Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
// Package httpserver implements an HTTP server on top of Caddy.
|
|
|
|
package httpserver
|
|
|
|
|
|
|
|
import (
|
2017-01-25 11:05:53 +08:00
|
|
|
"context"
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
"crypto/tls"
|
2017-05-08 10:36:58 +08:00
|
|
|
"errors"
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
"fmt"
|
|
|
|
"log"
|
|
|
|
"net"
|
|
|
|
"net/http"
|
httpserver/all: Clean up and standardize request URL handling (#1633)
* httpserver/all: Clean up and standardize request URL handling
The HTTP server now always creates a context value on the request which
is a copy of the request's URL struct. It should not be modified by
middlewares, but it is safe to get the value out of the request and make
changes to it locally-scoped. Thus, the value in the context always
stores the original request URL information as it was received. Any
rewrites that happen will be to the request's URL field directly.
The HTTP server no longer cleans /sanitizes the request URL. It made too
many strong assumptions and ended up making a lot of middleware more
complicated, including upstream proxying (and fastcgi). To alleviate
this complexity, we no longer change the request URL. Middlewares are
responsible to access the disk safely by using http.Dir or, if not
actually opening files, they can use httpserver.SafePath().
I'm hoping this will address issues with #1624, #1584, #1582, and others.
* staticfiles: Fix test on Windows
@abiosoft: I still can't figure out exactly what this is for. 😅
* Use (potentially) changed URL for browse redirects, as before
* Use filepath.ToSlash, clean up a couple proxy test cases
* Oops, fix variable name
2017-05-02 13:11:10 +08:00
|
|
|
"net/url"
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
"os"
|
httpserver/all: Clean up and standardize request URL handling (#1633)
* httpserver/all: Clean up and standardize request URL handling
The HTTP server now always creates a context value on the request which
is a copy of the request's URL struct. It should not be modified by
middlewares, but it is safe to get the value out of the request and make
changes to it locally-scoped. Thus, the value in the context always
stores the original request URL information as it was received. Any
rewrites that happen will be to the request's URL field directly.
The HTTP server no longer cleans /sanitizes the request URL. It made too
many strong assumptions and ended up making a lot of middleware more
complicated, including upstream proxying (and fastcgi). To alleviate
this complexity, we no longer change the request URL. Middlewares are
responsible to access the disk safely by using http.Dir or, if not
actually opening files, they can use httpserver.SafePath().
I'm hoping this will address issues with #1624, #1584, #1582, and others.
* staticfiles: Fix test on Windows
@abiosoft: I still can't figure out exactly what this is for. 😅
* Use (potentially) changed URL for browse redirects, as before
* Use filepath.ToSlash, clean up a couple proxy test cases
* Oops, fix variable name
2017-05-02 13:11:10 +08:00
|
|
|
"path"
|
|
|
|
"path/filepath"
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
"runtime"
|
|
|
|
"strings"
|
|
|
|
"sync"
|
|
|
|
"time"
|
|
|
|
|
|
|
|
"github.com/lucas-clemente/quic-go/h2quic"
|
|
|
|
"github.com/mholt/caddy"
|
|
|
|
"github.com/mholt/caddy/caddyhttp/staticfiles"
|
|
|
|
"github.com/mholt/caddy/caddytls"
|
|
|
|
)
|
|
|
|
|
|
|
|
// Server is the HTTP server implementation.
|
|
|
|
type Server struct {
|
|
|
|
Server *http.Server
|
|
|
|
quicServer *h2quic.Server
|
|
|
|
listener net.Listener
|
|
|
|
listenerMu sync.Mutex
|
|
|
|
sites []*SiteConfig
|
2017-01-25 11:05:53 +08:00
|
|
|
connTimeout time.Duration // max time to wait for a connection before force stop
|
|
|
|
tlsGovChan chan struct{} // close to stop the TLS maintenance goroutine
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
vhosts *vhostTrie
|
|
|
|
}
|
|
|
|
|
|
|
|
// ensure it satisfies the interface
|
|
|
|
var _ caddy.GracefulServer = new(Server)
|
|
|
|
|
2017-02-22 00:49:22 +08:00
|
|
|
var defaultALPN = []string{"h2", "http/1.1"}
|
|
|
|
|
|
|
|
// makeTLSConfig extracts TLS settings from each site config to
|
|
|
|
// build a tls.Config usable in Caddy HTTP servers. The returned
|
|
|
|
// config will be nil if TLS is disabled for these sites.
