Slightly inconvenient because it uses int type and we use string, but
oh well. This fixes a bug related to setting -http-port and -https-port
flags which weren't being used by CertMagic in some cases.
All code relating to a caddytls.Config and setting it up from the
Caddyfile is still intact; only the certificate management-related
code was removed into a separate package.
I don't expect this to build in CI successfully; updating dependencies
and vendor is coming next.
I've also removed the ad-hoc, half-baked storage plugins that we need
to finish making first-class Caddy plugins (they were never documented
anyway). The new certmagic package has a much better storage interface,
and we can finally move toward making a new storage plugin type, but
it shouldn't be configurable in the Caddyfile, I think, since it doesn't
make sense for a Caddy instance to use more than one storage config...
We also have the option of eliminating DNS provider plugins and just
shipping all of lego's DNS providers by using a lego package (the
caddytls/setup.go file has a comment describing how) -- but it doubles
Caddy's binary size by 100% from about 19 MB to around 40 MB...!
* tls: Add support for the tls-alpn-01 challenge
Also updates lego/acme to latest on master.
TODO: This implementation of the tls-alpn challenge is not yet solvable
in a distributed Caddy cluster like the http challenge is.
* build: Allow building with the race detector
* tls: Support distributed solving of the TLS-ALPN-01 challenge
* Update vendor and add a todo in MITM checker
Only strip the port from the Location URL value if the port is NOT the
HTTPSPort (before, we compared against DefaultHTTPSPort instead of
HTTPSPort). The HTTPSPort can be changed, but is done so for port
forwarding, since in reality you can't 'change' the standard HTTPS port,
you can only forward it.
- Expose the list of Caddy instances through caddy.Instances()
- Added arbitrary storage to caddy.Instance
- The cache of loaded certificates is no longer global; now scoped
per-instance, meaning upon reload (like SIGUSR1) the old cert cache
will be discarded entirely, whereas before, aggressively reloading
config that added and removed lots of sites would cause unnecessary
build-up in the cache over time.
- Key certificates in the cache by their SHA-256 hash instead of
by their names. This means certificates will not be duplicated in
memory (within each instance), making Caddy much more memory-efficient
for large-scale deployments with thousands of sites sharing certs.
- Perform name-to-certificate lookups scoped per caddytls.Config instead
of a single global lookup. This prevents certificates from stepping on
each other when they overlap in their names.
- Do not allow TLS configurations keyed by the same hostname to be
different; this now throws an error.
- Updated relevant tests, with a stark awareness that more tests are
needed.
- Change the NewContext function signature to include an *Instance.
- Strongly recommend (basically require) use of caddytls.NewConfig()
to create a new *caddytls.Config, to ensure pointers to the instance
certificate cache are initialized properly.
- Update the TLS-SNI challenge solver (even though TLS-SNI is disabled
currently on the CA side). Store temporary challenge cert in instance
cache, but do so directly by the ACME challenge name, not the hash.
Modified the getCertificate function to check the cache directly for
a name match if one isn't found otherwise. This will allow any
caddytls.Config to be able to help solve a TLS-SNI challenge, with one
extra side-effect that might actually be kind of interesting (and
useless): clients could send a certificate's hash as the SNI and
Caddy would be able to serve that certificate for the handshake.
- Do not attempt to match a "default" (random) certificate when SNI
is present but unrecognized; return no certificate so a TLS alert
happens instead.
- Store an Instance in the list of instances even while the instance
is still starting up (this allows access to the cert cache for
performing renewals at startup, etc). Will be removed from list again
if instance startup fails.
- Laid groundwork for ACMEv2 and Let's Encrypt wildcard support.
Server type plugins will need to be updated slightly to accommodate
minor adjustments to their API (like passing in an Instance). This
commit includes the changes for the HTTP server.
Certain Caddyfile configurations might error out with this change, if
they configured different TLS settings for the same hostname.
This change trades some complexity for other complexity, but ultimately
this new complexity is more correct and robust than earlier logic.
Fixes#1991Fixes#1994Fixes#1303
* SIGUSR2 triggers graceful binary upgrades (spawns new process)
* Move some functions around, hopefully fixing Windows build
* Clean up a couple file closes and add links to useful debugging thread
* Use two underscores in upgrade env var
To help ensure uniqueness / avoid possible collisions
Original feature request in forum:
https://forum.caddyserver.com/t/caddy-with-specific-hosts-but-on-demand-tls/1704?u=matt
Before, Caddy obtained certificates for every name it could at startup.
And it would only obtain certificates during the handshake for sites
defined with a hostname that didn't qualify at startup (like
"*.example.com" or ":443"). This made sense for most situations, and
helped ensure that certificates were obtained as early and reliably as
possible.
