fish-shell/src/iothread.cpp

397 lines
13 KiB
C++
Raw Normal View History

#include "config.h" // IWYU pragma: keep
#include <limits.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
2015-07-25 23:14:25 +08:00
#include <sys/select.h>
#include <sys/time.h>
#include <sys/types.h>
2011-12-27 13:21:12 +08:00
#include <unistd.h>
#include <atomic>
#include <cstring>
#include <condition_variable>
#include <queue>
#include "common.h"
2019-05-28 06:56:53 +08:00
#include "flog.h"
#include "global_safety.h"
#include "iothread.h"
#include "wutil.h"
2011-12-27 13:21:12 +08:00
#ifdef _POSIX_THREAD_THREADS_MAX
#if _POSIX_THREAD_THREADS_MAX < 64
#define IO_MAX_THREADS _POSIX_THREAD_THREADS_MAX
#endif
2011-12-27 13:21:12 +08:00
#endif
#ifndef IO_MAX_THREADS
#define IO_MAX_THREADS 64
2011-12-27 13:21:12 +08:00
#endif
// Values for the wakeup bytes sent to the ioport.
#define IO_SERVICE_MAIN_THREAD_REQUEST_QUEUE 99
#define IO_SERVICE_RESULT_QUEUE 100
2018-02-19 10:33:04 +08:00
static void iothread_service_main_thread_requests();
static void iothread_service_result_queue();
2011-12-27 13:21:12 +08:00
typedef std::function<void(void)> void_function_t;
struct spawn_request_t {
void_function_t handler;
void_function_t completion;
spawn_request_t() {}
spawn_request_t(void_function_t &&f, void_function_t &&comp) : handler(f), completion(comp) {}
// Move-only
spawn_request_t &operator=(const spawn_request_t &) = delete;
spawn_request_t &operator=(spawn_request_t &&) = default;
spawn_request_t(const spawn_request_t &) = delete;
spawn_request_t(spawn_request_t &&) = default;
2011-12-27 13:21:12 +08:00
};
struct main_thread_request_t {
std::atomic<bool> done{false};
void_function_t func;
2017-02-14 10:48:59 +08:00
main_thread_request_t(void_function_t &&f) : func(f) {}
// No moving OR copying
// main_thread_requests are always stack allocated, and we deal in pointers to them
void operator=(const main_thread_request_t &) = delete;
main_thread_request_t(const main_thread_request_t &) = delete;
main_thread_request_t(main_thread_request_t &&) = delete;
};
2017-01-30 13:06:46 +08:00
// Spawn support. Requests are allocated and come in on request_queue and go out on result_queue
struct thread_data_t {
std::queue<spawn_request_t> request_queue;
int thread_count = 0;
};
static owning_lock<thread_data_t> s_spawn_requests;
static owning_lock<std::queue<spawn_request_t>> s_result_queue;
// "Do on main thread" support.
static std::mutex s_main_thread_performer_lock; // protects the main thread requests
static std::condition_variable s_main_thread_performer_cond; // protects the main thread requests
/// The queue of main thread requests. This queue contains pointers to structs that are
/// stack-allocated on the requesting thread.
static owning_lock<std::queue<main_thread_request_t *>> s_main_thread_request_queue;
// Pipes used for notifying.
struct notify_pipes_t {
int read;
int write;
};
/// \return the (immortal) set of pipes used for notifying of completions.
static const notify_pipes_t &get_notify_pipes() {
static const notify_pipes_t s_notify_pipes = [] {
int pipes[2] = {0, 0};
assert_with_errno(pipe(pipes) != -1);
set_cloexec(pipes[0]);
set_cloexec(pipes[1]);
// Mark both ends as non-blocking.
for (int fd : pipes) {
if (make_fd_nonblocking(fd)) {
wperror(L"fcntl");
}
}
return notify_pipes_t{pipes[0], pipes[1]};
}();
return s_notify_pipes;
2011-12-27 13:21:12 +08:00
}
static bool dequeue_spawn_request(spawn_request_t *result) {
auto requests = s_spawn_requests.acquire();
if (!requests->request_queue.empty()) {
*result = std::move(requests->request_queue.front());
requests->request_queue.pop();
return true;
}
return false;
2011-12-27 13:21:12 +08:00
}
static void enqueue_thread_result(spawn_request_t req) {
s_result_queue.acquire()->push(std::move(req));
}
static void *this_thread() { return (void *)(intptr_t)pthread_self(); }
2014-04-28 08:23:19 +08:00
/// The function that does thread work.
static void *iothread_worker(void *unused) {
UNUSED(unused);
struct spawn_request_t req;
while (dequeue_spawn_request(&req)) {
debug(5, "pthread %p dequeued", this_thread());
2017-01-30 13:06:46 +08:00
// Perform the work
req.handler();
// If there's a completion handler, we have to enqueue it on the result queue.