|
|
|
|
func makeTLSConfig(group []*SiteConfig) (*tls.Config, error) {
|
|
|
|
var tlsConfigs []*caddytls.Config
|
|
|
|
for i := range group {
|
|
|
|
if HTTP2 && len(group[i].TLS.ALPN) == 0 {
|
|
|
|
// if no application-level protocol was configured up to now,
|
|
|
|
// default to HTTP/2, then HTTP/1.1 if necessary
|
|
|
|
group[i].TLS.ALPN = defaultALPN
|
|
|
|
}
|
|
|
|
tlsConfigs = append(tlsConfigs, group[i].TLS)
|
|
|
|
}
|
|
|
|
return caddytls.MakeTLSConfig(tlsConfigs)
|
|
|
|
}
|
|
|
|
|
2017-07-28 05:01:40 +08:00
|
|
|
func getFallbacks(sites []*SiteConfig) []string {
|
|
|
|
fallbacks := []string{}
|
|
|
|
for _, sc := range sites {
|
|
|
|
if sc.FallbackSite {
|
|
|
|
fallbacks = append(fallbacks, sc.Addr.Host)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return fallbacks
|
|
|
|
}
|
|
|
|
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
// NewServer creates a new Server instance that will listen on addr
|
|
|
|
// and will serve the sites configured in group.
|
|
|
|
func NewServer(addr string, group []*SiteConfig) (*Server, error) {
|
|
|
|
s := &Server{
|
2017-02-22 00:49:22 +08:00
|
|
|
Server: makeHTTPServerWithTimeouts(addr, group),
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
vhosts: newVHostTrie(),
|
|
|
|
sites: group,
|
|
|
|
connTimeout: GracefulTimeout,
|
|
|
|
}
|
2017-07-28 05:01:40 +08:00
|
|
|
s.vhosts.fallbackHosts = append(s.vhosts.fallbackHosts, getFallbacks(group)...)
|
2017-05-08 10:36:58 +08:00
|
|
|
s.Server = makeHTTPServerWithHeaderLimit(s.Server, group)
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
s.Server.Handler = s // this is weird, but whatever
|
|
|
|
|
2017-02-22 00:49:22 +08:00
|
|
|
// extract TLS settings from each site config to build
|
|
|
|
// a tls.Config, which will not be nil if TLS is enabled
|
|
|
|
tlsConfig, err := makeTLSConfig(group)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
}
|
2017-02-22 00:49:22 +08:00
|
|
|
s.Server.TLSConfig = tlsConfig
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
|
2017-02-22 00:49:22 +08:00
|
|
|
// if TLS is enabled, make sure we prepare the Server accordingly
|
|
|
|
if s.Server.TLSConfig != nil {
|
2017-07-25 09:05:48 +08:00
|
|
|
// enable QUIC if desired (requires HTTP/2)
|
|
|
|
if HTTP2 && QUIC {
|
|
|
|
s.quicServer = &h2quic.Server{Server: s.Server}
|
|
|
|
s.Server.Handler = s.wrapWithSvcHeaders(s.Server.Handler)
|
|
|
|
}
|
|
|
|
|
2017-02-22 00:49:22 +08:00
|
|
|
// wrap the HTTP handler with a handler that does MITM detection
|
|
|
|
tlsh := &tlsHandler{next: s.Server.Handler}
|
|
|
|
s.Server.Handler = tlsh // this needs to be the "outer" handler when Serve() is called, for type assertion
|
|
|
|
|
|
|
|
// when Serve() creates the TLS listener later, that listener should
|
|
|
|
// be adding a reference the ClientHello info to a map; this callback
|
|
|
|
// will be sure to clear out that entry when the connection closes.
|
|
|
|
s.Server.ConnState = func(c net.Conn, cs http.ConnState) {
|
|
|
|
// when a connection closes or is hijacked, delete its entry
|
|
|
|
// in the map, because we are done with it.
