol]) {
|
||||
bg = t.Cursor
|
||||
for _, width := range t.ColWidths {
|
||||
bg := self.Bg
|
||||
if (self.SelectedItem == "" && rowNum == self.SelectedRow) || (self.SelectedItem != "" && self.SelectedItem == row[self.UniqueCol]) {
|
||||
bg = self.Cursor
|
||||
for _, width := range self.ColWidths {
|
||||
if width == 0 {
|
||||
break
|
||||
}
|
||||
buf.SetString(1, y, strings.Repeat(" ", t.X), t.Fg, bg)
|
||||
buf.SetString(1, y, strings.Repeat(" ", self.X), self.Fg, bg)
|
||||
}
|
||||
t.SelectedItem = row[t.UniqueCol]
|
||||
t.SelectedRow = rowNum
|
||||
self.SelectedItem = row[self.UniqueCol]
|
||||
self.SelectedRow = rowNum
|
||||
}
|
||||
|
||||
// prints each col of the row
|
||||
for i, width := range t.ColWidths {
|
||||
for i, width := range self.ColWidths {
|
||||
if width == 0 {
|
||||
break
|
||||
}
|
||||
r := MaxString(row[i], t.X-6)
|
||||
buf.SetString(t.CellXPos[i], y, r, t.Fg, bg)
|
||||
r := MaxString(row[i], self.X-6)
|
||||
buf.SetString(self.CellXPos[i], y, r, self.Fg, bg)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -109,71 +109,71 @@ func (t *Table) Buffer() *Buffer {
|
|||
/////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// calcPos is used to calculate the cursor position and the current view.
|
||||
func (t *Table) calcPos() {
|
||||
t.SelectedItem = ""
|
||||
func (self *Table) calcPos() {
|
||||
self.SelectedItem = ""
|
||||
|
||||
if t.SelectedRow < 0 {
|
||||
t.SelectedRow = 0
|
||||
if self.SelectedRow < 0 {
|
||||
self.SelectedRow = 0
|
||||
}
|
||||
if t.SelectedRow < t.TopRow {
|
||||
t.TopRow = t.SelectedRow
|
||||
if self.SelectedRow < self.TopRow {
|
||||
self.TopRow = self.SelectedRow
|
||||
}
|
||||
|
||||
if t.SelectedRow > len(t.Rows)-1 {
|
||||
t.SelectedRow = len(t.Rows) - 1
|
||||
if self.SelectedRow > len(self.Rows)-1 {
|
||||
self.SelectedRow = len(self.Rows) - 1
|
||||
}
|
||||
if t.SelectedRow > t.TopRow+(t.Y-2) {
|
||||
t.TopRow = t.SelectedRow - (t.Y - 2)
|
||||
if self.SelectedRow > self.TopRow+(self.Y-2) {
|
||||
self.TopRow = self.SelectedRow - (self.Y - 2)
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Table) Up() {
|
||||
t.SelectedRow -= 1
|
||||
t.calcPos()
|
||||
func (self *Table) Up() {
|
||||
self.SelectedRow -= 1
|
||||
self.calcPos()
|
||||
}
|
||||
|
||||
func (t *Table) Down() {
|
||||
t.SelectedRow += 1
|
||||
t.calcPos()
|
||||
func (self *Table) Down() {
|
||||
self.SelectedRow += 1
|
||||
self.calcPos()
|
||||
}
|
||||
|
||||
func (t *Table) Top() {
|
||||
t.SelectedRow = 0
|
||||
t.calcPos()
|
||||
func (self *Table) Top() {
|
||||
self.SelectedRow = 0
|
||||
self.calcPos()
|
||||
}
|
||||
|
||||
func (t *Table) Bottom() {
|
||||
t.SelectedRow = len(t.Rows) - 1
|
||||
t.calcPos()
|
||||
func (self *Table) Bottom() {
|
||||
self.SelectedRow = len(self.Rows) - 1
|
||||
self.calcPos()
|
||||
}
|
||||
|
||||
// The number of lines in a page is equal to the height of the widget.
