# frozen_string_literal: true class ReviewableScore < ActiveRecord::Base belongs_to :reviewable belongs_to :user belongs_to :reviewed_by, class_name: "User" belongs_to :meta_topic, class_name: "Topic" enum status: { pending: 0, agreed: 1, disagreed: 2, ignored: 3 } # To keep things simple the types correspond to `PostActionType` for backwards # compatibility, but we can add extra reasons for scores. def self.types @types ||= PostActionType.flag_types.merge(PostActionType.score_types) end # When extending post action flags, we need to call this method in order to # get the latests flags. def self.reload_types @types = nil types end def self.add_new_types(type_names) next_id = types.values.max + 1 type_names.each_with_index { |name, idx| @types[name] = next_id + idx } end def self.score_transitions { approved: statuses[:agreed], rejected: statuses[:disagreed], ignored: statuses[:ignored] } end def score_type Reviewable::Collection::Item.new(reviewable_score_type) end def took_action? take_action_bonus > 0 end def self.calculate_score(user, type_bonus, take_action_bonus) score = user_flag_score(user) + type_bonus + take_action_bonus score > 0 ? score : 0 end # A user's flag score is: # 1.0 + trust_level + user_accuracy_bonus # (trust_level is 5 for staff) def self.user_flag_score(user) 1.0 + (user.staff? ? 5.0 : user.trust_level.to_f) + user_accuracy_bonus(user) end # A user's accuracy bonus is: # if 5 or less flags => 0.0 # if > 5 flags => (agreed flags / total flags) * 5.0 def self.user_accuracy_bonus(user) user_stat = user&.user_stat return 0.0 if user_stat.blank? || user.bot? calc_user_accuracy_bonus(user_stat.flags_agreed, user_stat.flags_disagreed) end def self.calc_user_accuracy_bonus(agreed, disagreed) agreed ||= 0 disagreed ||= 0 total = (agreed + disagreed).to_f return 0.0 if total <= 5 accuracy_axis = 0.7 percent_correct = agreed / total positive_accuracy = percent_correct >= accuracy_axis bottom = positive_accuracy ? accuracy_axis : 0.0 top = positive_accuracy ? 1.0 : accuracy_axis absolute_distance = positive_accuracy ? percent_correct - bottom : top - percent_correct axis_distance_multiplier = 1.0 / (top - bottom) positivity_multiplier = positive_accuracy ? 1.0 : -1.0 ( absolute_distance * axis_distance_multiplier * positivity_multiplier * (Math.log(total, 4) * 5.0) ).round(2) end def reviewable_conversation return if meta_topic.blank? Reviewable::Conversation.new(meta_topic) end end # == Schema Information # # Table name: reviewable_scores # # id :bigint not null, primary key # reviewable_id :integer not null # user_id :integer not null # reviewable_score_type :integer not null # status :integer not null # score :float default(0.0), not null # take_action_bonus :float default(0.0), not null # reviewed_by_id :integer # reviewed_at :datetime # meta_topic_id :integer # created_at :datetime not null # updated_at :datetime not null # reason :string # user_accuracy_bonus :float default(0.0), not null # # Indexes # # index_reviewable_scores_on_reviewable_id (reviewable_id) # index_reviewable_scores_on_user_id (user_id) #