|
|
|
|
if tlsh.listener != nil {
|
|
|
|
if cs == http.StateHijacked || cs == http.StateClosed {
|
|
|
|
tlsh.listener.helloInfosMu.Lock()
|
|
|
|
delete(tlsh.listener.helloInfos, c.RemoteAddr().String())
|
|
|
|
tlsh.listener.helloInfosMu.Unlock()
|
|
|
|
}
|
|
|
|
}
|
2017-02-19 06:26:23 +08:00
|
|
|
}
|
|
|
|
|
2017-02-22 00:49:22 +08:00
|
|
|
// As of Go 1.7, if the Server's TLSConfig is not nil, HTTP/2 is enabled only
|
|
|
|
// if TLSConfig.NextProtos includes the string "h2"
|
|
|
|
if HTTP2 && len(s.Server.TLSConfig.NextProtos) == 0 {
|
|
|
|
// some experimenting shows that this NextProtos must have at least
|
|
|
|
// one value that overlaps with the NextProtos of any other tls.Config
|
|
|
|
// that is returned from GetConfigForClient; if there is no overlap,
|
|
|
|
// the connection will fail (as of Go 1.8, Feb. 2017).
|
|
|
|
s.Server.TLSConfig.NextProtos = defaultALPN
|
2017-02-19 23:09:35 +08:00
|
|
|
}
|
2017-02-19 06:26:23 +08:00
|
|
|
}
|
|
|
|
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
// Compile custom middleware for every site (enables virtual hosting)
|
|
|
|
for _, site := range group {
|
|
|
|
stack := Handler(staticfiles.FileServer{Root: http.Dir(site.Root), Hide: site.HiddenFiles})
|
|
|
|
for i := len(site.middleware) - 1; i >= 0; i-- {
|
|
|
|
stack = site.middleware[i](stack)
|
|
|
|
}
|
|
|
|
site.middlewareChain = stack
|
|
|
|
s.vhosts.Insert(site.Addr.VHost(), site)
|
|
|
|
}
|
|
|
|
|
|
|
|
return s, nil
|
|
|
|
}
|
|
|
|
|
2017-05-08 10:36:58 +08:00
|
|
|
// makeHTTPServerWithHeaderLimit apply minimum header limit within a group to given http.Server
|
|
|
|
func makeHTTPServerWithHeaderLimit(s *http.Server, group []*SiteConfig) *http.Server {
|
|
|
|
var min int64
|
|
|
|
for _, cfg := range group {
|
|
|
|
limit := cfg.Limits.MaxRequestHeaderSize
|
|
|
|
if limit == 0 {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
|
|
|
|
// not set yet
|
|
|
|
if min == 0 {
|
|
|
|
min = limit
|
|
|
|
}
|
|
|
|
|
|
|
|
// find a better one
|
|
|
|
if limit < min {
|
|
|
|
min = limit
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if min > 0 {
|
|
|
|
s.MaxHeaderBytes = int(min)
|
|
|
|
}
|
|
|
|
return s
|
|
|
|
}
|
|
|
|
|
2017-02-22 00:49:22 +08:00
|
|
|
// makeHTTPServerWithTimeouts makes an http.Server from the group of
|
|
|
|
// configs in a way that configures timeouts (or, if not set, it uses
|
|
|
|
// the default timeouts) by combining the configuration of each
|
|
|
|
// SiteConfig in the group. (Timeouts are important for mitigating
|
|
|
|
// slowloris attacks.)