|
||||
// The number of lines in a page is equal to the height of the widgeself.
|
||||
|
||||
func (t *Table) HalfPageUp() {
|
||||
t.SelectedRow = t.SelectedRow - (t.Y-2)/2
|
||||
t.calcPos()
|
||||
func (self *Table) HalfPageUp() {
|
||||
self.SelectedRow = self.SelectedRow - (self.Y-2)/2
|
||||
self.calcPos()
|
||||
}
|
||||
|
||||
func (t *Table) HalfPageDown() {
|
||||
t.SelectedRow = t.SelectedRow + (t.Y-2)/2
|
||||
t.calcPos()
|
||||
func (self *Table) HalfPageDown() {
|
||||
self.SelectedRow = self.SelectedRow + (self.Y-2)/2
|
||||
self.calcPos()
|
||||
}
|
||||
|
||||
func (t *Table) PageUp() {
|
||||
t.SelectedRow -= (t.Y - 2)
|
||||
t.calcPos()
|
||||
func (self *Table) PageUp() {
|
||||
self.SelectedRow -= (self.Y - 2)
|
||||
self.calcPos()
|
||||
}
|
||||
|
||||
func (t *Table) PageDown() {
|
||||
t.SelectedRow += (t.Y - 2)
|
||||
t.calcPos()
|
||||
func (self *Table) PageDown() {
|
||||
self.SelectedRow += (self.Y - 2)
|
||||
self.calcPos()
|
||||
}
|
||||
|
||||
func (t *Table) Click(x, y int) {
|
||||
x = x - t.XOffset
|
||||
y = y - t.YOffset
|
||||
if (x > 0 && x <= t.X) && (y > 0 && y <= t.Y) {
|
||||
t.SelectedRow = (t.TopRow + y) - 2
|
||||
t.calcPos()
|
||||
func (self *Table) Click(x, y int) {
|
||||
x = x - self.XOffset
|
||||
y = y - self.YOffset
|
||||
if (x > 0 && x <= self.X) && (y > 0 && y <= self.Y) {
|
||||
self.SelectedRow = (self.TopRow + y) - 2
|
||||
self.calcPos()
|
||||
}
|
||||
}
|
||||
|
|
|
@ -16,43 +16,43 @@ type CPU struct {
|
|||
|
||||
func NewCPU(interval time.Duration, zoom int) *CPU {
|
||||
count, _ := psCPU.Counts(false)
|
||||
c := &CPU{
|
||||
self := &CPU{
|
||||
LineGraph: ui.NewLineGraph(),
|
||||
Count: count,
|
||||
interval: interval,
|
||||
}
|
||||
c.Label = "CPU Usage"
|
||||
c.Zoom = zoom
|
||||
if c.Count <= 8 {
|
||||
for i := 0; i < c.Count; i++ {
|
||||
self.Label = "CPU Usage"
|
||||
self.Zoom = zoom
|
||||
if self.Count <= 8 {
|
||||
for i := 0; i < self.Count; i++ {
|
||||
key := "CPU" + strconv.Itoa(i+1)
|
||||
c.Data[key] = []float64{0}
|
||||
self.Data[key] = []float64{0}
|
||||
}
|
||||
} else {
|
||||
c.Data["Average"] = []float64{0}
|
||||
self.Data["Average"] = []float64{0}
|
||||
}
|
||||
|
||||
go c.update()
|
||||
ticker := time.NewTicker(c.interval)
|
||||
go self.update()
|
||||
ticker := time.NewTicker(self.interval)
|
||||
go func() {
|
||||
for range ticker.C {
|
||||
c.update()
|
||||
self.update()
|
||||
}
|
||||
}()
|
||||
|
||||
return c
|
||||
return self
|
||||
}
|
||||
|
||||
func (c *CPU) update() {
|
||||
func (self *CPU) update() {
|
||||
// psutil calculates the CPU usage over a 1 second interval, therefore it blocks for 1 second
|
||||
