fish-shell/share/tools/create_manpage_completions.py

1128 lines
39 KiB
Python
Raw Normal View History

#!/usr/bin/env python
2012-04-08 16:43:30 +08:00
# -*- coding: utf-8 -*-
# Run me like this: ./create_manpage_completions.py /usr/share/man/man{1,8}/* > man_completions.fish
"""
<OWNER> = Siteshwar Vashisht
<YEAR> = 2012
Copyright (c) 2012, Siteshwar Vashisht
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
Fix manpath handling in create_manpage_completions.py (#6879) * Fix manpath handling in create_manpage_completions.py ...as well as do some (very!) light cleanup. Currently, `create_manpage_completions.py` does not properly understand/respect the `$MANPATH` variable. One important feature of `$MANPATH` is that an empty component (i.e. the trailing : in `foo:bar:`) expands to the 'default' or 'system' path -- that is to say, the path that would be used if `$MANPATH` was unset. This allows the user to extend the manpath without clobbering it, and has been a feature many Unices have included for years. The current implementation blindly uses the `$MANPATH` variable if it exists, which does not allow for this behaviour -- to expand the variable correctly, an external program must be invoked. Therefore, we first shell out to the 'proper' (read: best guess) external program. If that fails, we can then try to use `$MANPATH` directly/literally. Finally, if both of those are impossible, we can fall back to some common paths from widely used operating systems. Note that the `man.conf` parsing has been removed: this is because while many 'traditional' Unices (BSDs, Solaris, macOS) support this file, only macOS actually ships a file -- most other Unices use a `conf.d`-style layout and supporting that from our Python is impractical and silly at best. On GNU (read: Linux) systems, `mandb` uses `/etc/man_db.conf` with slightly different syntax and sematics. As this code-path has bitrotted (and likely never worked, anyway), just remove it. `create_manpage_completions.py` looks like it has suffered a lot of confusion and bitrot in general over the last few years -- and is overdue for a major refactoring. I am quite interested in tackling this, but I plan to wait until the go-ahead to drop support for Python 2 is given, as a major refactor/rewrite that still supports Python 2 (and thus ignores the ergonomic/API/syntax improvements of Python 3) does not make sense to me. Related: #5657 It would probably be good to revisit `man.fish` once again when a comprehensive refactor happens: hopefully every permutation of `man`/`$MANPATH` could be documented as part of that effort. * Restore /etc/man.conf parsing I was not aware that this codepath was used -- since it appeared that it would throw an error when it was reached. Redo it, using regex, and support parsing NetBSD man.conf as well (untested). * Fix create_manpage_completions.py under Python 2
2020-05-08 03:01:02 +08:00
from __future__ import print_function
2012-04-08 16:43:30 +08:00
from deroff import Deroffer
Fix manpath handling in create_manpage_completions.py (#6879) * Fix manpath handling in create_manpage_completions.py ...as well as do some (very!) light cleanup. Currently, `create_manpage_completions.py` does not properly understand/respect the `$MANPATH` variable. One important feature of `$MANPATH` is that an empty component (i.e. the trailing : in `foo:bar:`) expands to the 'default' or 'system' path -- that is to say, the path that would be used if `$MANPATH` was unset. This allows the user to extend the manpath without clobbering it, and has been a feature many Unices have included for years. The current implementation blindly uses the `$MANPATH` variable if it exists, which does not allow for this behaviour -- to expand the variable correctly, an external program must be invoked. Therefore, we first shell out to the 'proper' (read: best guess) external program. If that fails, we can then try to use `$MANPATH` directly/literally. Finally, if both of those are impossible, we can fall back to some common paths from widely used operating systems. Note that the `man.conf` parsing has been removed: this is because while many 'traditional' Unices (BSDs, Solaris, macOS) support this file, only macOS actually ships a file -- most other Unices use a `conf.d`-style layout and supporting that from our Python is impractical and silly at best. On GNU (read: Linux) systems, `mandb` uses `/etc/man_db.conf` with slightly different syntax and sematics. As this code-path has bitrotted (and likely never worked, anyway), just remove it. `create_manpage_completions.py` looks like it has suffered a lot of confusion and bitrot in general over the last few years -- and is overdue for a major refactoring. I am quite interested in tackling this, but I plan to wait until the go-ahead to drop support for Python 2 is given, as a major refactor/rewrite that still supports Python 2 (and thus ignores the ergonomic/API/syntax improvements of Python 3) does not make sense to me. Related: #5657 It would probably be good to revisit `man.fish` once again when a comprehensive refactor happens: hopefully every permutation of `man`/`$MANPATH` could be documented as part of that effort. * Restore /etc/man.conf parsing I was not aware that this codepath was used -- since it appeared that it would throw an error when it was reached. Redo it, using regex, and support parsing NetBSD man.conf as well (untested). * Fix create_manpage_completions.py under Python 2
2020-05-08 03:01:02 +08:00
import argparse
import bz2
import codecs
import errno
import gzip
import os
import re
import string
import subprocess
import sys
import traceback
2012-03-16 18:03:43 +08:00
lzma_available = True
try:
try:
import lzma
except ImportError:
from backports import lzma
2013-09-25 20:35:11 +08:00
except ImportError:
lzma_available = False
Fix manpath handling in create_manpage_completions.py (#6879) * Fix manpath handling in create_manpage_completions.py ...as well as do some (very!) light cleanup. Currently, `create_manpage_completions.py` does not properly understand/respect the `$MANPATH` variable. One important feature of `$MANPATH` is that an empty component (i.e. the trailing : in `foo:bar:`) expands to the 'default' or 'system' path -- that is to say, the path that would be used if `$MANPATH` was unset. This allows the user to extend the manpath without clobbering it, and has been a feature many Unices have included for years. The current implementation blindly uses the `$MANPATH` variable if it exists, which does not allow for this behaviour -- to expand the variable correctly, an external program must be invoked. Therefore, we first shell out to the 'proper' (read: best guess) external program. If that fails, we can then try to use `$MANPATH` directly/literally. Finally, if both of those are impossible, we can fall back to some common paths from widely used operating systems. Note that the `man.conf` parsing has been removed: this is because while many 'traditional' Unices (BSDs, Solaris, macOS) support this file, only macOS actually ships a file -- most other Unices use a `conf.d`-style layout and supporting that from our Python is impractical and silly at best. On GNU (read: Linux) systems, `mandb` uses `/etc/man_db.conf` with slightly different syntax and sematics. As this code-path has bitrotted (and likely never worked, anyway), just remove it. `create_manpage_completions.py` looks like it has suffered a lot of confusion and bitrot in general over the last few years -- and is overdue for a major refactoring. I am quite interested in tackling this, but I plan to wait until the go-ahead to drop support for Python 2 is given, as a major refactor/rewrite that still supports Python 2 (and thus ignores the ergonomic/API/syntax improvements of Python 3) does not make sense to me. Related: #5657 It would probably be good to revisit `man.fish` once again when a comprehensive refactor happens: hopefully every permutation of `man`/`$MANPATH` could be documented as part of that effort. * Restore /etc/man.conf parsing I was not aware that this codepath was used -- since it appeared that it would throw an error when it was reached. Redo it, using regex, and support parsing NetBSD man.conf as well (untested). * Fix create_manpage_completions.py under Python 2