// Note we're using std::function's weirdo operator== here
if (req.completion != nullptr) {
// Enqueue the result, and tell the main thread about it.
enqueue_thread_result(std::move(req));
const char wakeup_byte = IO_SERVICE_RESULT_QUEUE;
int notify_fd = get_notify_pipes().write;
assert_with_errno(write_loop(notify_fd, &wakeup_byte, sizeof wakeup_byte) != -1);
}
}
// We believe we have exhausted the thread request queue. We want to decrement
2017-01-30 13:06:46 +08:00
// thread_count and exit. But it's possible that a request just came in. Furthermore,
// it's possible that the main thread saw that thread_count is full, and decided to not
// spawn a new thread, trusting in one of the existing threads to handle it. But we've already
// committed to not handling anything else. Therefore, we have to decrement
2017-01-30 13:06:46 +08:00
// the thread count under the lock, which we still hold. Likewise, the main thread must
// check the value under the lock.
int new_thread_count = --s_spawn_requests.acquire()->thread_count;
2017-01-30 13:06:46 +08:00
assert(new_thread_count >= 0);
debug(5, "pthread %p exiting", this_thread());
// We're done.
return NULL;
2011-12-27 13:21:12 +08:00
}
/// Spawn another thread. No lock is held when this is called.
static void iothread_spawn() {
// Spawn a thread. If this fails, it means there's already a bunch of threads; it is very
// unlikely that they are all on the verge of exiting, so one is likely to be ready to handle
// extant requests. So we can ignore failure with some confidence.
2014-04-28 08:23:19 +08:00
pthread_t thread = 0;
if (make_pthread(&thread, iothread_worker, nullptr)) {
// We will never join this thread.
DIE_ON_FAILURE(pthread_detach(thread));
}
2011-12-27 13:21:12 +08:00
}
int iothread_perform_impl(void_function_t &&func, void_function_t &&completion) {
ASSERT_IS_MAIN_THREAD();
ASSERT_IS_NOT_FORKED_CHILD();
struct spawn_request_t req(std::move(func), std::move(completion));
int local_thread_count = -1;
bool spawn_new_thread = false;
{
// Lock around a local region.
auto spawn_reqs = s_spawn_requests.acquire();
spawn_reqs->request_queue.push(std::move(req));
if (spawn_reqs->thread_count < IO_MAX_THREADS) {
spawn_reqs->thread_count++;
spawn_new_thread = true;
}
local_thread_count = spawn_reqs->thread_count;
}
// Kick off the thread if we decided to do so.
if (spawn_new_thread) {
iothread_spawn();
}
return local_thread_count;
2011-12-27 13:21:12 +08:00
}
int iothread_port() { return get_notify_pipes().read; }
2011-12-27 13:21:12 +08:00
2018-02-19 10:33:04 +08:00
void iothread_service_completion() {
ASSERT_IS_MAIN_THREAD();
// Drain the read buffer, and then service completions.
// The order is important.
int port = iothread_port();
char buff[256];
while (read(port, buff, sizeof buff) > 0) {
// pass
}
iothread_service_main_thread_requests();
iothread_service_result_queue();
}
static bool iothread_wait_for_pending_completions(long timeout_usec) {
const long usec_per_sec = 1000000;
struct timeval tv;
tv.tv_sec = timeout_usec / usec_per_sec;
tv.tv_usec = timeout_usec % usec_per_sec;
const int fd = iothread_port();
fd_set fds;
FD_ZERO(&fds);
FD_SET(fd, &fds);
int ret = select(fd + 1, &fds, NULL, NULL, &tv);
return ret > 0;
2011-12-27 13:21:12 +08:00
}
/// Note that this function is quite sketchy. In particular, it drains threads, not requests,
/// meaning that it may leave requests on the queue. This is the desired behavior (it may be called
/// before fork, and we don't want to bother servicing requests before we fork), but in the test
/// suite we depend on it draining all requests. In practice, this works, because a thread in
/// practice won't exit while there is outstanding requests.
///
/// At the moment, this function is only used in the test suite and in a
/// drain-all-threads-before-fork compatibility mode that no architecture requires, so it's OK that
/// it's terrible.
2018-02-19 10:33:04 +08:00
void iothread_drain_all() {
ASSERT_IS_MAIN_THREAD();
ASSERT_IS_NOT_FORKED_CHILD();
#define TIME_DRAIN 0
#if TIME_DRAIN
2017-01-30 13:06:46 +08:00
int thread_count = s_spawn_requests.acquire().value.thread_count;
double now = timef();
#endif
// Nasty polling via select().
while (s_spawn_requests.acquire()->thread_count > 0) {
if (iothread_wait_for_pending_completions(1000)) {
iothread_service_completion();
}
}
#if TIME_DRAIN
double after = timef();
std::fwprintf(stdout, L"(Waited %.02f msec for %d thread(s) to drain)\n", 1000 * (after - now),
thread_count);
#endif
}
/// "Do on main thread" support.