if c.Count <= 8 {
|
||||
percent, _ := psCPU.Percent(c.interval, true)
|
||||
for i := 0; i < c.Count; i++ {
|
||||
if self.Count <= 8 {
|
||||
percent, _ := psCPU.Percent(self.interval, true)
|
||||
for i := 0; i < self.Count; i++ {
|
||||
key := "CPU" + strconv.Itoa(i+1)
|
||||
c.Data[key] = append(c.Data[key], percent[i])
|
||||
self.Data[key] = append(self.Data[key], percent[i])
|
||||
}
|
||||
} else {
|
||||
percent, _ := psCPU.Percent(c.interval, false)
|
||||
c.Data["Average"] = append(c.Data["Average"], percent[0])
|
||||
percent, _ := psCPU.Percent(self.interval, false)
|
||||
self.Data["Average"] = append(self.Data["Average"], percent[0])
|
||||
}
|
||||
}
|
||||
|
|
|
@ -16,26 +16,26 @@ type Disk struct {
|
|||
}
|
||||
|
||||
func NewDisk() *Disk {
|
||||
d := &Disk{
|
||||
self := &Disk{
|
||||
Gauge: ui.NewGauge(),
|
||||
fs: "/",
|
||||
interval: time.Second * 5,
|
||||
}
|
||||
d.Label = "Disk Usage"
|
||||
self.Label = "Disk Usage"
|
||||
|
||||
go d.update()
|
||||
ticker := time.NewTicker(d.interval)
|
||||
go self.update()
|
||||
ticker := time.NewTicker(self.interval)
|
||||
go func() {
|
||||
for range ticker.C {
|
||||
d.update()
|
||||
self.update()
|
||||
}
|
||||
}()
|
||||
|
||||
return d
|
||||
return self
|
||||
}
|
||||
|
||||
func (d *Disk) update() {
|
||||
usage, _ := psDisk.Usage(d.fs)
|
||||
d.Percent = int(usage.UsedPercent)
|
||||
d.Description = fmt.Sprintf(" (%dGB free)", int(utils.BytesToGB(usage.Free)))
|
||||
func (self *Disk) update() {
|
||||
usage, _ := psDisk.Usage(self.fs)
|
||||
self.Percent = int(usage.UsedPercent)
|
||||
self.Description = fmt.Sprintf(" (%dGB free)", int(utils.BytesToGB(usage.Free)))
|
||||
}
|
||||
|
|
|
@ -39,12 +39,12 @@ func NewHelpMenu() *HelpMenu {
|
|||
return &HelpMenu{block}
|
||||
}
|
||||
|
||||
func (hm *HelpMenu) Buffer() *ui.Buffer {
|
||||
buf := hm.Block.Buffer()
|
||||
func (self *HelpMenu) Buffer() *ui.Buffer {
|
||||
buf := self.Block.Buffer()
|
||||
|
||||
for y, line := range strings.Split(KEYBINDS, "\n") {
|
||||
for x, char := range line {
|
||||
buf.SetCell(x+1, y, ui.NewCell(char, ui.Color(7), hm.Bg))
|
||||
buf.SetCell(x+1, y, ui.NewCell(char, ui.Color(7), self.Bg))
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -13,29 +13,29 @@ type Mem struct {
|
|||
}
|
||||
|
||||
func NewMem(interval time.Duration, zoom int) *Mem {
|
||||
m := &Mem{
|
||||
self := &Mem{
|
||||
LineGraph: ui.NewLineGraph(),
|
||||
interval: interval,
|
||||
}
|
||||
m.Label = "Memory Usage"
|
||||
m.Zoom = zoom
|
||||
m.Data["Main"] = []float64{0}
|
||||
m.Data["Swap"] = []float64{0}
|
||||
self.Label = "Memory Usage"
|
||||
self.Zoom = zoom
|
||||