With this change, Caddy will NOT obtain certificates for hostnames it
knows at startup (even if they qualify) if OnDemand is enabled.
But I think this change generalizes well, because a user who specifies
max_certs is deliberately turning on On-Demand TLS, fully aware of
the consequences. It seems dubious to ignore that config when the user
deliberately put it there. We'll see how this goes.
This commit removes _almost_ all instances of hard-coded ports 80 and
443 strings, and now allows the user to define what the HTTP and HTTPS
ports are by the -http-port and -https-ports flags.
(One instance of "80" is still hard-coded in tls.go because it cannot
import httpserver to get access to the HTTP port variable. I don't
suspect this will be a problem in practice, but one workaround would be
to define an exported variable in the caddytls package and let the
httpserver package set it as well as its own HTTPPort variable.)
The port numbers required by the ACME challenges HTTP-01 and TLS-SNI-01
are hard-coded into the spec as ports 80 and 443 for good reasons,
but the big question is whether they necessarily need to be the HTTP
and HTTPS ports. Although the answer is probably no, they chose those
ports for convenience and widest compatibility/deployability. So this
commit also assumes that the "HTTP port" is necessarily the same port
on which to serve the HTTP-01 challenge, and the "HTTPS port" is
necessarily the same one on which to serve the TLS-SNI-01 challenge. In
other words, changing the HTTP and HTTPS ports also changes the ports
the challenges will be served on.
If you change the HTTP and HTTPS ports, you are responsible for
configuring your system to forward ports 80 and 443 properly.
Closes#918 and closes#1293. Also related: #468.
* tls: Refactor TLS config innards with a few minor syntax changes
muststaple -> must_staple
"http2 off" -> "alpn" with list of ALPN values
* Fix typo
* Fix QUIC handler
* Inline struct field assignments
- Server types no longer need to store their own contexts; they are
stored on the caddy.Instance, which means each context will be
properly GC'ed when the instance is stopped. Server types should use
type assertions to convert from caddy.Context to their concrete
context type when they need to use it.
- Pass the entire context into httpserver.GetConfig instead of only the
Key field.
- caddy.NewTestController now requires a server type string so it can
create a controller with the proper concrete context associated with
that server type.
Tests still need more attention so that we can test the proper creation
of startup functions, etc.
These changes span work from the last ~4 months in an effort to make
Caddy more extensible, reduce the coupling between its components, and
lay a more robust foundation of code going forward into 1.0. A bunch of
new features have been added, too, with even higher future potential.
The most significant design change is an overall inversion of
dependencies. Instead of the caddy package knowing about the server
and the notion of middleware and config, the caddy package exposes an
interface that other components plug into. This does introduce more
indirection when reading the code, but every piece is very modular and
pluggable. Even the HTTP server is pluggable.
The caddy package has been moved to the top level, and main has been
pushed into a subfolder called caddy. The actual logic of the main
file has been pushed even further into caddy/caddymain/run.go so that
custom builds of Caddy can be 'go get'able.
The HTTPS logic was surgically separated into two parts to divide the
TLS-specific code and the HTTPS-specific code. The caddytls package can
now be used by any type of server that needs TLS, not just HTTP. I also
added the ability to customize nearly every aspect of TLS at the site
level rather than all sites sharing the same TLS configuration. Not all
of this flexibility is exposed in the Caddyfile yet, but it may be in
the future. Caddy can also generate self-signed certificates in memory
for the convenience of a developer working on localhost who wants HTTPS.
And Caddy now supports the DNS challenge, assuming at least one DNS
provider is plugged in.
Dozens, if not hundreds, of other minor changes swept through the code
base as I literally started from an empty main function, copying over
functions or files as needed, then adjusting them to fit in the new
design. Most tests have been restored and adapted to the new API,
but more work is needed there.
A lot of what was "impossible" before is now possible, or can be made
possible with minimal disruption of the code. For example, it's fairly
easy to make plugins hook into another part of the code via callbacks.
Plugins can do more than just be directives; we now have plugins that
customize how the Caddyfile is loaded (useful when you need to get your
configuration from a remote store).
Site addresses no longer need be just a host and port. They can have a
path, allowing you to scope a configuration to a specific path. There is
no inheretance, however; each site configuration is distinct.
Thanks to amazing work by Lucas Clemente, this commit adds experimental
QUIC support. Turn it on using the -quic flag; your browser may have
to be configured to enable it.
Almost everything is here, but you will notice that most of the middle-
ware are missing. After those are transferred over, we'll be ready for
beta tests.
I'm very excited to get this out. Thanks for everyone's help and
patience these last few months. I hope you like it!!