Considering document length in search introduced too much variance in
our search results such that it makes certain searches better but at the
same time made certain searches worst. Instead, we want to have a more
determistic way of ranking search so that it is easier to reason about
why a post is rank higher in search than another.
The long term plan to tackle repeated terms is to restrict the number of
positions for a given lexeme in our search index.
Currently in composer preview, if the image scale buttons are inside a `<a>` link then it redirects to the `href` location after the image scaling task.
Follow up to d8c796bc4.
Note that his change increases query time by around 40% in the following
benchmark against `dev.discourse.org` but this is a tradeoff that has to be taken so that relevance
search is accurate.
```
require 'benchmark/ips'
Benchmark.ips do |x|
x.config(time: 10, warmup: 2)
x.report("current aggregate search query") do
DB.exec <<~SQL
SELECT "posts"."id", "posts"."user_id", "posts"."topic_id", "posts"."post_number", "posts"."raw", "posts"."cooked", "posts"."created_at", "posts"."updated_at", "posts"."reply_to_post_number", "posts"."reply_count", "posts"."quote_count", "posts"."deleted_at", "posts"."off_topic_count", "posts"."like_count", "posts"."incoming_link_count", "posts"."bookmark_count", "posts"."score", "posts"."reads", "posts"."post_type", "posts"."sort_order", "posts"."last_editor_id", "posts"."hidden", "posts"."hidden_reason_id", "posts"."notify_moderators_count", "posts"."spam_count", "posts"."illegal_count", "posts"."inappropriate_count", "posts"."last_version_at", "posts"."user_deleted", "posts"."reply_to_user_id", "posts"."percent_rank", "posts"."notify_user_count", "posts"."like_score", "posts"."deleted_by_id", "posts"."edit_reason", "posts"."word_count", "posts"."version", "posts"."cook_method", "posts"."wiki", "posts"."baked_at", "posts"."baked_version", "posts"."hidden_at", "posts"."self_edits", "posts"."reply_quoted", "posts"."via_email", "posts"."raw_email", "posts"."public_version", "posts"."action_code", "posts"."locked_by_id", "posts"."image_upload_id" FROM "posts" JOIN (SELECT *, row_number() over() row_number FROM (SELECT topics.id, min(posts.post_number) post_number FROM "posts" INNER JOIN "post_search_data" ON "post_search_data"."post_id" = "posts"."id" INNER JOIN "topics" ON "topics"."id" = "posts"."topic_id" AND ("topics"."deleted_at" IS NULL) LEFT JOIN categories ON categories.id = topics.category_id WHERE ("posts"."deleted_at" IS NULL) AND "posts"."post_type" IN (1, 2, 3, 4) AND (topics.visible) AND (topics.archetype <> 'private_message') AND (post_search_data.search_data @@ TO_TSQUERY('english', '''postgres'':*ABCD')) AND (categories.id NOT IN (
SELECT categories.id WHERE categories.search_priority = 1
)
) AND ((categories.id IS NULL) OR (NOT categories.read_restricted)) GROUP BY topics.id ORDER BY MAX((
TS_RANK_CD(
post_search_data.search_data,
TO_TSQUERY('english', '''postgres'':*ABCD'),
1|32
) *
(
CASE categories.search_priority
WHEN 2
THEN 0.6
WHEN 3
THEN 0.8
WHEN 4
THEN 1.2
WHEN 5
THEN 1.4
ELSE
CASE WHEN topics.closed
THEN 0.9
ELSE 1
END
END
)
)
) DESC, topics.bumped_at DESC LIMIT 51 OFFSET 0) xxx) x ON x.id = posts.topic_id AND x.post_number = posts.post_number WHERE ("posts"."deleted_at" IS NULL) ORDER BY row_number;
SQL
end
x.report("current aggregate search query with proper ranking") do
DB.exec <<~SQL