self.Data["Main"] = []float64{0}
|
||||
self.Data["Swap"] = []float64{0}
|
||||
|
||||
go m.update()
|
||||
ticker := time.NewTicker(m.interval)
|
||||
go self.update()
|
||||
ticker := time.NewTicker(self.interval)
|
||||
go func() {
|
||||
for range ticker.C {
|
||||
m.update()
|
||||
self.update()
|
||||
}
|
||||
}()
|
||||
|
||||
return m
|
||||
return self
|
||||
}
|
||||
|
||||
func (m *Mem) update() {
|
||||
func (self *Mem) update() {
|
||||
main, _ := psMem.VirtualMemory()
|
||||
swap, _ := psMem.SwapMemory()
|
||||
m.Data["Main"] = append(m.Data["Main"], main.UsedPercent)
|
||||
m.Data["Swap"] = append(m.Data["Swap"], swap.UsedPercent)
|
||||
self.Data["Main"] = append(self.Data["Main"], main.UsedPercent)
|
||||
self.Data["Swap"] = append(self.Data["Swap"], swap.UsedPercent)
|
||||
}
|
||||
|
|
|
@ -25,46 +25,46 @@ func NewNet() *Net {
|
|||
sent.Data = []int{0}
|
||||
|
||||
spark := ui.NewSparklines(recv, sent)
|
||||
n := &Net{
|
||||
self := &Net{
|
||||
Sparklines: spark,
|
||||
interval: time.Second,
|
||||
}
|
||||
n.Label = "Network Usage"
|
||||
self.Label = "Network Usage"
|
||||
|
||||
go n.update()
|
||||
ticker := time.NewTicker(n.interval)
|
||||
go self.update()
|
||||
ticker := time.NewTicker(self.interval)
|
||||
go func() {
|
||||
for range ticker.C {
|
||||
n.update()
|
||||
self.update()
|
||||
}
|
||||
}()
|
||||
|
||||
return n
|
||||
return self
|
||||
}
|
||||
|
||||
func (n *Net) update() {
|
||||
func (self *Net) update() {
|
||||
// `false` causes psutil to group all network activity
|
||||
interfaces, _ := psNet.IOCounters(false)
|
||||
recvTotal := interfaces[0].BytesRecv
|
||||
sentTotal := interfaces[0].BytesSent
|
||||
|
||||
if n.recvTotal != 0 { // if this isn't the first update
|
||||
recvRecent := recvTotal - n.recvTotal
|
||||
sentRecent := sentTotal - n.sentTotal
|
||||
if self.recvTotal != 0 { // if this isn't the first update
|
||||
recvRecent := recvTotal - self.recvTotal
|
||||
sentRecent := sentTotal - self.sentTotal
|
||||
|
||||
n.Lines[0].Data = append(n.Lines[0].Data, int(recvRecent))
|
||||
n.Lines[1].Data = append(n.Lines[1].Data, int(sentRecent))
|
||||
self.Lines[0].Data = append(self.Lines[0].Data, int(recvRecent))
|
||||
self.Lines[1].Data = append(self.Lines[1].Data, int(sentRecent))
|
||||
}
|
||||
|
||||
// used in later calls to update
|
||||
n.recvTotal = recvTotal
|
||||
n.sentTotal = sentTotal
|
||||
self.recvTotal = recvTotal
|
||||
self.sentTotal = sentTotal
|
||||
|
||||
// renders net widget titles
|
||||
for i := 0; i < 2; i++ {
|
||||
var method string // either 'Rx' or 'Tx'
|
||||
var total float64
|
||||
recent := n.Lines[i].Data[len(n.Lines[i].Data)-1]
|
||||
