fish-shell/src/fd_monitor.cpp

194 lines
7.1 KiB
C++
Raw Normal View History

// Support for monitoring a set of fds.
#include "config.h" // IWYU pragma: keep
#include "fd_monitor.h"
#include "flog.h"
#include "io.h"
#include "iothread.h"
#include "wutil.h"
static constexpr uint64_t kUsecPerMsec = 1000;
static constexpr uint64_t kUsecPerSec = 1000 * kUsecPerMsec;
fd_monitor_t::fd_monitor_t() {
auto self_pipe = make_autoclose_pipes({});
if (!self_pipe) {
DIE("Unable to create pipes");
}
// Ensure the write side is nonblocking to avoid deadlock.
notify_write_fd_ = std::move(self_pipe->write);
if (make_fd_nonblocking(notify_write_fd_.fd())) {
wperror(L"fcntl");
}
// Add an item for ourselves.
// We don't need to go through 'pending' because we have not yet launched the thread, and don't
// want to yet.
auto callback = [this](autoclose_fd_t &fd, bool timed_out) {
ASSERT_IS_BACKGROUND_THREAD();
assert(!timed_out && "Should not time out with kNoTimeout");
(void)timed_out;
// Read some to take data off of the notifier.
char buff[4096];
ssize_t amt = read(fd.fd(), buff, sizeof buff);
if (amt > 0) {
this->has_pending_ = true;
} else if (amt == 0) {
this->terminate_ = true;
} else {
wperror(L"read");
}
};
items_.push_back(fd_monitor_item_t(std::move(self_pipe->read), std::move(callback)));
}
// Extremely hacky destructor to clean up.
// This is used in the tests to not leave stale fds around.
// In fish shell, we never invoke the dtor so it doesn't matter that this is very dumb.
fd_monitor_t::~fd_monitor_t() {
notify_write_fd_.close();
while (data_.acquire()->running) {
std::this_thread::sleep_for(std::chrono::milliseconds(5));
}
}
void fd_monitor_t::add(fd_monitor_item_t &&item) {
assert(item.fd.valid() && "Invalid fd");
assert(item.timeout_usec != 0 && "Invalid timeout");
bool start_thread = add_pending_get_start_thread(std::move(item));
if (start_thread) {
void *(*trampoline)(void *) = [](void *self) -> void * {
static_cast<fd_monitor_t *>(self)->run_in_background();
return nullptr;
};
bool made_thread = make_detached_pthread(trampoline, this);
if (!made_thread) {
DIE("Unable to create a new pthread");
}
}
// Tickle our notifier.
char byte = 0;
(void)write_loop(notify_write_fd_.fd(), &byte, 1);
}
bool fd_monitor_t::add_pending_get_start_thread(fd_monitor_item_t &&item) {
auto data = data_.acquire();
data->pending.push_back(std::move(item));
if (!data->running) {
FLOG(fd_monitor, "Thread starting");
data->running = true;
return true;
}
return false;
}
// Given a usec count, populate and return a timeval.
// If the usec count is kNoTimeout, return nullptr.
static struct timeval *usec_to_tv_or_null(uint64_t usec, struct timeval *timeout) {
if (usec == fd_monitor_item_t::kNoTimeout) return nullptr;
timeout->tv_sec = usec / kUsecPerSec;
timeout->tv_usec = usec % kUsecPerSec;
return timeout;
}
uint64_t fd_monitor_item_t::usec_remaining(const time_point_t &now) const {
assert(last_time.has_value() && "Should always have a last_time");
if (timeout_usec == kNoTimeout) return kNoTimeout;
assert(now >= *last_time && "steady clock went backwards!");
uint64_t since = static_cast<uint64_t>(
std::chrono::duration_cast<std::chrono::microseconds>(now - *last_time).count());
return since >= timeout_usec ? 0 : timeout_usec - since;
}
bool fd_monitor_item_t::service_item(const fd_set *fds, const time_point_t &now) {
bool should_retain = true;
bool readable = FD_ISSET(fd.fd(), fds);
bool timed_out = !readable && usec_remaining(now) == 0;
if (readable || timed_out) {
last_time = now;
callback(fd, timed_out);
should_retain = fd.valid();
}
return should_retain;
}
void fd_monitor_t::run_in_background() {
ASSERT_IS_BACKGROUND_THREAD();
for (;;) {
uint64_t timeout_usec = fd_monitor_item_t::kNoTimeout;
int max_fd = -1;
fd_set fds;
FD_ZERO(&fds);
auto now = std::chrono::steady_clock::now();
for (auto &item : items_) {
FD_SET(item.fd.fd(), &fds);
if (!item.last_time.has_value()) item.last_time = now;
timeout_usec = std::min(timeout_usec, item.usec_remaining(now));
max_fd = std::max(max_fd, item.fd.fd());
}
// If we have only one item, it means that we are not actively monitoring any fds other than
// our self-pipe. In this case we wish to allow the thread to exit, but after a time, so we
// aren't spinning up and tearing down the thread repeatedly.
// Set a timeout of 16 msec; if nothing becomes readable by then we will exit.
// We refer to this as the wait-lap.
bool is_wait_lap = (items_.size() == 1);
if (is_wait_lap) {
assert(timeout_usec == fd_monitor_item_t::kNoTimeout &&
"Should not have a timeout on wait-lap");
timeout_usec = 16 * kUsecPerMsec;
}
// Call select().
struct timeval tv;
int ret = select(max_fd + 1, &fds, nullptr, nullptr, usec_to_tv_or_null(timeout_usec, &tv));
if (ret < 0 && errno != EINTR) {
// Surprising error.
wperror(L"select");
}
// A predicate which services each item in turn, returning true if it should be removed.
auto servicer = [&fds, &now](fd_monitor_item_t &item) {
int fd = item.fd.fd();
bool remove = !item.service_item(&fds, now);
if (remove) FLOG(fd_monitor, "Removing fd", fd);
return remove;
};
// Service all items that are either readable or timed our, and remove any which say to do
// so.
now = std::chrono::steady_clock::now();
items_.erase(std::remove_if(items_.begin(), items_.end(), servicer), items_.end());
if (terminate_) {
// Time to go.
data_.acquire()->running = false;
return;
}
// Maybe we got some new items. Check if our callback says so, or if this is the wait
// lap, in which case we might want to commit to exiting.
if (has_pending_ || is_wait_lap) {
auto data = data_.acquire();
// Move from 'pending' to 'items'.
items_.insert(items_.end(), std::make_move_iterator(data->pending.begin()),
std::make_move_iterator(data->pending.end()));
data->pending.clear();
has_pending_ = false;
if (is_wait_lap && items_.size() == 1) {
// We had no items, waited a bit, and still have no items. We're going to shut down.
// It's important to do this while holding the lock, otherwise we race with new
// items being added.
assert(data->running && "Thread should be running because we're that thread");
FLOG(fd_monitor, "Thread exiting");
data->running = false;
return;
}
}
}
}