SELECT "posts"."id", "posts"."user_id", "posts"."topic_id", "posts"."post_number", "posts"."raw", "posts"."cooked", "posts"."created_at", "posts"."updated_at", "posts"."reply_to_post_number", "posts"."reply_count", "posts"."quote_count", "posts"."deleted_at", "posts"."off_topic_count", "posts"."like_count", "posts"."incoming_link_count", "posts"."bookmark_count", "posts"."score", "posts"."reads", "posts"."post_type", "posts"."sort_order", "posts"."last_editor_id", "posts"."hidden", "posts"."hidden_reason_id", "posts"."notify_moderators_count", "posts"."spam_count", "posts"."illegal_count", "posts"."inappropriate_count", "posts"."last_version_at", "posts"."user_deleted", "posts"."reply_to_user_id", "posts"."percent_rank", "posts"."notify_user_count", "posts"."like_score", "posts"."deleted_by_id", "posts"."edit_reason", "posts"."word_count", "posts"."version", "posts"."cook_method", "posts"."wiki", "posts"."baked_at", "posts"."baked_version", "posts"."hidden_at", "posts"."self_edits", "posts"."reply_quoted", "posts"."via_email", "posts"."raw_email", "posts"."public_version", "posts"."action_code", "posts"."locked_by_id", "posts"."image_upload_id" FROM "posts" JOIN (SELECT *, row_number() over() row_number FROM (SELECT subquery.topic_id id, (ARRAY_AGG(subquery.post_number ORDER BY rank DESC, bumped_at DESC))[1] post_number, MAX(subquery.rank) rank, MAX(subquery.bumped_at) bumped_at FROM (SELECT "posts"."id", "posts"."user_id", "posts"."topic_id", "posts"."post_number", "posts"."raw", "posts"."cooked", "posts"."created_at", "posts"."updated_at", "posts"."reply_to_post_number", "posts"."reply_count", "posts"."quote_count", "posts"."deleted_at", "posts"."off_topic_count", "posts"."like_count", "posts"."incoming_link_count", "posts"."bookmark_count", "posts"."score", "posts"."reads", "posts"."post_type", "posts"."sort_order", "posts"."last_editor_id", "posts"."hidden", "posts"."hidden_reason_id", "posts"."notify_moderators_count", "posts"."spam_count", "posts"."illegal_count", "posts"."inappropriate_count", "posts"."last_version_at", "posts"."user_deleted", "posts"."reply_to_user_id", "posts"."percent_rank", "posts"."notify_user_count", "posts"."like_score", "posts"."deleted_by_id", "posts"."edit_reason", "posts"."word_count", "posts"."version", "posts"."cook_method", "posts"."wiki", "posts"."baked_at", "posts"."baked_version", "posts"."hidden_at", "posts"."self_edits", "posts"."reply_quoted", "posts"."via_email", "posts"."raw_email", "posts"."public_version", "posts"."action_code", "posts"."locked_by_id", "posts"."image_upload_id", (
TS_RANK_CD(
post_search_data.search_data,
TO_TSQUERY('english', '''postgres'':*ABCD'),
1|32
) *
(
CASE categories.search_priority
WHEN 2
THEN 0.6
WHEN 3
THEN 0.8
WHEN 4
THEN 1.2
WHEN 5
THEN 1.4
ELSE
CASE WHEN topics.closed
THEN 0.9
ELSE 1
END
END
)
)
rank, topics.bumped_at bumped_at FROM "posts" INNER JOIN "post_search_data" ON "post_search_data"."post_id" = "posts"."id" INNER JOIN "topics" ON "topics"."id" = "posts"."topic_id" AND ("topics"."deleted_at" IS NULL) LEFT JOIN categories ON categories.id = topics.category_id WHERE ("posts"."deleted_at" IS NULL) AND "posts"."post_type" IN (1, 2, 3, 4) AND (topics.visible) AND (topics.archetype <> 'private_message') AND (post_search_data.search_data @@ TO_TSQUERY('english', '''postgres'':*ABCD')) AND (categories.id NOT IN (
SELECT categories.id WHERE categories.search_priority = 1
)
) AND ((categories.id IS NULL) OR (NOT categories.read_restricted))) subquery GROUP BY subquery.topic_id ORDER BY rank DESC, bumped_at DESC LIMIT 51 OFFSET 0) xxx) x ON x.id = posts.topic_id AND x.post_number = posts.post_number WHERE ("posts"."deleted_at" IS NULL) ORDER BY row_number;
SQL
end
x.compare!