2020-05-08 03:01:02 +08:00
try:
from subprocess import DEVNULL
except ImportError:
DEVNULL = open(os.devnull, "wb")
Fix manpath handling in create_manpage_completions.py (#6879) * Fix manpath handling in create_manpage_completions.py ...as well as do some (very!) light cleanup. Currently, `create_manpage_completions.py` does not properly understand/respect the `$MANPATH` variable. One important feature of `$MANPATH` is that an empty component (i.e. the trailing : in `foo:bar:`) expands to the 'default' or 'system' path -- that is to say, the path that would be used if `$MANPATH` was unset. This allows the user to extend the manpath without clobbering it, and has been a feature many Unices have included for years. The current implementation blindly uses the `$MANPATH` variable if it exists, which does not allow for this behaviour -- to expand the variable correctly, an external program must be invoked. Therefore, we first shell out to the 'proper' (read: best guess) external program. If that fails, we can then try to use `$MANPATH` directly/literally. Finally, if both of those are impossible, we can fall back to some common paths from widely used operating systems. Note that the `man.conf` parsing has been removed: this is because while many 'traditional' Unices (BSDs, Solaris, macOS) support this file, only macOS actually ships a file -- most other Unices use a `conf.d`-style layout and supporting that from our Python is impractical and silly at best. On GNU (read: Linux) systems, `mandb` uses `/etc/man_db.conf` with slightly different syntax and sematics. As this code-path has bitrotted (and likely never worked, anyway), just remove it. `create_manpage_completions.py` looks like it has suffered a lot of confusion and bitrot in general over the last few years -- and is overdue for a major refactoring. I am quite interested in tackling this, but I plan to wait until the go-ahead to drop support for Python 2 is given, as a major refactor/rewrite that still supports Python 2 (and thus ignores the ergonomic/API/syntax improvements of Python 3) does not make sense to me. Related: #5657 It would probably be good to revisit `man.fish` once again when a comprehensive refactor happens: hopefully every permutation of `man`/`$MANPATH` could be documented as part of that effort. * Restore /etc/man.conf parsing I was not aware that this codepath was used -- since it appeared that it would throw an error when it was reached. Redo it, using regex, and support parsing NetBSD man.conf as well (untested). * Fix create_manpage_completions.py under Python 2
2020-05-08 03:01:02 +08:00
# Whether we're Python 3
IS_PY3 = sys.version_info[0] >= 3
# This gets set to the name of the command that we are currently executing
CMDNAME = ""
# Information used to track which of our parsers were successful
PARSER_INFO = {}
# built_command writes into this global variable, yuck
built_command_output = []
# Diagnostic output
diagnostic_output = []
diagnostic_indent = 0
# Three diagnostic verbosity levels
VERY_VERBOSE, BRIEF_VERBOSE, NOT_VERBOSE = 2, 1, 0
# Pick some reasonable default values for settings
VERBOSITY, WRITE_TO_STDOUT, DEROFF_ONLY, KEEP_FILES = NOT_VERBOSE, False, False, False
def add_diagnostic(dgn, msg_verbosity=VERY_VERBOSE):
# Add a diagnostic message, if msg_verbosity <= VERBOSITY
if msg_verbosity <= VERBOSITY:
diagnostic_output.append(" " * diagnostic_indent + dgn)
def flush_diagnostics(where):
if diagnostic_output:
Fix manpath handling in create_manpage_completions.py (#6879) * Fix manpath handling in create_manpage_completions.py ...as well as do some (very!) light cleanup. Currently, `create_manpage_completions.py` does not properly understand/respect the `$MANPATH` variable. One important feature of `$MANPATH` is that an empty component (i.e. the trailing : in `foo:bar:`) expands to the 'default' or 'system' path -- that is to say, the path that would be used if `$MANPATH` was unset. This allows the user to extend the manpath without clobbering it, and has been a feature many Unices have included for years. The current implementation blindly uses the `$MANPATH` variable if it exists, which does not allow for this behaviour -- to expand the variable correctly, an external program must be invoked. Therefore, we first shell out to the 'proper' (read: best guess) external program. If that fails, we can then try to use `$MANPATH` directly/literally. Finally, if both of those are impossible, we can fall back to some common paths from widely used operating systems. Note that the `man.conf` parsing has been removed: this is because while many 'traditional' Unices (BSDs, Solaris, macOS) support this file, only macOS actually ships a file -- most other Unices use a `conf.d`-style layout and supporting that from our Python is impractical and silly at best. On GNU (read: Linux) systems, `mandb` uses `/etc/man_db.conf` with slightly different syntax and sematics. As this code-path has bitrotted (and likely never worked, anyway), just remove it. `create_manpage_completions.py` looks like it has suffered a lot of confusion and bitrot in general over the last few years -- and is overdue for a major refactoring. I am quite interested in tackling this, but I plan to wait until the go-ahead to drop support for Python 2 is given, as a major refactor/rewrite that still supports Python 2 (and thus ignores the ergonomic/API/syntax improvements of Python 3) does not make sense to me. Related: #5657 It would probably be good to revisit `man.fish` once again when a comprehensive refactor happens: hopefully every permutation of `man`/`$MANPATH` could be documented as part of that effort. * Restore /etc/man.conf parsing I was not aware that this codepath was used -- since it appeared that it would throw an error when it was reached. Redo it, using regex, and support parsing NetBSD man.conf as well (untested). * Fix create_manpage_completions.py under Python 2
2020-05-08 03:01:02 +08:00
output_str = "\n".join(diagnostic_output)
print(output_str, file=where)
diagnostic_output[:] = []
# Make sure we don't output the same completion multiple times, which can happen
# For example, xsubpp.1.gz and xsubpp5.10.1.gz
# This maps commands to lists of completions
already_output_completions = {}
def compile_and_search(regex, input):
options_section_regex = re.compile(regex, re.DOTALL)
options_section_matched = re.search(options_section_regex, input)
return options_section_matched
def unquote_double_quotes(data):
if len(data) < 2:
return data
if data[0] == '"' and data[len(data) - 1] == '"':
data = data[1 : len(data) - 1]
return data
def unquote_single_quotes(data):
if len(data) < 2:
return data
if data[0] == "`" and data[len(data) - 1] == "'":
data = data[1 : len(data) - 1]
return data
# Make a string of characters that are deemed safe in fish without needing to be escaped
# Note that space is not included
g_fish_safe_chars = frozenset(string.ascii_letters + string.digits + "_+-|/:=@~")
def fish_escape_single_quote(str):
# Escape a string if necessary so that it can be put in single quotes
# If it has no non-safe chars, there's nothing to do
if g_fish_safe_chars.issuperset(str):
return str
str = str.replace("\\", "\\\\") # Replace one backslash with two
str = str.replace(
"'", "\\'"
) # Replace one single quote with a backslash-single-quote
return "'" + str + "'"
# Make a string Unicode by attempting to decode it as latin-1, or UTF8. See #658
def lossy_unicode(s):
# All strings are unicode in Python 3
if IS_PY3 or isinstance(s, unicode):
return s
try:
return s.decode("latin-1")
except UnicodeEncodeError:
pass
try:
return s.decode("utf-8")
except UnicodeEncodeError:
pass
return s.decode("latin-1", "ignore")
def output_complete_command(cmdname, args, description, output_list):
comps = ["complete -c", cmdname]
comps.extend(args)
if description:
comps.append("-d")
comps.append(description)
output_list.append(lossy_unicode(" ").join([lossy_unicode(c) for c in comps]))
def built_command(options, description):
# print "Options are: ", options
man_optionlist = re.split(' |,|"|=|[|]', options)
fish_options = []
for optionstr in man_optionlist:
option = re.sub(r"(\[.*\])", "", optionstr)
option = option.strip(" \t\r\n[](){}.,:!")
