fish-shell/src/builtin_math.cpp

253 lines
8.5 KiB
C++
Raw Normal View History

// Implementation of the math builtin.
#include "config.h" // IWYU pragma: keep
#include <errno.h>
#include <stddef.h>
#include <algorithm>
#include <string>
#include "builtin.h"
#include "builtin_math.h"
#include "common.h"
#include "fallback.h" // IWYU pragma: keep
#include "io.h"
#include "lru.h"
#include "wgetopt.h"
#include "wutil.h" // IWYU pragma: keep
#include "muParser.h"
#include "muParserBase.h"
#include "muParserDef.h"
struct math_cmd_opts_t {
bool print_help = false;
int scale = 0;
};
// This command is atypical in using the "+" (REQUIRE_ORDER) option for flag parsing.
// This is needed because of the minus, `-`, operator in math expressions.
static const wchar_t *short_options = L"+:hs:";
static const struct woption long_options[] = {{L"scale", required_argument, NULL, 's'},
{L"help", no_argument, NULL, 'h'},
{NULL, 0, NULL, 0}};
class expression_lru_item_t {
public:
wcstring expression;
mu::Parser parser;
};
class expression_cache_t : public lru_cache_t<expression_cache_t, mu::Parser> {
#if 0
typedef lru_cache_t<wcstring, mu::Parser> super;
public:
using super::super;
#endif
};
//expression_cache_t expression_cache(128);
expression_cache_t expression_cache;
static int parse_cmd_opts(math_cmd_opts_t &opts, int *optind, //!OCLINT(high ncss method)
int argc, wchar_t **argv, parser_t &parser, io_streams_t &streams) {
const wchar_t *cmd = L"math";
int opt;
wgetopter_t w;
while ((opt = w.wgetopt_long(argc, argv, short_options, long_options, NULL)) != -1) {
switch (opt) {
case 's': {
opts.scale = fish_wcstoi(w.woptarg);
if (errno || opts.scale < 0 || opts.scale > 15) {
streams.err.append_format(_(L"%ls: '%ls' is not a valid scale value\n"), cmd,
w.woptarg);
return STATUS_INVALID_ARGS;
}
break;
}
case 'h': {
opts.print_help = true;
break;
}
case ':': {
builtin_missing_argument(parser, streams, cmd, argv[w.woptind - 1]);
return STATUS_INVALID_ARGS;
}
case '?': {
// For most commands this is an error. We ignore it because a math expression
// can begin with a minus sign.
*optind = w.woptind - 1;
return STATUS_CMD_OK;
}
default: {
DIE("unexpected retval from wgetopt_long");
break;
}
}
}
*optind = w.woptind;
return STATUS_CMD_OK;
}
// We read from stdin if we are the second or later process in a pipeline.
static bool math_args_from_stdin(const io_streams_t &streams) {
return streams.stdin_is_directly_redirected;
}
/// Get the arguments from stdin.
static const wchar_t *math_get_arg_stdin(wcstring *storage, const io_streams_t &streams) {
std::string arg;
for (;;) {
char ch = '\0';
long rc = read_blocked(streams.stdin_fd, &ch, 1);
if (rc < 0) return NULL; // failure
if (rc == 0) { // EOF
if (arg.empty()) return NULL;
break;
}
if (ch == '\n') break; // we're done
arg += ch;
}
*storage = str2wcstring(arg);
return storage->c_str();
}
/// Return the next argument from argv.
static const wchar_t *math_get_arg_argv(int *argidx, wchar_t **argv) {
return argv && argv[*argidx] ? argv[(*argidx)++] : NULL;
}
/// Get the arguments from argv or stdin based on the execution context. This mimics how builtin
/// `string` does it.
static const wchar_t *math_get_arg(int *argidx, wchar_t **argv, wcstring *storage,
const io_streams_t &streams) {
if (math_args_from_stdin(streams)) {
return math_get_arg_stdin(storage, streams);
}
return math_get_arg_argv(argidx, argv);
}
// The MuParser mechanism for dynamic lookup of variables requires that we return a unique address
// for each variable. The following limit is arbitrary but anyone writing a math expression in fish
// that references more than one hundred unique variables is abusing fish.