|
|
|
|
func makeHTTPServerWithTimeouts(addr string, group []*SiteConfig) *http.Server {
|
|
|
|
// find the minimum duration configured for each timeout
|
|
|
|
var min Timeouts
|
|
|
|
for _, cfg := range group {
|
|
|
|
if cfg.Timeouts.ReadTimeoutSet &&
|
|
|
|
(!min.ReadTimeoutSet || cfg.Timeouts.ReadTimeout < min.ReadTimeout) {
|
|
|
|
min.ReadTimeoutSet = true
|
|
|
|
min.ReadTimeout = cfg.Timeouts.ReadTimeout
|
|
|
|
}
|
|
|
|
if cfg.Timeouts.ReadHeaderTimeoutSet &&
|
|
|
|
(!min.ReadHeaderTimeoutSet || cfg.Timeouts.ReadHeaderTimeout < min.ReadHeaderTimeout) {
|
|
|
|
min.ReadHeaderTimeoutSet = true
|
|
|
|
min.ReadHeaderTimeout = cfg.Timeouts.ReadHeaderTimeout
|
|
|
|
}
|
|
|
|
if cfg.Timeouts.WriteTimeoutSet &&
|
|
|
|
(!min.WriteTimeoutSet || cfg.Timeouts.WriteTimeout < min.WriteTimeout) {
|
|
|
|
min.WriteTimeoutSet = true
|
|
|
|
min.WriteTimeout = cfg.Timeouts.WriteTimeout
|
|
|
|
}
|
|
|
|
if cfg.Timeouts.IdleTimeoutSet &&
|
|
|
|
(!min.IdleTimeoutSet || cfg.Timeouts.IdleTimeout < min.IdleTimeout) {
|
|
|
|
min.IdleTimeoutSet = true
|
|
|
|
min.IdleTimeout = cfg.Timeouts.IdleTimeout
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// for the values that were not set, use defaults
|
|
|
|
if !min.ReadTimeoutSet {
|
|
|
|
min.ReadTimeout = defaultTimeouts.ReadTimeout
|
|
|
|
}
|
|
|
|
if !min.ReadHeaderTimeoutSet {
|
|
|
|
min.ReadHeaderTimeout = defaultTimeouts.ReadHeaderTimeout
|
|
|
|
}
|
|
|
|
if !min.WriteTimeoutSet {
|
|
|
|
min.WriteTimeout = defaultTimeouts.WriteTimeout
|
|
|
|
}
|
|
|
|
if !min.IdleTimeoutSet {
|
|
|
|
min.IdleTimeout = defaultTimeouts.IdleTimeout
|
|
|
|
}
|
|
|
|
|
|
|
|
// set the final values on the server and return it
|
|
|
|
return &http.Server{
|
|
|
|
Addr: addr,
|
|
|
|
ReadTimeout: min.ReadTimeout,
|
|
|
|
ReadHeaderTimeout: min.ReadHeaderTimeout,
|
|
|
|
WriteTimeout: min.WriteTimeout,
|
|
|
|
IdleTimeout: min.IdleTimeout,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-06-21 03:50:25 +08:00
|
|
|
func (s *Server) wrapWithSvcHeaders(previousHandler http.Handler) http.HandlerFunc {
|
|
|
|
return func(w http.ResponseWriter, r *http.Request) {
|
|
|
|
s.quicServer.SetQuicHeaders(w.Header())
|
|
|
|
previousHandler.ServeHTTP(w, r)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
// Listen creates an active listener for s that can be
|
|
|
|
// used to serve requests.
|
|
|
|
func (s *Server) Listen() (net.Listener, error) {
|
|
|
|
if s.Server == nil {
|
|
|
|
return nil, fmt.Errorf("Server field is nil")
|
|
|
|
}
|
|
|
|
|
|
|
|
ln, err := net.Listen("tcp", s.Server.Addr)
|
|
|
|
if err != nil {
|
|
|
|
var succeeded bool
|
|
|
|
if runtime.GOOS == "windows" {
|
|
|
|
// Windows has been known to keep sockets open even after closing the listeners.
|
|
|
|
// Tests reveal this error case easily because they call Start() then Stop()
|
|
|
|
// in succession. TODO: Better way to handle this? And why limit this to Windows?
|
|
|
|
for i := 0; i < 20; i++ {
|
|
|
|
time.Sleep(100 * time.Millisecond)
|
|
|
|
ln, err = net.Listen("tcp", s.Server.Addr)
|
|
|
|
if err == nil {
|
|
|
|
succeeded = true
|
|
|
|
break
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if !succeeded {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-03-10 13:31:37 +08:00
|
|
|
if tcpLn, ok := ln.(*net.TCPListener); ok {
|
|
|
|
ln = tcpKeepAliveListener{TCPListener: tcpLn}
|
|
|
|
}
|
|
|
|
|
|
|
|
cln := ln.(caddy.Listener)
|
|
|
|
for _, site := range s.sites {
|
|
|
|
for _, m := range site.listenerMiddleware {
|
|
|
|
cln = m(cln)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
// Very important to return a concrete caddy.Listener
|
|
|
|
// implementation for graceful restarts.