2012-04-09 14:26:26 +08:00
# Skip some problematic cases
if option in ["-", "--"]:
continue
if any(c in "{}()" for c in option):
continue
if option.startswith("--"):
# New style long option (--recursive)
fish_options.append("-l " + fish_escape_single_quote(option[2:]))
elif option.startswith("-") and len(option) == 2:
# New style short option (-r)
fish_options.append("-s " + fish_escape_single_quote(option[1:]))
elif option.startswith("-") and len(option) > 2:
# Old style long option (-recursive)
fish_options.append("-o " + fish_escape_single_quote(option[1:]))
# Determine which options are new (not already in existing_options)
# Then add those to the existing options
existing_options = already_output_completions.setdefault(CMDNAME, set())
fish_options = [opt for opt in fish_options if opt not in existing_options]
existing_options.update(fish_options)
# Maybe it's all for naught
if not fish_options:
return
# Here's what we'll use to truncate if necessary
max_description_width = 78
if IS_PY3:
truncation_suffix = ""
else:
ELLIPSIS_CODE_POINT = 0x2026
truncation_suffix = unichr(ELLIPSIS_CODE_POINT)
# Try to include as many whole sentences as will fit
2013-01-28 04:58:52 +08:00
# Clean up some probably bogus escapes in the process
clean_desc = description.replace("\\'", "'").replace("\\.", ".")
sentences = clean_desc.split(".")
2013-01-28 04:58:52 +08:00
# Clean up "sentences" that are just whitespace
# But don't let it be empty
sentences = [x for x in sentences if x.strip()]
if not sentences:
sentences = [""]
udot = lossy_unicode(".")
uspace = lossy_unicode(" ")
truncated_description = lossy_unicode(sentences[0]) + udot
for line in sentences[1:]:
if not line:
continue
proposed_description = (
lossy_unicode(truncated_description) + uspace + lossy_unicode(line) + udot
)
if len(proposed_description) <= max_description_width:
# It fits
truncated_description = proposed_description
else:
# No fit
break
# Strip trailing dots
truncated_description = truncated_description.strip(udot)
# If the first sentence does not fit, truncate if necessary
if len(truncated_description) > max_description_width:
prefix_len = max_description_width - len(truncation_suffix)
truncated_description = truncated_description[:prefix_len] + truncation_suffix
# Escape some more things
truncated_description = fish_escape_single_quote(truncated_description)
escaped_cmd = fish_escape_single_quote(CMDNAME)
output_complete_command(
escaped_cmd, fish_options, truncated_description, built_command_output
)
def remove_groff_formatting(data):
data = data.replace("\\fI", "")
data = data.replace("\\fP", "")
data = data.replace("\\f1", "")
data = data.replace("\\fB", "")
data = data.replace("\\fR", "")
data = data.replace("\\e", "")
data = re.sub(".PD( \d+)", "", data)
data = data.replace(".BI", "")
data = data.replace(".BR", "")
data = data.replace("0.5i", "")
data = data.replace(".rb", "")
data = data.replace("\\^", "")
data = data.replace("{ ", "")
data = data.replace(" }", "")
data = data.replace("\ ", "")
data = data.replace("\-", "-")
data = data.replace("\&", "")
data = data.replace(".B", "")
data = data.replace("\-", "-")
data = data.replace(".I", "")
data = data.replace("\f", "")
data = data.replace("\(cq", "'")
return data
class ManParser(object):
def is_my_type(self, manpage):
return False
def parse_man_page(self, manpage):
return False
class Type1ManParser(ManParser):
def is_my_type(self, manpage):
return compile_and_search('\.SH "OPTIONS"(.*?)', manpage) is not None
def parse_man_page(self, manpage):
options_section_regex = re.compile('\.SH "OPTIONS"(.*?)(\.SH|\Z)', re.DOTALL)
options_section = re.search(options_section_regex, manpage).group(1)
options_parts_regex = re.compile("\.PP(.*?)\.RE", re.DOTALL)
options_matched = re.search(options_parts_regex, options_section)
add_diagnostic("Command is %r" % CMDNAME)
if options_matched is None:
add_diagnostic("Unable to find options")
if self.fallback(options_section):
return True
elif self.fallback2(options_section):
return True
return False
while options_matched is not None:
data = options_matched.group(1)
last_dotpp_index = data.rfind(".PP")
if last_dotpp_index != -1:
data = data[last_dotpp_index + 3 :]
data = remove_groff_formatting(data)
data = data.split(".RS 4")
if len(data) > 1: # and len(data[1]) <= 300):
optionName = data[0].strip()
if optionName.find("-") == -1:
add_diagnostic("%r doesn't contain '-' " % optionName)
else:
optionName = unquote_double_quotes(optionName)
optionName = unquote_single_quotes(optionName)
optionDescription = data[1].strip().replace("\n", " ")
built_command(optionName, optionDescription)
else:
add_diagnostic("Unable to split option from description")
return False
options_section = options_section[options_matched.end() - 3 :]
options_matched = re.search(options_parts_regex, options_section)
def fallback(self, options_section):
add_diagnostic("Trying fallback")
options_parts_regex = re.compile("\.TP( \d+)?(.*?)\.TP", re.DOTALL)
options_matched = re.search(options_parts_regex, options_section)
if options_matched is None:
add_diagnostic("Still not found")
return False
while options_matched is not None:
data = options_matched.group(2)
data = remove_groff_formatting(data)
data = data.strip()
data = data.split("\n", 1)
if len(data) > 1 and len(data[1].strip()) > 0: # and len(data[1])<400):
optionName = data[0].strip()
if optionName.find("-") == -1:
add_diagnostic("%r doesn't contain '-'" % optionName)
else:
optionName = unquote_double_quotes(optionName)
optionName = unquote_single_quotes(optionName)
optionDescription = data[1].strip().replace("\n", " ")
built_command(optionName, optionDescription)
else:
add_diagnostic("Unable to split option from description")
return False
options_section = options_section[options_matched.end() - 3 :]
options_matched = re.search(options_parts_regex, options_section)
return True
def fallback2(self, options_section):
add_diagnostic("Trying last chance fallback")
ix_remover_regex = re.compile("\.IX.*")
trailing_num_regex = re.compile("\\d+$")
options_parts_regex = re.compile("\.IP (.*?)\.IP", re.DOTALL)
options_section = re.sub(ix_remover_regex, "", options_section)
options_matched = re.search(options_parts_regex, options_section)
if options_matched is None:
add_diagnostic("Still (still!) not found")
return False
while options_matched is not None:
data = options_matched.group(1)
data = remove_groff_formatting(data)
data = data.strip()
data = data.split("\n", 1)
if len(data) > 1 and len(data[1].strip()) > 0: # and len(data[1])<400):
optionName = re.sub(trailing_num_regex, "", data[0].strip())
if "-" not in optionName:
add_diagnostic("%r doesn't contain '-'" % optionName)
else:
optionName = optionName.strip()
optionName = unquote_double_quotes(optionName)
optionName = unquote_single_quotes(optionName)
optionDescription = data[1].strip().replace("\n", " ")
built_command(optionName, optionDescription)
else:
add_diagnostic("Unable to split option from description")
return False
options_section = options_section[options_matched.end() - 3 :]
options_matched = re.search(options_parts_regex, options_section)
return True
class Type2ManParser(ManParser):
def is_my_type(self, manpage):
return compile_and_search("\.SH OPTIONS(.*?)", manpage) is not None
def parse_man_page(self, manpage):
options_section_regex = re.compile("\.SH OPTIONS(.*?)(\.SH|\Z)", re.DOTALL)
options_section = re.search(options_section_regex, manpage).group(1)
2020-11-22 21:39:48 +08:00
options_parts_regex = re.compile(
"\.[IT]P( \d+(\.\d)?i?)?(.*?)\.([IT]P|UNINDENT|UN|SH)", re.DOTALL
)
options_matched = re.search(options_parts_regex, options_section)
add_diagnostic("Command is %r" % CMDNAME)
if options_matched is None:
add_diagnostic("%r: Unable to find options" % self)
return False
while options_matched is not None:
data = options_matched.group(3)
