The loop which performs renewals in the background obtains a read lock
on the certificate cache map, so that it can be safely iterated. Before
this fix, it would obtain the renewals in the read lock. This has been
fine, except that the TLS-SNI challenge, when invoked after Caddy has
already started, requires adding a certificate to the cache. Doing this
requires an exclusive write lock. But it cannot obtain a write lock
because a read lock is obtained higher in the stack, while the loop
iterates. In other words, it's a deadlock.
I was able to reproduce this issue consistently locally, after jumping
through many hoops to force a renewal in a short time that bypasses
Let's Encrypt's authz caching. I was also able to verify that by queuing
renewals (like we do deletions and OCSP updates), lock contention is
relieved and the deadlock is avoided.
This only affects background renewals where the TLS-SNI(-01) challenge
are used. Users report seeing strange errors in the logs after this
happens ("tls: client offered an unsupported, maximum protocol version
of 301"), but I was not able to reproduce these locally. I was also not
able to reproduce the leak of sockets which are left in CLOSE_WAIT.
I am not sure if those are symptoms of running in production on Linux
and are related to this bug, or not.
Either way, this is an important fix. I do not yet know the ripple
effects this will have on other symptoms we've been chasing. But it
definitely resolves a deadlock during renewals.
By calling SetTLSAddress, the acme package reset the challenge provider
to the default one instead of keeping the custom one we specified before
with SetChallengeProvider. Yikes. This means that Caddy would try to
open a listener on port 443 even though we should have been handling it
with our provider, causing the challenge to fail, since usually port 443
is in use.
So this change just reorders the calls so that our provider takes
precedence.
cf. https://github.com/xenolf/lego/pull/292
We renamed caddytls.ErrStorageNotFound to caddytls.ErrNotExist to more
closely mirror the os package. We changed it to an interface wrapper
so that the custom error message can be preserved. Returning only "data
not found" was useless in debugging because we couldn't know the
concrete value of the error (like what it was trying to load).
Users can do a type assertion to determine if the error value is a "not
found" error instead of doing an equality check.
A Caddyfile using *.example.com as its site address would be subject to
this bug at renewal time, as it would use the literal "*.example.com"
value instead of the name being passed in to obtain a certificate.
This change fixes the LoadSite call so that it looks in the proper
directory for the certificate resources.
It was set by default on the caddy-internal config object, and even
checked for conflicts, but it was never actually reflected on the
tls.Config.
This will have user-visible changes: a client that prefers, say, AES-CBC
but also supports AES-GCM would have used AES-CBC befor this, and will
use AES-GCM after.
This is desirable and important behavior, because if for example the
server wanted to support 3DES, but *only if it was strictly necessary*,
it would have had no way of doing so with PreferServerCipherSuites
false, as the client preference would have won.
If another ACME client is trying to solve a challenge for a name not
being served by Caddy on the same machine where Caddy is running, the
HTTP challenge will be consumed by Caddy rather than allowing the owner
to use the Caddyfile to proxy the challenge.
With this change, we only consume requests for HTTP challenges for
hostnames that we recognize. Before doing the challenge, we add the
name to a set, and when seeing if we should proxy the challenge, we
first check the path of course to see if it is an HTTP challenge;
if it is, we then check that set to see if the hostname is in the
set. Only if it is, do we consume it.
Otherwise, the request is treated like any other, allowing the owner
to configure a proxy for such requests to another ACME client.
* Initial concept for pluggable storage (sans tests and docs)
* Add TLS storage docs, test harness, and minor clean up from code review
* Fix issue with caddymain's temporary moveStorage
* Formatting improvement on struct array literal by removing struct name
* Pluggable storage changes:
* Change storage interface to persist all site or user data in one call
* Add lock/unlock calls for renewal and cert obtaining
* Key fields on composite literals
- Server types no longer need to store their own contexts; they are
stored on the caddy.Instance, which means each context will be
properly GC'ed when the instance is stopped. Server types should use
type assertions to convert from caddy.Context to their concrete
context type when they need to use it.
- Pass the entire context into httpserver.GetConfig instead of only the
Key field.
- caddy.NewTestController now requires a server type string so it can
create a controller with the proper concrete context associated with
that server type.
Tests still need more attention so that we can test the proper creation
of startup functions, etc.