recent := self.Lines[i].Data[len(self.Lines[i].Data)-1]
|
||||
unitTotal := "B"
|
||||
unitRecent := "B"
|
||||
|
||||
|
@ -92,7 +92,7 @@ func (n *Net) update() {
|
|||
unitTotal = "MB"
|
||||
}
|
||||
|
||||
n.Lines[i].Title1 = fmt.Sprintf(" Total %s: %5.1f %s", method, total, unitTotal)
|
||||
n.Lines[i].Title2 = fmt.Sprintf(" %s/s: %9d %2s/s", method, recent, unitRecent)
|
||||
self.Lines[i].Title1 = fmt.Sprintf(" Total %s: %5.1f %s", method, total, unitTotal)
|
||||
self.Lines[i].Title2 = fmt.Sprintf(" %s/s: %9d %2s/s", method, recent, unitRecent)
|
||||
}
|
||||
}
|
||||
|
|
168
widgets/proc.go
168
widgets/proc.go
|
@ -37,7 +37,7 @@ type Proc struct {
|
|||
|
||||
func NewProc(loaded, keyPressed chan bool) *Proc {
|
||||
cpuCount, _ := psCPU.Counts(false)
|
||||
p := &Proc{
|
||||
self := &Proc{
|
||||
Table: ui.NewTable(),
|
||||
interval: time.Second,
|
||||
cpuCount: cpuCount,
|
||||
|
@ -45,33 +45,33 @@ func NewProc(loaded, keyPressed chan bool) *Proc {
|
|||
group: true,
|
||||
KeyPressed: keyPressed,
|
||||
}
|
||||
p.ColResizer = p.ColResize
|
||||
p.Label = "Process List"
|
||||
p.ColWidths = []int{5, 10, 4, 4}
|
||||
self.ColResizer = self.ColResize
|
||||
self.Label = "Process List"
|
||||
self.ColWidths = []int{5, 10, 4, 4}
|
||||
|
||||
p.UniqueCol = 0
|
||||
if p.group {
|
||||
p.UniqueCol = 1
|
||||
self.UniqueCol = 0
|
||||
if self.group {
|
||||
self.UniqueCol = 1
|
||||
}
|
||||
|
||||
p.keyBinds()
|
||||
self.keyBinds()
|
||||
|
||||
go func() {
|
||||
p.update()
|
||||
self.update()
|
||||
loaded <- true
|
||||
}()
|
||||
|
||||
ticker := time.NewTicker(p.interval)
|
||||
ticker := time.NewTicker(self.interval)
|
||||
go func() {
|
||||
for range ticker.C {
|
||||
p.update()
|
||||
self.update()
|
||||
}
|
||||
}()
|
||||
|
||||
return p
|
||||
return self
|
||||
}
|
||||
|
||||
func (p *Proc) update() {
|
||||
func (self *Proc) update() {
|
||||
psProcesses, _ := psProc.Processes()
|
||||
processes := make([]Process, len(psProcesses))
|
||||
for i, psProcess := range psProcesses {
|
||||
|
@ -83,150 +83,150 @@ func (p *Proc) update() {
|
|||
processes[i] = Process{
|
||||
pid,
|
||||
command,
|
||||
cpu / float64(p.cpuCount),
|
||||
cpu / float64(self.cpuCount),
|
||||
mem,
|
||||
}
|
||||
}
|
||||
p.ungroupedProcs = processes
|
||||
p.groupedProcs = Group(processes)
|
||||
self.ungroupedProcs = processes
|
||||
self.groupedProcs = Group(processes)
|
||||
|
||||
p.Sort()
|
||||
self.Sort()
|
||||
}
|
||||
|
||||
// Sort sorts either the grouped or ungrouped []Process based on the sortMethod.
|
||||
// Called with every update, when the sort method is changed, and when processes are grouped and ungrouped.