data = remove_groff_formatting(data)
data = data.strip()
data = data.split("\n", 1)
if len(data) > 1 and len(data[1].strip()) > 0: # and len(data[1])<400):
optionName = data[0].strip()
if "-" not in optionName:
add_diagnostic("%r doesn't contain '-'" % optionName)
else:
optionName = unquote_double_quotes(optionName)
optionName = unquote_single_quotes(optionName)
optionDescription = data[1].strip().replace("\n", " ")
built_command(optionName, optionDescription)
else:
add_diagnostic("Unable to split option from description")
options_section = options_section[options_matched.end() - 3 :]
options_matched = re.search(options_parts_regex, options_section)
2020-11-22 21:39:48 +08:00
class Type3ManParser(ManParser):
def is_my_type(self, manpage):
return compile_and_search("\.SH DESCRIPTION(.*?)", manpage) != None
def parse_man_page(self, manpage):
options_section_regex = re.compile("\.SH DESCRIPTION(.*?)(\.SH|\Z)", re.DOTALL)
options_section = re.search(options_section_regex, manpage).group(1)
options_parts_regex = re.compile("\.TP(.*?)\.TP", re.DOTALL)
options_matched = re.search(options_parts_regex, options_section)
add_diagnostic("Command is %r" % CMDNAME)
if options_matched is None:
add_diagnostic("Unable to find options section")
return False
while options_matched != None:
data = options_matched.group(1)
data = remove_groff_formatting(data)
data = data.strip()
data = data.split("\n", 1)
if len(data) > 1: # and len(data[1])<400):
optionName = data[0].strip()
if optionName.find("-") == -1:
add_diagnostic("%r doesn't contain '-'" % optionName)
else:
optionName = unquote_double_quotes(optionName)
optionName = unquote_single_quotes(optionName)
optionDescription = data[1].strip().replace("\n", " ")
built_command(optionName, optionDescription)
else:
add_diagnostic("Unable to split option from description")
return False
options_section = options_section[options_matched.end() - 3 :]
options_matched = re.search(options_parts_regex, options_section)
class Type4ManParser(ManParser):
def is_my_type(self, manpage):
return compile_and_search("\.SH FUNCTION LETTERS(.*?)", manpage) != None
def parse_man_page(self, manpage):
2020-11-22 21:39:48 +08:00
options_section_regex = re.compile(
"\.SH FUNCTION LETTERS(.*?)(\.SH|\Z)", re.DOTALL
)
options_section = re.search(options_section_regex, manpage).group(1)
options_parts_regex = re.compile("\.TP(.*?)\.TP", re.DOTALL)
options_matched = re.search(options_parts_regex, options_section)
add_diagnostic("Command is %r" % CMDNAME)
if options_matched is None:
Fix manpath handling in create_manpage_completions.py (#6879) * Fix manpath handling in create_manpage_completions.py ...as well as do some (very!) light cleanup. Currently, `create_manpage_completions.py` does not properly understand/respect the `$MANPATH` variable. One important feature of `$MANPATH` is that an empty component (i.e. the trailing : in `foo:bar:`) expands to the 'default' or 'system' path -- that is to say, the path that would be used if `$MANPATH` was unset. This allows the user to extend the manpath without clobbering it, and has been a feature many Unices have included for years. The current implementation blindly uses the `$MANPATH` variable if it exists, which does not allow for this behaviour -- to expand the variable correctly, an external program must be invoked. Therefore, we first shell out to the 'proper' (read: best guess) external program. If that fails, we can then try to use `$MANPATH` directly/literally. Finally, if both of those are impossible, we can fall back to some common paths from widely used operating systems. Note that the `man.conf` parsing has been removed: this is because while many 'traditional' Unices (BSDs, Solaris, macOS) support this file, only macOS actually ships a file -- most other Unices use a `conf.d`-style layout and supporting that from our Python is impractical and silly at best. On GNU (read: Linux) systems, `mandb` uses `/etc/man_db.conf` with slightly different syntax and sematics. As this code-path has bitrotted (and likely never worked, anyway), just remove it. `create_manpage_completions.py` looks like it has suffered a lot of confusion and bitrot in general over the last few years -- and is overdue for a major refactoring. I am quite interested in tackling this, but I plan to wait until the go-ahead to drop support for Python 2 is given, as a major refactor/rewrite that still supports Python 2 (and thus ignores the ergonomic/API/syntax improvements of Python 3) does not make sense to me. Related: #5657 It would probably be good to revisit `man.fish` once again when a comprehensive refactor happens: hopefully every permutation of `man`/`$MANPATH` could be documented as part of that effort. * Restore /etc/man.conf parsing I was not aware that this codepath was used -- since it appeared that it would throw an error when it was reached. Redo it, using regex, and support parsing NetBSD man.conf as well (untested). * Fix create_manpage_completions.py under Python 2
2020-05-08 03:01:02 +08:00
print("Unable to find options section", file=sys.stderr)
return False
while options_matched != None:
data = options_matched.group(1)
data = remove_groff_formatting(data)
data = data.strip()
data = data.split("\n", 1)
if len(data) > 1: # and len(data[1])<400):
optionName = data[0].strip()
if optionName.find("-") == -1:
add_diagnostic("%r doesn't contain '-' " % optionName)
else:
optionName = unquote_double_quotes(optionName)
optionName = unquote_single_quotes(optionName)
optionDescription = data[1].strip().replace("\n", " ")
built_command(optionName, optionDescription)
else:
add_diagnostic("Unable to split option from description")
return False
options_section = options_section[options_matched.end() - 3 :]
options_matched = re.search(options_parts_regex, options_section)
2020-11-22 21:39:48 +08:00
class TypeScdocManParser(ManParser):
def is_my_type(self, manpage):
2020-11-22 21:39:48 +08:00
return (
compile_and_search(
r"\.(\\)(\") Generated by scdoc(.*?)\.SH OPTIONS(.*?)", manpage
)
!= None
)
def parse_man_page(self, manpage):
options_section_regex = re.compile("\.SH OPTIONS(.*?)\.SH", re.DOTALL)
options_section_matched = re.search(options_section_regex, manpage)
if options_section_matched is None:
return False
options_section = options_section_matched.group(1)
options_parts_regex = re.compile("(.*?).RE", re.DOTALL)
options_matched = re.match(options_parts_regex, options_section)
add_diagnostic("Command is %r" % CMDNAME)
if options_matched is None:
add_diagnostic("%r: Unable to find options" % self)
return False
while options_matched is not None:
# Get first option and move options_section
option = options_matched.group(1)
2020-11-22 21:39:48 +08:00
options_section = options_section[options_matched.end() : :]
options_matched = re.match(options_parts_regex, options_section)
option = remove_groff_formatting(option)
option = option.split("\n")
# Crean option list
option_clean = []
for line in option:
if line not in ["", ".P", ".RS 4"]:
option_clean.append(line)
# Shold be at least two lines
if len(option_clean) < 2:
add_diagnostic("Unable to split option from description")
continue
2020-11-22 21:39:48 +08:00
# Name and description, others lines are ignored
option_name = option_clean[0]
option_description = option_clean[1]
if "-" not in option_name:
add_diagnostic("%r doesn't contain '-'" % option_name)
option_name = unquote_double_quotes(option_name)
option_name = unquote_single_quotes(option_name)
built_command(option_name, option_description)
return True
2012-04-08 16:43:30 +08:00
class TypeDarwinManParser(ManParser):
def is_my_type(self, manpage):
return compile_and_search("\.S[hH] DESCRIPTION", manpage) is not None
def trim_groff(self, line):
# Remove initial period
if line.startswith("."):
line = line[1:]
# Skip leading groff crud
while re.match("[A-Z][a-z]\s", line):
line = line[3:]