|
2017-03-10 13:31:37 +08:00
|
|
|
return cln.(caddy.Listener), nil
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
}
|
|
|
|
|
2017-01-26 14:54:25 +08:00
|
|
|
// ListenPacket creates udp connection for QUIC if it is enabled,
|
|
|
|
func (s *Server) ListenPacket() (net.PacketConn, error) {
|
|
|
|
if QUIC {
|
|
|
|
udpAddr, err := net.ResolveUDPAddr("udp", s.Server.Addr)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
return net.ListenUDP("udp", udpAddr)
|
|
|
|
}
|
|
|
|
return nil, nil
|
|
|
|
}
|
2016-07-19 04:24:09 +08:00
|
|
|
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
// Serve serves requests on ln. It blocks until ln is closed.
|
|
|
|
func (s *Server) Serve(ln net.Listener) error {
|
|
|
|
s.listenerMu.Lock()
|
|
|
|
s.listener = ln
|
|
|
|
s.listenerMu.Unlock()
|
|
|
|
|
|
|
|
if s.Server.TLSConfig != nil {
|
|
|
|
// Create TLS listener - note that we do not replace s.listener
|
|
|
|
// with this TLS listener; tls.listener is unexported and does
|
|
|
|
// not implement the File() method we need for graceful restarts
|
|
|
|
// on POSIX systems.
|
|
|
|
// TODO: Is this ^ still relevant anymore? Maybe we can now that it's a net.Listener...
|
2017-02-22 12:51:07 +08:00
|
|
|
ln = newTLSListener(ln, s.Server.TLSConfig)
|
2017-02-18 05:07:57 +08:00
|
|
|
if handler, ok := s.Server.Handler.(*tlsHandler); ok {
|
|
|
|
handler.listener = ln.(*tlsHelloListener)
|
|
|
|
}
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
|
|
|
|
// Rotate TLS session ticket keys
|
|
|
|
s.tlsGovChan = caddytls.RotateSessionTicketKeys(s.Server.TLSConfig)
|
|
|
|
}
|
|
|
|
|
|
|
|
err := s.Server.Serve(ln)
|
2017-08-04 01:20:14 +08:00
|
|
|
if s.quicServer != nil {
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
s.quicServer.Close()
|
|
|
|
}
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
|
2017-01-26 14:54:25 +08:00
|
|
|
// ServePacket serves QUIC requests on pc until it is closed.
|
|
|
|
func (s *Server) ServePacket(pc net.PacketConn) error {
|
2017-07-25 09:05:48 +08:00
|
|
|
if s.quicServer != nil {
|
2017-01-26 14:54:25 +08:00
|
|
|
err := s.quicServer.Serve(pc.(*net.UDPConn))
|
|
|
|
return fmt.Errorf("serving QUIC connections: %v", err)
|
|
|
|
}
|
|
|
|
return nil
|
|
|
|
}
|
2016-07-19 04:24:09 +08:00
|
|
|
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
// ServeHTTP is the entry point of all HTTP requests.
|
|
|
|
func (s *Server) ServeHTTP(w http.ResponseWriter, r *http.Request) {
|
|
|
|
defer func() {
|
|
|
|
// We absolutely need to be sure we stay alive up here,
|
|
|
|
// even though, in theory, the errors middleware does this.
|
|
|
|
if rec := recover(); rec != nil {
|
|
|
|
log.Printf("[PANIC] %v", rec)
|
|
|
|
DefaultErrorFunc(w, r, http.StatusInternalServerError)
|
|
|
|
}
|
|
|
|
}()
|
|
|
|
|
httpserver/all: Clean up and standardize request URL handling (#1633)
* httpserver/all: Clean up and standardize request URL handling
The HTTP server now always creates a context value on the request which
is a copy of the request's URL struct. It should not be modified by
middlewares, but it is safe to get the value out of the request and make
changes to it locally-scoped. Thus, the value in the context always
stores the original request URL information as it was received. Any
rewrites that happen will be to the request's URL field directly.
The HTTP server no longer cleans /sanitizes the request URL. It made too
many strong assumptions and ended up making a lot of middleware more
complicated, including upstream proxying (and fastcgi). To alleviate
this complexity, we no longer change the request URL. Middlewares are
responsible to access the disk safely by using http.Dir or, if not
actually opening files, they can use httpserver.SafePath().
I'm hoping this will address issues with #1624, #1584, #1582, and others.