|
||||
func (p *Proc) Sort() {
|
||||
p.Header = []string{"Count", "Command", "CPU%", "Mem%"}
|
||||
func (self *Proc) Sort() {
|
||||
self.Header = []string{"Count", "Command", "CPU%", "Mem%"}
|
||||
|
||||
if !p.group {
|
||||
p.Header[0] = "PID"
|
||||
if !self.group {
|
||||
self.Header[0] = "PID"
|
||||
}
|
||||
|
||||
processes := &p.ungroupedProcs
|
||||
if p.group {
|
||||
processes = &p.groupedProcs
|
||||
processes := &self.ungroupedProcs
|
||||
if self.group {
|
||||
processes = &self.groupedProcs
|
||||
}
|
||||
|
||||
switch p.sortMethod {
|
||||
switch self.sortMethod {
|
||||
case "c":
|
||||
sort.Sort(sort.Reverse(ProcessByCPU(*processes)))
|
||||
p.Header[2] += DOWN
|
||||
self.Header[2] += DOWN
|
||||
case "p":
|
||||
if p.group {
|
||||
if self.group {
|
||||
sort.Sort(sort.Reverse(ProcessByPID(*processes)))
|
||||
} else {
|
||||
sort.Sort(ProcessByPID(*processes))
|
||||
}
|
||||
p.Header[0] += DOWN
|
||||
self.Header[0] += DOWN
|
||||
case "m":
|
||||
sort.Sort(sort.Reverse(ProcessByMem(*processes)))
|
||||
p.Header[3] += DOWN
|
||||
self.Header[3] += DOWN
|
||||
}
|
||||
|
||||
p.Rows = FieldsToStrings(*processes)
|
||||
self.Rows = FieldsToStrings(*processes)
|
||||
}
|
||||
|
||||
// ColResize overrides the default ColResize in the termui table.
|
||||
func (p *Proc) ColResize() {
|
||||
func (self *Proc) ColResize() {
|
||||
// calculate gap size based on total width
|
||||
p.Gap = 3
|
||||
if p.X < 50 {
|
||||
p.Gap = 1
|
||||
} else if p.X < 75 {
|
||||
p.Gap = 2
|
||||
self.Gap = 3
|
||||
if self.X < 50 {
|
||||
self.Gap = 1
|
||||
} else if self.X < 75 {
|
||||
self.Gap = 2
|
||||
}
|
||||
|
||||
p.CellXPos = []int{
|
||||
p.Gap,
|
||||
p.Gap + p.ColWidths[0] + p.Gap,
|
||||
p.X - p.Gap - p.ColWidths[3] - p.Gap - p.ColWidths[2],
|
||||
p.X - p.Gap - p.ColWidths[3],
|
||||
self.CellXPos = []int{
|
||||
self.Gap,
|
||||
self.Gap + self.ColWidths[0] + self.Gap,
|
||||
self.X - self.Gap - self.ColWidths[3] - self.Gap - self.ColWidths[2],
|
||||
self.X - self.Gap - self.ColWidths[3],
|
||||
}
|
||||
|
||||
rowWidth := p.Gap + p.ColWidths[0] + p.Gap + p.ColWidths[1] + p.Gap + p.ColWidths[2] + p.Gap + p.ColWidths[3] + p.Gap
|
||||
rowWidth := self.Gap + self.ColWidths[0] + self.Gap + self.ColWidths[1] + self.Gap + self.ColWidths[2] + self.Gap + self.ColWidths[3] + self.Gap
|
||||
|
||||
// only renders a column if it fits
|
||||
if p.X < (rowWidth - p.Gap - p.ColWidths[3]) {
|
||||
p.ColWidths[2] = 0
|
||||
p.ColWidths[3] = 0
|
||||
} else if p.X < rowWidth {
|
||||
p.CellXPos[2] = p.CellXPos[3]
|
||||
p.ColWidths[3] = 0
|
||||
if self.X < (rowWidth - self.Gap - self.ColWidths[3]) {
|
||||
self.ColWidths[2] = 0
|
||||
self.ColWidths[3] = 0