# If the line ends with a space and then a period or comma, then erase the space
# This hack handles lines of the form '.Ar projectname .'
if line.endswith(" ,") or line.endswith(" ."):
line = line[:-2] + line[-1]
return line
def count_argument_dashes(self, line):
# Determine how many dashes the line has using the following regex hack
# Look for the start of a line, followed by a dot, then a sequence of
# one or more dashes ('Fl')
result = 0
if line.startswith("."):
line = line[4:]
while line.startswith("Fl "):
result = result + 1
line = line[3:]
return result
# Replace some groff escapes. There's a lot we don't bother to handle.
def groff_replace_escapes(self, line):
line = line.replace(".Nm", CMDNAME)
line = line.replace("\\ ", " ")
line = line.replace("\& ", "")
return line
def is_option(self, line):
return line.startswith(".It Fl")
def parse_man_page(self, manpage):
got_something = False
lines = manpage.splitlines()
# Discard lines until we get to ".sh Description"
while lines and not (
lines[0].startswith(".Sh DESCRIPTION")
or lines[0].startswith(".SH DESCRIPTION")
):
lines.pop(0)
while lines:
# Pop until we get to the next option
while lines and not self.is_option(lines[0]):
lines.pop(0)
if not lines:
continue
# Get the line and clean it up
line = lines.pop(0)
# Try to guess how many dashes this argument has
dash_count = self.count_argument_dashes(line)
line = self.groff_replace_escapes(line)
line = self.trim_groff(line)
line = line.strip()
if not line:
continue
# Extract the name
name = line.split(None, 2)[0]
# Extract the description
desc_lines = []
while lines and not self.is_option(lines[0]):
line = lossy_unicode(lines.pop(0).strip())
# Ignore comments
if line.startswith(r".\""):
continue
if line.startswith("."):
line = self.groff_replace_escapes(line)
line = self.trim_groff(line).strip()
if line:
desc_lines.append(line)
desc = " ".join(desc_lines)
if name == "-":
# Skip double -- arguments
continue
elif len(name) > 1:
# Output the command
built_command(("-" * dash_count) + name, desc)
got_something = True
elif len(name) == 1:
built_command("-" + name, desc)
got_something = True
return got_something
2012-04-08 16:43:30 +08:00
class TypeDeroffManParser(ManParser):
def is_my_type(self, manpage):
return True # We're optimists
2012-04-08 16:43:30 +08:00
def is_option(self, line):
return line.startswith("-")
2012-04-08 16:43:30 +08:00
def could_be_description(self, line):
return len(line) > 0 and not line.startswith("-")
def parse_man_page(self, manpage):
2012-04-08 16:43:30 +08:00
d = Deroffer()
d.deroff(manpage)
output = d.get_output()
lines = output.split("\n")
2012-04-08 16:43:30 +08:00
got_something = False
2012-04-08 16:43:30 +08:00
# Discard lines until we get to DESCRIPTION or OPTIONS
while lines and not (
lines[0].startswith("DESCRIPTION")
or lines[0].startswith("OPTIONS")
or lines[0].startswith("COMMAND OPTIONS")
):
2012-04-08 16:43:30 +08:00
lines.pop(0)
2012-04-09 14:26:26 +08:00
# Look for BUGS and stop there
for idx in range(len(lines)):
2012-04-09 14:26:26 +08:00
line = lines[idx]
if line.startswith("BUGS"):
2012-04-09 14:26:26 +08:00
# Drop remaining elements
lines[idx:] = []
break
2012-04-08 16:43:30 +08:00
while lines:
# Pop until we get to the next option
while lines and not self.is_option(lines[0]):
2012-04-09 14:26:26 +08:00
line = lines.pop(0)
2012-04-08 16:43:30 +08:00
if not lines:
continue
2012-04-08 16:43:30 +08:00
options = lines.pop(0)
2012-04-08 16:43:30 +08:00
# Pop until we get to either an empty line or a line starting with -
description = ""
2012-04-08 16:43:30 +08:00
while lines and self.could_be_description(lines[0]):
if description:
description += " "
2012-04-08 16:43:30 +08:00
description += lines.pop(0)
built_command(options, description)
2012-04-08 16:43:30 +08:00
got_something = True
2012-04-08 16:43:30 +08:00
return got_something
# Return whether the file at the given path is overwritable
# Raises IOError if it cannot be opened
def file_is_overwritable(path):
result = False
file = codecs.open(path, "r", encoding="utf-8")
for line in file:
# Skip leading empty lines
line = line.strip()
if not line:
continue
# We look in the initial run of lines that start with #
if not line.startswith("#"):
break
# See if this contains the magic word
if "Autogenerated" in line:
result = True
break
file.close()
return result
# Remove any and all autogenerated completions in the given directory
def cleanup_autogenerated_completions_in_directory(dir):
try:
for filename in os.listdir(dir):
# Skip non .fish files
if not filename.endswith(".fish"):
continue
path = os.path.join(dir, filename)
2015-11-08 01:33:07 +08:00
cleanup_autogenerated_file(path)
except OSError as err:
return False
# Delete the file if it is autogenerated
def cleanup_autogenerated_file(path):
try:
if file_is_overwritable(path):
os.remove(path)
except (OSError, IOError):
pass
2020-11-22 21:39:48 +08:00
def parse_manpage_at_path(manpage_path, output_directory):
# Return if CMDNAME is in 'ignoredcommands'
ignoredcommands = [
"cc",
"g++",
"gcc",
"c++",
"cpp",
"emacs",
"gprof",
"wget",
"ld",
"awk",
]
if CMDNAME in ignoredcommands:
return
# Clear diagnostics
global diagnostic_indent
diagnostic_output[:] = []
diagnostic_indent = 0
# Set up some diagnostics
add_diagnostic("Considering " + manpage_path)
diagnostic_indent += 1
if manpage_path.endswith(".gz"):
fd = gzip.open(manpage_path, "r")
manpage = fd.read()
if IS_PY3:
manpage = manpage.decode("latin-1")
elif manpage_path.endswith(".bz2"):
fd = bz2.BZ2File(manpage_path, "r")
manpage = fd.read()
if IS_PY3:
manpage = manpage.decode("latin-1")
elif manpage_path.endswith(".xz") or manpage_path.endswith(".lzma"):
if not lzma_available:
return
fd = lzma.LZMAFile(str(manpage_path), "r")
manpage = fd.read()
if IS_PY3:
manpage = manpage.decode("latin-1")
elif manpage_path.endswith((".1", ".2", ".3", ".4", ".5", ".6", ".7", ".8", ".9")):
if IS_PY3:
fd = open(manpage_path, "r", encoding="latin-1")
else:
fd = open(manpage_path, "r")
manpage = fd.read()
else:
return
fd.close()
manpage = str(manpage)
2012-04-08 16:43:30 +08:00
# Ignore perl's gazillion man pages
ignored_prefixes = ["perl", "zsh"]
2012-04-08 16:43:30 +08:00
for prefix in ignored_prefixes:
if CMDNAME.startswith(prefix):
2012-04-08 16:43:30 +08:00
return
2012-04-08 16:43:30 +08:00
# Ignore the millions of links to BUILTIN(1)
if "BUILTIN 1" in manpage or "builtin.1" in manpage:
2012-04-08 16:43:30 +08:00
return
# Clear the output list
built_command_output[:] = []