* staticfiles: Fix test on Windows
@abiosoft: I still can't figure out exactly what this is for. 😅
* Use (potentially) changed URL for browse redirects, as before
* Use filepath.ToSlash, clean up a couple proxy test cases
* Oops, fix variable name
2017-05-02 13:11:10 +08:00
|
|
|
// copy the original, unchanged URL into the context
|
|
|
|
// so it can be referenced by middlewares
|
|
|
|
urlCopy := *r.URL
|
|
|
|
if r.URL.User != nil {
|
|
|
|
userInfo := new(url.Userinfo)
|
|
|
|
*userInfo = *r.URL.User
|
|
|
|
urlCopy.User = userInfo
|
|
|
|
}
|
|
|
|
c := context.WithValue(r.Context(), OriginalURLCtxKey, urlCopy)
|
2017-02-28 20:54:12 +08:00
|
|
|
r = r.WithContext(c)
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
|
2017-06-25 02:17:06 +08:00
|
|
|
w.Header().Set("Server", caddy.AppName)
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
|
|
|
|
status, _ := s.serveHTTP(w, r)
|
|
|
|
|
|
|
|
// Fallback error response in case error handling wasn't chained in
|
|
|
|
if status >= 400 {
|
|
|
|
DefaultErrorFunc(w, r, status)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func (s *Server) serveHTTP(w http.ResponseWriter, r *http.Request) (int, error) {
|
|
|
|
// strip out the port because it's not used in virtual
|
|
|
|
// hosting; the port is irrelevant because each listener
|
|
|
|
// is on a different port.
|
|
|
|
hostname, _, err := net.SplitHostPort(r.Host)
|
|
|
|
if err != nil {
|
|
|
|
hostname = r.Host
|
|
|
|
}
|
|
|
|
|
|
|
|
// look up the virtualhost; if no match, serve error
|
|
|
|
vhost, pathPrefix := s.vhosts.Match(hostname + r.URL.Path)
|
2017-06-08 04:40:17 +08:00
|
|
|
c := context.WithValue(r.Context(), caddy.CtxKey("path_prefix"), pathPrefix)
|
|
|
|
r = r.WithContext(c)
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
|
|
|
|
if vhost == nil {
|
|
|
|
// check for ACME challenge even if vhost is nil;
|
|
|
|
// could be a new host coming online soon
|
2016-12-24 00:40:03 +08:00
|
|
|
if caddytls.HTTPChallengeHandler(w, r, "localhost", caddytls.DefaultHTTPAlternatePort) {
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
return 0, nil
|
|
|
|
}
|
|
|
|
// otherwise, log the error and write a message to the client
|
|
|
|
remoteHost, _, err := net.SplitHostPort(r.RemoteAddr)
|
|
|
|
if err != nil {
|
|
|
|
remoteHost = r.RemoteAddr
|
|
|
|
}
|
2017-07-26 02:47:57 +08:00
|
|
|
WriteSiteNotFound(w, r) // don't add headers outside of this function
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
log.Printf("[INFO] %s - No such site at %s (Remote: %s, Referer: %s)",
|
|
|
|
hostname, s.Server.Addr, remoteHost, r.Header.Get("Referer"))
|
|
|
|
return 0, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// we still check for ACME challenge if the vhost exists,
|
|
|
|
// because we must apply its HTTP challenge config settings
|
|
|
|
if s.proxyHTTPChallenge(vhost, w, r) {
|
|
|
|
return 0, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// trim the path portion of the site address from the beginning of
|
|
|
|
// the URL path, so a request to example.com/foo/blog on the site
|
|
|
|
// defined as example.com/foo appears as /blog instead of /foo/blog.
|
|
|
|
if pathPrefix != "/" {
|
|
|
|
r.URL.Path = strings.TrimPrefix(r.URL.Path, pathPrefix)
|
|
|
|
if !strings.HasPrefix(r.URL.Path, "/") {
|
|
|
|
r.URL.Path = "/" + r.URL.Path
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return vhost.middlewareChain.ServeHTTP(w, r)
|
|
|
|
}
|
|
|
|
|
|
|
|
// proxyHTTPChallenge solves the ACME HTTP challenge if r is the HTTP
|
|
|
|
// request for the challenge. If it is, and if the request has been
|
|
|
|
// fulfilled (response written), true is returned; false otherwise.
|
|
|
|
// If you don't have a vhost, just call the challenge handler directly.