end
```
```
Warming up --------------------------------------
current aggregate search query
1.000 i/100ms
current aggregate search query with proper ranking
1.000 i/100ms
Calculating -------------------------------------
current aggregate search query
18.040 (± 0.0%) i/s - 181.000 in 10.035241s
current aggregate search query with proper ranking
12.992 (± 0.0%) i/s - 130.000 in 10.007214s
Comparison:
current aggregate search query: 18.0 i/s
current aggregate search query with proper ranking: 13.0 i/s - 1.39x (± 0.00) slower
```
Indexing query strings in URLS produces inconsistent results in PG and
pollutes the search data for really little gain.
The following seems to work as expected...
```
discourse_development=# SELECT TO_TSVECTOR('https://www.discourse.org?test=2&test2=3');
to_tsvector
------------------------------------------------------
'2':3 '3':5 'test':2 'test2':4 'www.discourse.org':1
```
However, once a path is present
```
discourse_development=# SELECT TO_TSVECTOR('https://www.discourse.org/latest?test=2&test2=3');
to_tsvector
----------------------------------------------------------------------------------------------
'/latest?test=2&test2=3':3 'www.discourse.org':2 'www.discourse.org/latest?test=2&test2=3':1
```
The lexeme contains both the path and the query string.
```
discourse_development=# SELECT alias, lexemes FROM TS_DEBUG('www.discourse.org');
alias | lexemes
-------+---------------------
host | {www.discourse.org}
discourse_development=# SELECT TO_TSVECTOR('www.discourse.org');
to_tsvector
-----------------------
'www.discourse.org':1
```
Given the above lexeme, we will inject additional lexeme by splitting
the host on `.`. The actual tsvector stored will look something like
```
tsvector
---------------------------------------
'discourse':1 'discourse.org':1 'org':1 'www':1 'www.discourse.org':1
```
Not ready for an upgrade due to: https://github.com/mdp/rotp/issues/98
The policy here is that for cases like this we pin the version and add
a comment explaining why it is pinned.
We can revisit in a few months depending on upstream.
Adjustments to the base:
1. PG connection doesn't require host - it was broken on import droplet
2. Drop `topic_reply_count` - it was removed here - https://github.com/discourse/discourse/blob/master/db/post_migrate/20200513185052_drop_topic_reply_count.rb
3. Error with `backtrace.join("\n")` -> `e.backtrace.join("\n")`
4. Correctly link the user and avatar to quote block
Adjustments to vanilla:
1. Top-level Vanilla categories are valid categories
2. Posts have `format` column which should be used to decide if the format is HTML or Markdown
3. Remove no UTF8 characters
4. Remove not supported HTML elements like `font` `span` `sub` `u`
Previously, we would only take either the `MIN` or `MAX` for
`post_number` during aggregation meaning that the ranking is not
considered.