if DEROFF_ONLY:
parsers = [TypeDeroffManParser()]
else:
parsers = [
TypeScdocManParser(),
Type1ManParser(),
Type2ManParser(),
Type4ManParser(),
Type3ManParser(),
TypeDarwinManParser(),
TypeDeroffManParser(),
]
parsersToTry = [p for p in parsers if p.is_my_type(manpage)]
success = False
for parser in parsersToTry:
add_diagnostic("Trying %s" % parser.__class__.__name__)
diagnostic_indent += 1
success = parser.parse_man_page(manpage)
diagnostic_indent -= 1
# Make sure empty files aren't reported as success
if not built_command_output:
success = False
if success:
PARSER_INFO.setdefault(parser.__class__.__name__, []).append(CMDNAME)
break
if success:
if WRITE_TO_STDOUT:
output_file = sys.stdout
else:
fullpath = os.path.join(output_directory, CMDNAME + ".fish")
try:
output_file = codecs.open(fullpath, "w", encoding="utf-8")
except IOError as err:
add_diagnostic(
2020-11-22 21:39:48 +08:00
"Unable to open file '%s': error(%d): %s"
% (fullpath, err.errno, err.strerror)
)
return False
# Output the magic word Autogenerated so we can tell if we can overwrite this
2020-11-22 21:39:48 +08:00
built_command_output.insert(
0, "# " + CMDNAME + "\n# Autogenerated from man page " + manpage_path
)
# built_command_output.insert(2, "# using " + parser.__class__.__name__) # XXX MISATTRIBUTES THE CULPABLE PARSER! Was really using Type2 but reporting TypeDeroffManParser
for line in built_command_output:
output_file.write(line)
output_file.write("\n")
output_file.write("\n")
add_diagnostic(manpage_path + " parsed successfully")
if output_file != sys.stdout:
output_file.close()
else:
parser_names = ", ".join(p.__class__.__name__ for p in parsersToTry)
# add_diagnostic('%s contains no options or is unparsable' % manpage_path, BRIEF_VERBOSE)
add_diagnostic(
"%s contains no options or is unparsable (tried parser %s)"
% (manpage_path, parser_names),
BRIEF_VERBOSE,
)
return success
def parse_and_output_man_pages(paths, output_directory, show_progress):
global diagnostic_indent, CMDNAME
paths.sort()
total_count = len(paths)
successful_count, index = 0, 0
padding_len = len(str(total_count))
last_progress_string_length = 0
if show_progress and not WRITE_TO_STDOUT:
print(
"Parsing man pages and writing completions to {0}".format(output_directory)
)
man_page_suffixes = set([os.path.splitext(m)[1][1:] for m in paths])
lzma_xz_occurs = "xz" in man_page_suffixes or "lzma" in man_page_suffixes
if lzma_xz_occurs and not lzma_available:
add_diagnostic(
'At least one man page is compressed with lzma or xz, but the "lzma" module is not available.'
" Any man page compressed with either will be skipped.",
NOT_VERBOSE,
)
flush_diagnostics(sys.stderr)
for manpage_path in paths:
index += 1
# Get the "base" command, e.g. gcc.1.gz -> gcc
man_file_name = os.path.basename(manpage_path)
CMDNAME = man_file_name.split(".", 1)[0]
# Show progress if we're doing that
if show_progress:
progress_str = " {0} / {1} : {2}".format(
(str(index).rjust(padding_len)), total_count, man_file_name
)
# Pad on the right with spaces so we overwrite whatever we wrote last time
padded_progress_str = progress_str.ljust(last_progress_string_length)
last_progress_string_length = len(progress_str)
sys.stdout.write("\r{0}\r".format(padded_progress_str))
sys.stdout.flush()
try:
if parse_manpage_at_path(manpage_path, output_directory):
successful_count += 1
except IOError:
diagnostic_indent = 0
add_diagnostic("Cannot open " + manpage_path)
2012-04-08 16:43:30 +08:00
except (KeyboardInterrupt, SystemExit):
raise
except:
add_diagnostic(
"Error parsing %s: %s" % (manpage_path, sys.exc_info()[0]),
BRIEF_VERBOSE,
)
flush_diagnostics(sys.stderr)
traceback.print_exc(file=sys.stderr)
flush_diagnostics(sys.stderr)
print("") # Newline after loop
add_diagnostic(
"Successfully parsed %d / %d pages" % (successful_count, total_count),
BRIEF_VERBOSE,
)
flush_diagnostics(sys.stderr)
def get_paths_from_man_locations():
# Return all the paths to man(1) and man(8) files in the manpath
Fix manpath handling in create_manpage_completions.py (#6879) * Fix manpath handling in create_manpage_completions.py ...as well as do some (very!) light cleanup. Currently, `create_manpage_completions.py` does not properly understand/respect the `$MANPATH` variable. One important feature of `$MANPATH` is that an empty component (i.e. the trailing : in `foo:bar:`) expands to the 'default' or 'system' path -- that is to say, the path that would be used if `$MANPATH` was unset. This allows the user to extend the manpath without clobbering it, and has been a feature many Unices have included for years. The current implementation blindly uses the `$MANPATH` variable if it exists, which does not allow for this behaviour -- to expand the variable correctly, an external program must be invoked. Therefore, we first shell out to the 'proper' (read: best guess) external program. If that fails, we can then try to use `$MANPATH` directly/literally. Finally, if both of those are impossible, we can fall back to some common paths from widely used operating systems. Note that the `man.conf` parsing has been removed: this is because while many 'traditional' Unices (BSDs, Solaris, macOS) support this file, only macOS actually ships a file -- most other Unices use a `conf.d`-style layout and supporting that from our Python is impractical and silly at best. On GNU (read: Linux) systems, `mandb` uses `/etc/man_db.conf` with slightly different syntax and sematics. As this code-path has bitrotted (and likely never worked, anyway), just remove it. `create_manpage_completions.py` looks like it has suffered a lot of confusion and bitrot in general over the last few years -- and is overdue for a major refactoring. I am quite interested in tackling this, but I plan to wait until the go-ahead to drop support for Python 2 is given, as a major refactor/rewrite that still supports Python 2 (and thus ignores the ergonomic/API/syntax improvements of Python 3) does not make sense to me. Related: #5657 It would probably be good to revisit `man.fish` once again when a comprehensive refactor happens: hopefully every permutation of `man`/`$MANPATH` could be documented as part of that effort. * Restore /etc/man.conf parsing I was not aware that this codepath was used -- since it appeared that it would throw an error when it was reached. Redo it, using regex, and support parsing NetBSD man.conf as well (untested). * Fix create_manpage_completions.py under Python 2
2020-05-08 03:01:02 +08:00
parent_paths = []