|
|
|
|
func (s *Server) proxyHTTPChallenge(vhost *SiteConfig, w http.ResponseWriter, r *http.Request) bool {
|
|
|
|
if vhost.Addr.Port != caddytls.HTTPChallengePort {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
if vhost.TLS != nil && vhost.TLS.Manual {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
altPort := caddytls.DefaultHTTPAlternatePort
|
|
|
|
if vhost.TLS != nil && vhost.TLS.AltHTTPPort != "" {
|
|
|
|
altPort = vhost.TLS.AltHTTPPort
|
|
|
|
}
|
2016-12-24 00:40:03 +08:00
|
|
|
return caddytls.HTTPChallengeHandler(w, r, vhost.ListenHost, altPort)
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Address returns the address s was assigned to listen on.
|
|
|
|
func (s *Server) Address() string {
|
|
|
|
return s.Server.Addr
|
|
|
|
}
|
|
|
|
|
|
|
|
// Stop stops s gracefully (or forcefully after timeout) and
|
|
|
|
// closes its listener.
|
2017-01-25 11:05:53 +08:00
|
|
|
func (s *Server) Stop() error {
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), s.connTimeout)
|
|
|
|
defer cancel()
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
|
2017-01-25 11:05:53 +08:00
|
|
|
err := s.Server.Shutdown(ctx)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
}
|
|
|
|
|
2017-01-25 11:05:53 +08:00
|
|
|
// signal any TLS governor goroutines to exit
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
if s.tlsGovChan != nil {
|
|
|
|
close(s.tlsGovChan)
|
|
|
|
}
|
|
|
|
|
2017-01-25 11:05:53 +08:00
|
|
|
return nil
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// OnStartupComplete lists the sites served by this server
|
|
|
|
// and any relevant information, assuming caddy.Quiet == false.
|
|
|
|
func (s *Server) OnStartupComplete() {
|
|
|
|
if caddy.Quiet {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
for _, site := range s.sites {
|
|
|
|
output := site.Addr.String()
|
2016-06-05 12:48:27 +08:00
|
|
|
if caddy.IsLoopback(s.Address()) && !caddy.IsLoopback(site.Addr.Host) {
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
output += " (only accessible on this machine)"
|
|
|
|
}
|
|
|
|
fmt.Println(output)
|
2016-10-25 23:31:21 +08:00
|
|
|
log.Println(output)
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-01-24 23:15:25 +08:00
|
|
|
// defaultTimeouts stores the default timeout values to use
|
2017-07-28 06:01:47 +08:00
|
|
|
// if left unset by user configuration. NOTE: Most default
|
|
|
|
// timeouts are disabled (see issues #1464 and #1733).
|
|
|
|
var defaultTimeouts = Timeouts{IdleTimeout: 5 * time.Minute}
|
2017-01-24 23:15:25 +08:00
|
|
|
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
// tcpKeepAliveListener sets TCP keep-alive timeouts on accepted
|
|
|
|
// connections. It's used by ListenAndServe and ListenAndServeTLS so
|
|
|
|
// dead TCP connections (e.g. closing laptop mid-download) eventually
|
|
|
|
// go away.
|
|
|
|
//
|
|
|
|
// Borrowed from the Go standard library.
|
|
|
|
type tcpKeepAliveListener struct {
|
|
|
|
*net.TCPListener
|
|
|
|
}
|
|
|
|
|
|
|
|
// Accept accepts the connection with a keep-alive enabled.
|
|
|
|
func (ln tcpKeepAliveListener) Accept() (c net.Conn, err error) {
|
|
|
|
tc, err := ln.AcceptTCP()
|
|
|
|
if err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
tc.SetKeepAlive(true)
|
|
|
|
tc.SetKeepAlivePeriod(3 * time.Minute)
|
|
|
|
return tc, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// File implements caddy.Listener; it returns the underlying file of the listener.
|
|
|
|
func (ln tcpKeepAliveListener) File() (*os.File, error) {
|
|
|
|
return ln.TCPListener.File()
|
|
|
|
}
|
|
|
|
|
2017-05-17 23:57:11 +08:00
|
|
|
// ErrMaxBytesExceeded is the error returned by MaxBytesReader
|
2016-11-04 08:25:49 +08:00
|
|
|
// when the request body exceeds the limit imposed
|
2017-05-17 23:57:11 +08:00
|
|
|
var ErrMaxBytesExceeded = errors.New("http: request body too large")
|
2016-11-04 08:25:49 +08:00
|
|
|
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
// DefaultErrorFunc responds to an HTTP request with a simple description
|
|
|
|
// of the specified HTTP status code.