```
require 'benchmark/ips'
Benchmark.ips do |x|
x.config(time: 10, warmup: 2)
x.report("current aggregate search query") do
DB.exec <<~SQL
SELECT "posts"."id", "posts"."user_id", "posts"."topic_id", "posts"."post_number", "posts"."raw", "posts"."cooked", "posts"."created_at", "posts"."updated_at", "posts"."reply_to_post_number", "posts"."reply_count", "posts"."quote_count", "posts"."deleted_at", "posts"."off_topic_count", "posts"."like_count", "posts"."incoming_link_count", "posts"."bookmark_count", "posts"."score", "posts"."reads", "posts"."post_type", "posts"."sort_order", "posts"."last_editor_id", "posts"."hidden", "posts"."hidden_reason_id", "posts"."notify_moderators_count", "posts"."spam_count", "posts"."illegal_count", "posts"."inappropriate_count", "posts"."last_version_at", "posts"."user_deleted", "posts"."reply_to_user_id", "posts"."percent_rank", "posts"."notify_user_count", "posts"."like_score", "posts"."deleted_by_id", "posts"."edit_reason", "posts"."word_count", "posts"."version", "posts"."cook_method", "posts"."wiki", "posts"."baked_at", "posts"."baked_version", "posts"."hidden_at", "posts"."self_edits", "posts"."reply_quoted", "posts"."via_email", "posts"."raw_email", "posts"."public_version", "posts"."action_code", "posts"."locked_by_id", "posts"."image_upload_id" FROM "posts" JOIN (SELECT *, row_number() over() row_number FROM (SELECT topics.id, min(posts.post_number) post_number FROM "posts" INNER JOIN "post_search_data" ON "post_search_data"."post_id" = "posts"."id" INNER JOIN "topics" ON "topics"."id" = "posts"."topic_id" AND ("topics"."deleted_at" IS NULL) LEFT JOIN categories ON categories.id = topics.category_id WHERE ("posts"."deleted_at" IS NULL) AND "posts"."post_type" IN (1, 2, 3, 4) AND (topics.visible) AND (topics.archetype <> 'private_message') AND (post_search_data.search_data @@ TO_TSQUERY('english', '''postgres'':*ABCD')) AND (categories.id NOT IN (
SELECT categories.id WHERE categories.search_priority = 1
)
) AND ((categories.id IS NULL) OR (NOT categories.read_restricted)) GROUP BY topics.id ORDER BY MAX((
TS_RANK_CD(
post_search_data.search_data,
TO_TSQUERY('english', '''postgres'':*ABCD'),
1|32
) *
(
CASE categories.search_priority
WHEN 2
THEN 0.6
WHEN 3
THEN 0.8
WHEN 4
THEN 1.2
WHEN 5
THEN 1.4
ELSE
CASE WHEN topics.closed
THEN 0.9
ELSE 1
END
END
)
)
) DESC, topics.bumped_at DESC LIMIT 51 OFFSET 0) xxx) x ON x.id = posts.topic_id AND x.post_number = posts.post_number WHERE ("posts"."deleted_at" IS NULL) ORDER BY row_number;
SQL
end
x.report("current aggregate search query with proper ranking") do
DB.exec <<~SQL
SELECT "posts"."id", "posts"."user_id", "posts"."topic_id", "posts"."post_number", "posts"."raw", "posts"."cooked", "posts"."created_at", "posts"."updated_at", "posts"."reply_to_post_number", "posts"."reply_count", "posts"."quote_count", "posts"."deleted_at", "posts"."off_topic_count", "posts"."like_count", "posts"."incoming_link_count", "posts"."bookmark_count", "posts"."score", "posts"."reads", "posts"."post_type", "posts"."sort_order", "posts"."last_editor_id", "posts"."hidden", "posts"."hidden_reason_id", "posts"."notify_moderators_count", "posts"."spam_count", "posts"."illegal_count", "posts"."inappropriate_count", "posts"."last_version_at", "posts"."user_deleted", "posts"."reply_to_user_id", "posts"."percent_rank", "posts"."notify_user_count", "posts"."like_score", "posts"."deleted_by_id", "posts"."edit_reason", "posts"."word_count", "posts"."version", "posts"."cook_method", "posts"."wiki", "posts"."baked_at", "posts"."baked_version", "posts"."hidden_at", "posts"."self_edits", "posts"."reply_quoted", "posts"."via_email", "posts"."raw_email", "posts"."public_version", "posts"."action_code", "posts"."locked_by_id", "posts"."image_upload_id" FROM "posts" JOIN (SELECT *, row_number() over() row_number FROM (SELECT subquery.topic_id