#define MAX_RESULTS 100
static double double_results[MAX_RESULTS];
static int next_result = 0;
/// Return a fish var converted to a double. This allows the user to use a bar var name in the
/// expression. That is `math a + 1` rather than `math $a + 1`.
static double *retrieve_var(const wchar_t *var_name, void *user_data) {
UNUSED(user_data);
static double zero_result = 0.0;
auto var = env_get(var_name, ENV_DEFAULT);
if (!var) {
// We could report an error but we normally don't treat missing vars as a fatal error.
// throw mu::ParserError(L"Var '%ls' does not exist.");
return &zero_result;
}
if (var->empty()) {
return &zero_result;
}
const wchar_t *first_val = var->as_list()[0].c_str();
wchar_t *endptr;
errno = 0;
double result = wcstod(first_val, &endptr);
if (*endptr != L'\0' || errno) {
wchar_t errmsg[500];
swprintf(errmsg, sizeof(errmsg) / sizeof(wchar_t),
_(L"Var '%ls' not a valid floating point number: '%ls'."), var_name, first_val);
throw mu::ParserError(errmsg);
}
// We need to return a unique address for the var. If we used a `static double` var and returned
// it's address then multiple vars in the expression would all refer to the same value.
if (next_result == MAX_RESULTS - 1) {
wchar_t errmsg[500];
swprintf(errmsg, sizeof(errmsg) / sizeof(wchar_t),
_(L"More than %d var names in math expression."), MAX_RESULTS);
throw mu::ParserError(errmsg);
}
double_results[next_result++] = result;
return double_results + next_result - 1;
}
/// Implement integer modulo math operator.
static double moduloOperator(double v, double w) { return (int)v % std::max(1, (int)w); };
/// Evaluate math expressions.
static int evaluate_expression(wchar_t *cmd, parser_t &parser, io_streams_t &streams,
math_cmd_opts_t &opts, wcstring &expression) {
UNUSED(parser);
mu::Parser *p = expression_cache.get(expression);
if (!p) {
mu::Parser parser;
// Setup callback so variables can be retrieved dynamically.
parser.SetVarFactory(retrieve_var, nullptr);
// MuParser doesn't implement the modulo operator so we add it ourselves since there are
// likely users of our old math wrapper around bc that expect it to be available.
parser.DefineOprtChars(L"%");
parser.DefineOprt(L"%", moduloOperator, mu::prINFIX);
parser.SetExpr(expression);
expression_cache.insert(expression, parser);
p = expression_cache.get(expression);
debug(3, L"math expression_cache.size() = %d", expression_cache.size());
}
try {
p->ClearVar(); // force muparser to ask for new values of any bare vars
next_result = 0;
int nNum;
mu::value_type *v = p->Eval(nNum);
for (int i = 0; i < nNum; ++i) {
if (opts.scale == 0) {
streams.out.append_format(L"%ld\n", static_cast<long>(v[i]));
} else {
streams.out.append_format(L"%.*lf\n", opts.scale, v[i]);
}
}
return STATUS_CMD_OK;
} catch (mu::Parser::exception_type &e) {
streams.err.append_format(_(L"%ls: Invalid expression: %ls\n"), cmd, e.GetMsg().c_str());
return STATUS_CMD_ERROR;
}
}
/// The math builtin evaluates math expressions.
int builtin_math(parser_t &parser, io_streams_t &streams, wchar_t **argv) {
wchar_t *cmd = argv[0];
int argc = builtin_count_args(argv);
math_cmd_opts_t opts;
int optind;
// Is this really the right way to handle no expression present?
// if (argc == 0) return STATUS_CMD_OK;
int retval = parse_cmd_opts(opts, &optind, argc, argv, parser, streams);
if (retval != STATUS_CMD_OK) return retval;
if (opts.print_help) {
builtin_print_help(parser, streams, cmd, streams.out);
return STATUS_CMD_OK;
}
wcstring expression;
wcstring storage;
while (const wchar_t *arg = math_get_arg(&optind, argv, &storage, streams)) {
if (!expression.empty()) expression.push_back(L' ');
expression.append(arg);
}
return evaluate_expression(cmd, parser, streams, opts, expression);
}