|
|
|
|
func DefaultErrorFunc(w http.ResponseWriter, r *http.Request, status int) {
|
2016-06-05 12:48:27 +08:00
|
|
|
WriteTextResponse(w, status, fmt.Sprintf("%d %s\n", status, http.StatusText(status)))
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
}
|
|
|
|
|
2017-07-26 02:47:57 +08:00
|
|
|
const httpStatusMisdirectedRequest = 421 // RFC 7540, 9.1.2
|
|
|
|
|
|
|
|
// WriteSiteNotFound writes appropriate error code to w, signaling that
|
|
|
|
// requested host is not served by Caddy on a given port.
|
|
|
|
func WriteSiteNotFound(w http.ResponseWriter, r *http.Request) {
|
|
|
|
status := http.StatusNotFound
|
|
|
|
if r.ProtoMajor >= 2 {
|
|
|
|
// TODO: use http.StatusMisdirectedRequest when it gets defined
|
|
|
|
status = httpStatusMisdirectedRequest
|
|
|
|
}
|
|
|
|
WriteTextResponse(w, status, fmt.Sprintf("%d Site %s is not served on this interface\n", status, r.Host))
|
|
|
|
}
|
|
|
|
|
2016-06-05 12:48:27 +08:00
|
|
|
// WriteTextResponse writes body with code status to w. The body will
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
// be interpreted as plain text.
|
2016-06-05 12:48:27 +08:00
|
|
|
func WriteTextResponse(w http.ResponseWriter, status int, body string) {
|
Rewrote Caddy from the ground up; initial commit of 0.9 branch
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!
2016-06-05 07:00:29 +08:00
|
|
|
w.Header().Set("Content-Type", "text/plain; charset=utf-8")
|
|
|
|
w.Header().Set("X-Content-Type-Options", "nosniff")
|
|
|
|
w.WriteHeader(status)
|
|
|
|
w.Write([]byte(body))
|
|
|
|
}
|
httpserver/all: Clean up and standardize request URL handling (#1633)
* httpserver/all: Clean up and standardize request URL handling
The HTTP server now always creates a context value on the request which
is a copy of the request's URL struct. It should not be modified by
middlewares, but it is safe to get the value out of the request and make
changes to it locally-scoped. Thus, the value in the context always
stores the original request URL information as it was received. Any
rewrites that happen will be to the request's URL field directly.
The HTTP server no longer cleans /sanitizes the request URL. It made too
many strong assumptions and ended up making a lot of middleware more
complicated, including upstream proxying (and fastcgi). To alleviate
this complexity, we no longer change the request URL. Middlewares are
responsible to access the disk safely by using http.Dir or, if not
actually opening files, they can use httpserver.SafePath().
I'm hoping this will address issues with #1624, #1584, #1582, and others.
* staticfiles: Fix test on Windows
@abiosoft: I still can't figure out exactly what this is for. 😅
* Use (potentially) changed URL for browse redirects, as before
* Use filepath.ToSlash, clean up a couple proxy test cases
* Oops, fix variable name
2017-05-02 13:11:10 +08:00
|
|
|
|
|
|
|
// SafePath joins siteRoot and reqPath and converts it to a path that can
|
|
|
|
// be used to access a path on the local disk. It ensures the path does
|
|
|
|
// not traverse outside of the site root.
|
|
|
|
//
|
|
|
|
// If opening a file, use http.Dir instead.
|
|
|
|
func SafePath(siteRoot, reqPath string) string {
|
|
|
|
reqPath = filepath.ToSlash(reqPath)
|
|
|
|
reqPath = strings.Replace(reqPath, "\x00", "", -1) // NOTE: Go 1.9 checks for null bytes in the syscall package
|
|
|
|
if siteRoot == "" {
|
|
|
|
siteRoot = "."
|
|
|
|
}
|
|
|
|
return filepath.Join(siteRoot, filepath.FromSlash(path.Clean("/"+reqPath)))
|
|
|
|
}
|
|
|
|
|
|
|
|
// OriginalURLCtxKey is the key for accessing the original, incoming URL on an HTTP request.
|
|
|
|
const OriginalURLCtxKey = caddy.CtxKey("original_url")
|