id, (ARRAY_AGG(subquery.post_number))[1] post_number, MAX(subquery.rank) rank, MAX(subquery.bumped_at) bumped_at FROM (SELECT "posts"."id", "posts"."user_id", "posts"."topic_id", "posts"."post_number", "posts"."raw", "posts"."cooked", "posts"."created_at", "posts"."updated_at", "posts"."reply_to_post_number", "posts"."reply_count", "posts"."quote_count", "posts"."deleted_at", "posts"."off_topic_count", "posts"."like_count", "posts"."incoming_link_count", "posts"."bookmark_count", "posts"."score", "posts"."reads", "posts"."post_type", "posts"."sort_order", "posts"."last_editor_id", "posts"."hidden", "posts"."hidden_reason_id", "posts"."notify_moderators_count", "posts"."spam_count", "posts"."illegal_count", "posts"."inappropriate_count", "posts"."last_version_at", "posts"."user_deleted", "posts"."reply_to_user_id", "posts"."percent_rank", "posts"."notify_user_count", "posts"."like_score", "posts"."deleted_by_id", "posts"."edit_reason", "posts"."word_count", "posts"."version", "posts"."cook_method", "posts"."wiki", "posts"."baked_at", "posts"."baked_version", "posts"."hidden_at", "posts"."self_edits", "posts"."reply_quoted", "posts"."via_email", "posts"."raw_email", "posts"."public_version", "posts"."action_code", "posts"."locked_by_id", "posts"."image_upload_id", (
TS_RANK_CD(
post_search_data.search_data,
TO_TSQUERY('english', '''postgres'':*ABCD'),
1|32
) *
(
CASE categories.search_priority
WHEN 2
THEN 0.6
WHEN 3
THEN 0.8
WHEN 4
THEN 1.2
WHEN 5
THEN 1.4
ELSE
CASE WHEN topics.closed
THEN 0.9
ELSE 1
END
END
)
)
rank, topics.bumped_at bumped_at FROM "posts" INNER JOIN "post_search_data" ON "post_search_data"."post_id" = "posts"."id" INNER JOIN "topics" ON "topics"."id" = "posts"."topic_id" AND ("topics"."deleted_at" IS NULL) LEFT JOIN categories ON categories.id = topics.category_id WHERE ("posts"."deleted_at" IS NULL) AND "posts"."post_type" IN (1, 2, 3, 4) AND (topics.visible) AND (topics.archetype <> 'private_message') AND (post_search_data.search_data @@ TO_TSQUERY('english', '''postgres'':*ABCD')) AND (categories.id NOT IN (
SELECT categories.id WHERE categories.search_priority = 1
)
) AND ((categories.id IS NULL) OR (NOT categories.read_restricted))) subquery GROUP BY subquery.topic_id ORDER BY rank DESC, bumped_at DESC LIMIT 51 OFFSET 0) xxx) x ON x.id = posts.topic_id AND x.post_number = posts.post_number WHERE ("posts"."deleted_at" IS NULL) ORDER BY row_number;
SQL
end
x.compare!
end
```
```
Warming up --------------------------------------
current aggregate search query
1.000 i/100ms
current aggregate search query with proper ranking
1.000 i/100ms
Calculating -------------------------------------
current aggregate search query
17.726 (± 0.0%) i/s - 178.000 in 10.045107s
current aggregate search query with proper ranking
17.802 (± 0.0%) i/s - 178.000 in 10.002230s
Comparison:
current aggregate search query with proper ranking: 17.8 i/s
current aggregate search query: 17.7 i/s - 1.00x (± 0.00) slower
```
* Do not autofocus name input on mobile
* Improve code for formatted reminder type times to not be computed, so the modal times update correctly
* Change wording of "Next Monday" to "Monday" for all days except when today is Monday
On large topics, the cost of sending the entire post ID list back over to the database is signficant. Just have the DB recalculate the list of visible posts instead.
Category and tag hashtags used to be handled differently even though
most of the code was very similar. This design was the root cause of
multiple issues related to hashtags.
This commit reduces the number of requests (just one and debounced
better), removes the use of CSS classes which marked resolved hashtags,
simplifies a lot of the code as there is a single source of truth and
previous race condition fixes are now useless.
It also includes a very minor security fix which let unauthorized users
to guess hidden tags.