2018-02-19 10:33:04 +08:00
static void iothread_service_main_thread_requests() {
ASSERT_IS_MAIN_THREAD();
// Move the queue to a local variable.
std::queue<main_thread_request_t *> request_queue;
s_main_thread_request_queue.acquire()->swap(request_queue);
if (!request_queue.empty()) {
// Perform each of the functions. Note we are NOT responsible for deleting these. They are
// stack allocated in their respective threads!
while (!request_queue.empty()) {
main_thread_request_t *req = request_queue.front();
request_queue.pop();
req->func();
req->done = true;
}
// Ok, we've handled everybody. Announce the good news, and allow ourselves to be unlocked.
// Note we must do this while holding the lock. Otherwise we race with the waiting threads:
//
// 1. waiting thread checks for done, sees false
// 2. main thread performs request, sets done to true, posts to condition
// 3. waiting thread unlocks lock, waits on condition (forever)
//
// Because the waiting thread performs step 1 under the lock, if we take the lock, we avoid
// posting before the waiting thread is waiting.
// TODO: revisit this logic, this feels sketchy.
scoped_lock broadcast_lock(s_main_thread_performer_lock);
s_main_thread_performer_cond.notify_all();
}
}
// Service the queue of results
static void iothread_service_result_queue() {
// Move the queue to a local variable.
std::queue<spawn_request_t> result_queue;
s_result_queue.acquire()->swap(result_queue);
2017-01-30 13:06:46 +08:00
// Perform each completion in order
while (!result_queue.empty()) {
2017-02-14 10:48:59 +08:00
spawn_request_t req(std::move(result_queue.front()));
result_queue.pop();
// ensure we don't invoke empty functions, that raises an exception
if (req.completion != nullptr) {
req.completion();
}
}
}
void iothread_perform_on_main(void_function_t &&func) {
if (is_main_thread()) {
func();
return;
}
// Make a new request. Note we are synchronous, so this can be stack allocated!
main_thread_request_t req(std::move(func));
// Append it. Ensure we don't hold the lock after.
s_main_thread_request_queue.acquire()->push(&req);
// Tell the pipe.
const char wakeup_byte = IO_SERVICE_MAIN_THREAD_REQUEST_QUEUE;
int notify_fd = get_notify_pipes().write;
assert_with_errno(write_loop(notify_fd, &wakeup_byte, sizeof wakeup_byte) != -1);
// Wait on the condition, until we're done.
std::unique_lock<std::mutex> perform_lock(s_main_thread_performer_lock);
while (!req.done) {
// It would be nice to support checking for cancellation here, but the clients need a
// deterministic way to clean up to avoid leaks
s_main_thread_performer_cond.wait(perform_lock);
}
// Ok, the request must now be done.
assert(req.done);
}
bool make_pthread(pthread_t *result, void *(*func)(void *), void *param) {
// The spawned thread inherits our signal mask. We don't want the thread to ever receive signals
// on the spawned thread, so temporarily block all signals, spawn the thread, and then restore
// it.
sigset_t new_set, saved_set;
sigfillset(&new_set);
DIE_ON_FAILURE(pthread_sigmask(SIG_BLOCK, &new_set, &saved_set));
// Spawn a thread. If this fails, it means there's already a bunch of threads; it is very
// unlikely that they are all on the verge of exiting, so one is likely to be ready to handle
// extant requests. So we can ignore failure with some confidence.
pthread_t thread = 0;
int err = pthread_create(&thread, NULL, func, param);
if (err == 0) {
// Success, return the thread.
debug(5, "pthread %p spawned", (void *)(intptr_t)thread);
*result = thread;
} else {
perror("pthread_create");
}
// Restore our sigmask.
DIE_ON_FAILURE(pthread_sigmask(SIG_SETMASK, &saved_set, NULL));
return err == 0;
}
using void_func_t = std::function<void(void)>;
static void *func_invoker(void *param) {
// Acquire a thread id for this thread.
(void)thread_id();
void_func_t *vf = static_cast<void_func_t *>(param);
(*vf)();
delete vf;
return nullptr;
}
bool make_pthread(pthread_t *result, void_func_t &&func) {
// Copy the function into a heap allocation.
void_func_t *vf = new void_func_t(std::move(func));
if (make_pthread(result, func_invoker, vf)) {
return true;
}
// Thread spawning failed, clean up our heap allocation.
delete vf;
return false;
}
static uint64_t next_thread_id() {
// Note 0 is an invalid thread id.
static owning_lock<uint64_t> s_last_thread_id{};
auto tid = s_last_thread_id.acquire();
return ++*tid;
}
uint64_t thread_id() {
static thread_local uint64_t tl_tid = next_thread_id();
return tl_tid;
}