|
||||
} else if self.X < rowWidth {
|
||||
self.CellXPos[2] = self.CellXPos[3]
|
||||
self.ColWidths[3] = 0
|
||||
}
|
||||
}
|
||||
|
||||
func (p *Proc) keyBinds() {
|
||||
func (self *Proc) keyBinds() {
|
||||
ui.On("<MouseLeft>", func(e ui.Event) {
|
||||
p.Click(e.MouseX, e.MouseY)
|
||||
p.KeyPressed <- true
|
||||
self.Click(e.MouseX, e.MouseY)
|
||||
self.KeyPressed <- true
|
||||
})
|
||||
|
||||
ui.On("<MouseWheelUp>", "<MouseWheelDown>", func(e ui.Event) {
|
||||
switch e.Key {
|
||||
case "<MouseWheelDown>":
|
||||
p.Down()
|
||||
self.Down()
|
||||
case "<MouseWheelUp>":
|
||||
p.Up()
|
||||
self.Up()
|
||||
}
|
||||
p.KeyPressed <- true
|
||||
self.KeyPressed <- true
|
||||
})
|
||||
|
||||
ui.On("<up>", "<down>", func(e ui.Event) {
|
||||
switch e.Key {
|
||||
case "<up>":
|
||||
p.Up()
|
||||
self.Up()
|
||||
case "<down>":
|
||||
p.Down()
|
||||
self.Down()
|
||||
}
|
||||
p.KeyPressed <- true
|
||||
self.KeyPressed <- true
|
||||
})
|
||||
|
||||
viKeys := []string{"j", "k", "gg", "G", "<C-d>", "<C-u>", "<C-f>", "<C-b>"}
|
||||
ui.On(viKeys, func(e ui.Event) {
|
||||
switch e.Key {
|
||||
case "j":
|
||||
p.Down()
|
||||
self.Down()
|
||||
case "k":
|
||||
p.Up()
|
||||
self.Up()
|
||||
case "gg":
|
||||
p.Top()
|
||||
self.Top()
|
||||
case "G":
|
||||
p.Bottom()
|
||||
self.Bottom()
|
||||
case "<C-d>":
|
||||
p.HalfPageDown()
|
||||
self.HalfPageDown()
|
||||
case "<C-u>":
|
||||
p.HalfPageUp()
|
||||
self.HalfPageUp()
|
||||
case "<C-f>":
|
||||
p.PageDown()
|
||||
self.PageDown()
|
||||
case "<C-b>":
|
||||
p.PageUp()
|
||||
self.PageUp()
|
||||
}
|
||||
p.KeyPressed <- true
|
||||
self.KeyPressed <- true
|
||||
})
|
||||
|
||||
ui.On("dd", func(e ui.Event) {
|
||||
p.Kill()
|
||||
self.Kill()
|
||||
})
|
||||
|
||||
ui.On("<tab>", func(e ui.Event) {
|
||||
p.group = !p.group
|
||||
if p.group {
|
||||
p.UniqueCol = 1
|
||||
self.group = !self.group
|
||||
if self.group {
|
||||
self.UniqueCol = 1
|
||||
} else {
|
||||
p.UniqueCol = 0
|
||||
self.UniqueCol = 0
|
||||
}
|
||||
p.sortMethod = "c"
|
||||
p.Sort()
|
||||
p.Top()
|
||||
p.KeyPressed <- true
|
||||
self.sortMethod = "c"
|
||||
self.Sort()
|
||||
self.Top()
|
||||
self.KeyPressed <- true
|
||||
})
|
||||
|
||||
ui.On("m", "c", "p", func(e ui.Event) {
|
||||
if p.sortMethod != e.Key {
|
||||
p.sortMethod = e.Key
|
||||
p.Top()
|
||||
p.Sort()
|
||||
p.KeyPressed <- true
|
||||
if self.sortMethod != e.Key {
|
||||
self.sortMethod = e.Key
|
||||
self.Top()
|
||||
self.Sort()
|
||||
self.KeyPressed <- true
|
||||
}
|
||||
})
|
||||
}
|
||||
|
@ -279,13 +279,13 @@ func FieldsToStrings(P []Process) [][]string {
|
|||
}
|
||||
|
||||
// Kill kills process or group of processes.