# Most (GNU, macOS, Haiku) modern implementations of man support being called with `--path`.
# Traditional implementations require a second `manpath` program: examples include FreeBSD and Solaris.
# Prefer an external program first because these programs return a superset of the $MANPATH variable.
for prog in [["man", "--path"], ["manpath"]]:
try:
output = subprocess.check_output(prog, stderr=DEVNULL)
if IS_PY3:
output = output.decode("latin-1")
parent_paths = output.strip().split(":")
break
Fix manpath handling in create_manpage_completions.py (#6879) * Fix manpath handling in create_manpage_completions.py ...as well as do some (very!) light cleanup. Currently, `create_manpage_completions.py` does not properly understand/respect the `$MANPATH` variable. One important feature of `$MANPATH` is that an empty component (i.e. the trailing : in `foo:bar:`) expands to the 'default' or 'system' path -- that is to say, the path that would be used if `$MANPATH` was unset. This allows the user to extend the manpath without clobbering it, and has been a feature many Unices have included for years. The current implementation blindly uses the `$MANPATH` variable if it exists, which does not allow for this behaviour -- to expand the variable correctly, an external program must be invoked. Therefore, we first shell out to the 'proper' (read: best guess) external program. If that fails, we can then try to use `$MANPATH` directly/literally. Finally, if both of those are impossible, we can fall back to some common paths from widely used operating systems. Note that the `man.conf` parsing has been removed: this is because while many 'traditional' Unices (BSDs, Solaris, macOS) support this file, only macOS actually ships a file -- most other Unices use a `conf.d`-style layout and supporting that from our Python is impractical and silly at best. On GNU (read: Linux) systems, `mandb` uses `/etc/man_db.conf` with slightly different syntax and sematics. As this code-path has bitrotted (and likely never worked, anyway), just remove it. `create_manpage_completions.py` looks like it has suffered a lot of confusion and bitrot in general over the last few years -- and is overdue for a major refactoring. I am quite interested in tackling this, but I plan to wait until the go-ahead to drop support for Python 2 is given, as a major refactor/rewrite that still supports Python 2 (and thus ignores the ergonomic/API/syntax improvements of Python 3) does not make sense to me. Related: #5657 It would probably be good to revisit `man.fish` once again when a comprehensive refactor happens: hopefully every permutation of `man`/`$MANPATH` could be documented as part of that effort. * Restore /etc/man.conf parsing I was not aware that this codepath was used -- since it appeared that it would throw an error when it was reached. Redo it, using regex, and support parsing NetBSD man.conf as well (untested). * Fix create_manpage_completions.py under Python 2
2020-05-08 03:01:02 +08:00
except (OSError, subprocess.CalledProcessError):
continue
# If we can't have the OS interpret $MANPATH, just use it as-is (gulp).
if not parent_paths and os.getenv("MANPATH"):
parent_paths = os.getenv("MANPATH").strip().split(":")
Fix manpath handling in create_manpage_completions.py (#6879) * Fix manpath handling in create_manpage_completions.py ...as well as do some (very!) light cleanup. Currently, `create_manpage_completions.py` does not properly understand/respect the `$MANPATH` variable. One important feature of `$MANPATH` is that an empty component (i.e. the trailing : in `foo:bar:`) expands to the 'default' or 'system' path -- that is to say, the path that would be used if `$MANPATH` was unset. This allows the user to extend the manpath without clobbering it, and has been a feature many Unices have included for years. The current implementation blindly uses the `$MANPATH` variable if it exists, which does not allow for this behaviour -- to expand the variable correctly, an external program must be invoked. Therefore, we first shell out to the 'proper' (read: best guess) external program. If that fails, we can then try to use `$MANPATH` directly/literally. Finally, if both of those are impossible, we can fall back to some common paths from widely used operating systems. Note that the `man.conf` parsing has been removed: this is because while many 'traditional' Unices (BSDs, Solaris, macOS) support this file, only macOS actually ships a file -- most other Unices use a `conf.d`-style layout and supporting that from our Python is impractical and silly at best. On GNU (read: Linux) systems, `mandb` uses `/etc/man_db.conf` with slightly different syntax and sematics. As this code-path has bitrotted (and likely never worked, anyway), just remove it. `create_manpage_completions.py` looks like it has suffered a lot of confusion and bitrot in general over the last few years -- and is overdue for a major refactoring. I am quite interested in tackling this, but I plan to wait until the go-ahead to drop support for Python 2 is given, as a major refactor/rewrite that still supports Python 2 (and thus ignores the ergonomic/API/syntax improvements of Python 3) does not make sense to me. Related: #5657 It would probably be good to revisit `man.fish` once again when a comprehensive refactor happens: hopefully every permutation of `man`/`$MANPATH` could be documented as part of that effort. * Restore /etc/man.conf parsing I was not aware that this codepath was used -- since it appeared that it would throw an error when it was reached. Redo it, using regex, and support parsing NetBSD man.conf as well (untested). * Fix create_manpage_completions.py under Python 2
2020-05-08 03:01:02 +08:00
# Fallback: With mandoc (OpenBSD, embedded Linux) and NetBSD man, the only way to get the default manpath is by reading /etc.
if not parent_paths:
try:
with open("/etc/man.conf", "r") as file:
data = file.read()
for key in ["MANPATH", "_default"]:
for match in re.findall(r"^%s\s+(.*)$" % key, data, re.I | re.M):
parent_paths.append(match)
except FileNotFoundError:
pass
# Fallback: hard-code some common paths. These should be likely for FHS Linux distros, BSDs, and macOS.
if not parent_paths:
parent_paths = ["/usr/share/man", "/usr/local/man", "/usr/local/share/man"]
print(
"Unable to get the manpath, falling back to %s." % ":".join(parent_paths),
"Explictly set $MANPATH to fix this error.",
file=sys.stderr,
Fix manpath handling in create_manpage_completions.py (#6879) * Fix manpath handling in create_manpage_completions.py ...as well as do some (very!) light cleanup. Currently, `create_manpage_completions.py` does not properly understand/respect the `$MANPATH` variable. One important feature of `$MANPATH` is that an empty component (i.e. the trailing : in `foo:bar:`) expands to the 'default' or 'system' path -- that is to say, the path that would be used if `$MANPATH` was unset. This allows the user to extend the manpath without clobbering it, and has been a feature many Unices have included for years. The current implementation blindly uses the `$MANPATH` variable if it exists, which does not allow for this behaviour -- to expand the variable correctly, an external program must be invoked. Therefore, we first shell out to the 'proper' (read: best guess) external program. If that fails, we can then try to use `$MANPATH` directly/literally. Finally, if both of those are impossible, we can fall back to some common paths from widely used operating systems. Note that the `man.conf` parsing has been removed: this is because while many 'traditional' Unices (BSDs, Solaris, macOS) support this file, only macOS actually ships a file -- most other Unices use a `conf.d`-style layout and supporting that from our Python is impractical and silly at best. On GNU (read: Linux) systems, `mandb` uses `/etc/man_db.conf` with slightly different syntax and sematics. As this code-path has bitrotted (and likely never worked, anyway), just remove it. `create_manpage_completions.py` looks like it has suffered a lot of confusion and bitrot in general over the last few years -- and is overdue for a major refactoring. I am quite interested in tackling this, but I plan to wait until the go-ahead to drop support for Python 2 is given, as a major refactor/rewrite that still supports Python 2 (and thus ignores the ergonomic/API/syntax improvements of Python 3) does not make sense to me. Related: #5657 It would probably be good to revisit `man.fish` once again when a comprehensive refactor happens: hopefully every permutation of `man`/`$MANPATH` could be documented as part of that effort. * Restore /etc/man.conf parsing I was not aware that this codepath was used -- since it appeared that it would throw an error when it was reached. Redo it, using regex, and support parsing NetBSD man.conf as well (untested). * Fix create_manpage_completions.py under Python 2
2020-05-08 03:01:02 +08:00
)
result = []
for parent_path in parent_paths:
for section in ["man1", "man6", "man8"]:
directory_path = os.path.join(parent_path, section)
try:
names = os.listdir(directory_path)
Fix manpath handling in create_manpage_completions.py (#6879) * Fix manpath handling in create_manpage_completions.py ...as well as do some (very!) light cleanup. Currently, `create_manpage_completions.py` does not properly understand/respect the `$MANPATH` variable. One important feature of `$MANPATH` is that an empty component (i.e. the trailing : in `foo:bar:`) expands to the 'default' or 'system' path -- that is to say, the path that would be used if `$MANPATH` was unset. This allows the user to extend the manpath without clobbering it, and has been a feature many Unices have included for years. The current implementation blindly uses the `$MANPATH` variable if it exists, which does not allow for this behaviour -- to expand the variable correctly, an external program must be invoked. Therefore, we first shell out to the 'proper' (read: best guess) external program. If that fails, we can then try to use `$MANPATH` directly/literally. Finally, if both of those are impossible, we can fall back to some common paths from widely used operating systems. Note that the `man.conf` parsing has been removed: this is because while many 'traditional' Unices (BSDs, Solaris, macOS) support this file, only macOS actually ships a file -- most other Unices use a `conf.d`-style layout and supporting that from our Python is impractical and silly at best. On GNU (read: Linux) systems, `mandb` uses `/etc/man_db.conf` with slightly different syntax and sematics. As this code-path has bitrotted (and likely never worked, anyway), just remove it. `create_manpage_completions.py` looks like it has suffered a lot of confusion and bitrot in general over the last few years -- and is overdue for a major refactoring. I am quite interested in tackling this, but I plan to wait until the go-ahead to drop support for Python 2 is given, as a major refactor/rewrite that still supports Python 2 (and thus ignores the ergonomic/API/syntax improvements of Python 3) does not make sense to me. Related: #5657 It would probably be good to revisit `man.fish` once again when a comprehensive refactor happens: hopefully every permutation of `man`/`$MANPATH` could be documented as part of that effort. * Restore /etc/man.conf parsing I was not aware that this codepath was used -- since it appeared that it would throw an error when it was reached. Redo it, using regex, and support parsing NetBSD man.conf as well (untested). * Fix create_manpage_completions.py under Python 2
2020-05-08 03:01:02 +08:00
except OSError:
names = []
names.sort()
for name in names:
result.append(os.path.join(directory_path, name))
return result
if __name__ == "__main__":
script_name = sys.argv[0]
parser = argparse.ArgumentParser(
description="create_manpage_completions: Generate fish-shell completions from manpages"
)
parser.add_argument(
"-c",
"--cleanup-in",
type=str,
help="Directories to clean up in",
action="append",
)
parser.add_argument(
2020-11-22 21:39:48 +08:00
"-d",
"--directory",
type=str,
help="The directory to save the completions in",
)
parser.add_argument(
"-k",
"--keep",
help="Whether to keep files in the target directory",
action="store_true",
)
parser.add_argument(
2020-11-22 21:39:48 +08:00
"-m",
"--manpath",
help="Whether to use manpath",
action="store_true",
)
parser.add_argument(
2020-11-22 21:39:48 +08:00
"-p",
"--progress",
help="Whether to show progress",
action="store_true",
)
parser.add_argument(
2020-11-22 21:39:48 +08:00
"-s",
"--stdout",
help="Write the completions to stdout",
action="store_true",
)
parser.add_argument(
"-v",
"--verbose",
type=int,
choices=[0, 1, 2],
help="The level of debug output to show",
)
parser.add_argument(
2020-11-22 21:39:48 +08:00
"-z",
"--deroff-only",
help="Whether to just deroff",
action="store_true",
)
2020-04-05 02:23:35 +08:00
parser.add_argument("file_paths", type=str, nargs="*")
args = parser.parse_args()
if args.verbose:
VERBOSITY = args.verbose
if args.stdout:
WRITE_TO_STDOUT = True
if args.deroff_only:
DEROFF_ONLY = True
if args.keep:
KEEP_FILES = True
if args.manpath:
# Fetch all man1 and man8 files from the manpath or man.conf
args.file_paths.extend(get_paths_from_man_locations())
# Directories within which we will clean up autogenerated completions
# This script originally wrote completions into ~/.config/fish/completions
# Now it writes them into a separate directory
if args.cleanup_in:
for cleanup_dir in args.cleanup_in:
cleanup_autogenerated_completions_in_directory(cleanup_dir)
if not args.file_paths:
if args.manpath:
print("No paths specified and I can't make sense of your MANPATH")
print("Please either give paths or set $MANPATH and try again")
else:
print("No paths specified")
sys.exit(0)
if not args.stdout and not args.directory:
# Default to ~/.local/share/fish/generated_completions/
# Create it if it doesn't exist
xdg_data_home = os.getenv("XDG_DATA_HOME", "~/.local/share")
args.directory = os.path.expanduser(
xdg_data_home + "/fish/generated_completions/"
)
try:
os.makedirs(args.directory)
except OSError as e:
if e.errno != errno.EEXIST:
raise
if not args.stdout and not args.keep:
# Remove old generated files
cleanup_autogenerated_completions_in_directory(args.directory)
parse_and_output_man_pages(args.file_paths, args.directory, args.progress)