|
||||
func (p *Proc) Kill() {
|
||||
p.SelectedItem = ""
|
||||
func (self *Proc) Kill() {
|
||||
self.SelectedItem = ""
|
||||
command := "kill"
|
||||
if p.UniqueCol == 1 {
|
||||
if self.UniqueCol == 1 {
|
||||
command = "pkill"
|
||||
}
|
||||
cmd := exec.Command(command, p.Rows[p.SelectedRow][p.UniqueCol])
|
||||
cmd := exec.Command(command, self.Rows[self.SelectedRow][self.UniqueCol])
|
||||
cmd.Start()
|
||||
}
|
||||
|
||||
|
|
|
@ -23,60 +23,60 @@ type Temp struct {
|
|||
}
|
||||
|
||||
func NewTemp() *Temp {
|
||||
t := &Temp{
|
||||
self := &Temp{
|
||||
Block: ui.NewBlock(),
|
||||
interval: time.Second * 5,
|
||||
Data: make(map[string]int),
|
||||
Threshold: 80, // temp at which color should change
|
||||
}
|
||||
t.Label = "Temperatures"
|
||||
self.Label = "Temperatures"
|
||||
|
||||
go t.update()
|
||||
ticker := time.NewTicker(t.interval)
|
||||
go self.update()
|
||||
ticker := time.NewTicker(self.interval)
|
||||
go func() {
|
||||
for range ticker.C {
|
||||
t.update()
|
||||
self.update()
|
||||
}
|
||||
}()
|
||||
|
||||
return t
|
||||
return self
|
||||
}
|
||||
|
||||
func (t *Temp) update() {
|
||||
func (self *Temp) update() {
|
||||
sensors, _ := psHost.SensorsTemperatures()
|
||||
for _, sensor := range sensors {
|
||||
// only sensors with input in their name are giving us live temp info
|
||||
if strings.Contains(sensor.SensorKey, "input") {
|
||||
// removes '_input' from the end of the sensor name
|
||||
label := sensor.SensorKey[:strings.Index(sensor.SensorKey, "_input")]
|
||||
t.Data[label] = int(sensor.Temperature)
|
||||
self.Data[label] = int(sensor.Temperature)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Buffer implements ui.Bufferer interface.
|
||||
func (t *Temp) Buffer() *ui.Buffer {
|
||||
buf := t.Block.Buffer()
|
||||
func (self *Temp) Buffer() *ui.Buffer {
|
||||
buf := self.Block.Buffer()
|
||||
|
||||
var keys []string
|
||||
for k := range t.Data {
|
||||
for k := range self.Data {
|
||||
keys = append(keys, k)
|
||||
}
|
||||
sort.Strings(keys)
|
||||
|
||||
for y, key := range keys {
|
||||
if y+1 > t.Y {
|
||||
if y+1 > self.Y {
|
||||
break
|
||||
}
|
||||
|
||||
fg := t.TempLow
|
||||
if t.Data[key] >= t.Threshold {
|
||||
fg = t.TempHigh
|
||||
fg := self.TempLow
|
||||
if self.Data[key] >= self.Threshold {
|
||||
fg = self.TempHigh
|
||||
}
|
||||
|
||||
s := ui.MaxString(key, (t.X - 4))
|
||||
buf.SetString(1, y+1, s, t.Fg, t.Bg)
|
||||
buf.SetString(t.X-2, y+1, fmt.Sprintf("%dC", t.Data[key]), fg, t.Bg)
|
||||
s := ui.MaxString(key, (self.X - 4))
|
||||
buf.SetString(1, y+1, s, self.Fg, self.Bg)
|
||||
buf.SetString(self.X-2, y+1, fmt.Sprintf("%dC", self.Data[key]), fg, self.Bg)
|
||||
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user