drop unused wildcard module

Some of the definitions in wildcard.h are still used in C++.
This commit is contained in:
David Adam 2024-01-02 00:48:25 +08:00
parent 118dfe776a
commit 3cdca4738a
2 changed files with 0 additions and 934 deletions

View File

@ -1,883 +0,0 @@
// Fish needs it's own globbing implementation to support tab-expansion of globbed parameters. Also
// provides recursive wildcards using **.
#include "config.h" // IWYU pragma: keep
#include "wildcard.h"
#include <errno.h>
#include <stdint.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <algorithm>
#include <cwchar>
#include <functional>
#include <string>
#include <unordered_set>
#include <utility>
#include <vector>
#include "common.h"
#include "complete.h"
#include "enum_set.h"
#include "expand.h"
#include "fallback.h" // IWYU pragma: keep
#include "future_feature_flags.h"
#include "maybe.h"
#include "path.h"
#include "wcstringutil.h"
#include "wutil.h" // IWYU pragma: keep
/// Finds an internal (ANY_STRING, etc.) style wildcard, or wcstring::npos.
static size_t wildcard_find(const wchar_t *wc) {
for (size_t i = 0; wc[i] != L'\0'; i++) {
if (wc[i] == ANY_CHAR || wc[i] == ANY_STRING || wc[i] == ANY_STRING_RECURSIVE) {
return i;
}
}
return wcstring::npos;
}
// This does something horrible refactored from an even more horrible function.
static wcstring resolve_description(const wcstring &full_completion, wcstring *completion,
expand_flags_t expand_flags,
const description_func_t &desc_func) {
size_t complete_sep_loc = completion->find(PROG_COMPLETE_SEP);
if (complete_sep_loc != wcstring::npos) {
// This completion has an embedded description, do not use the generic description.
wcstring description = completion->substr(complete_sep_loc + 1);
completion->resize(complete_sep_loc);
return description;
}
if (desc_func && (expand_flags & expand_flag::gen_descriptions)) {
return desc_func(full_completion);
}
return wcstring{};
}
namespace {
// A transient parameter pack needed by wildcard_complete.
struct wc_complete_pack_t {
const wcstring &orig; // the original string, transient
const description_func_t &desc_func; // function for generating descriptions
expand_flags_t expand_flags;
wc_complete_pack_t(const wcstring &str, const description_func_t &df, expand_flags_t fl)
: orig(str), desc_func(df), expand_flags(fl) {}
};
} // namespace
// Weirdly specific and non-reusable helper function that makes its one call site much clearer.
static bool has_prefix_match(const completion_receiver_t *comps, size_t first) {
if (comps != nullptr) {
const size_t after_count = comps->size();
for (size_t j = first; j < after_count; j++) {
const auto &match = comps->at(j).match;
if (match.type <= string_fuzzy_match_t::contain_type_t::prefix &&
match.case_fold == string_fuzzy_match_t::case_fold_t::samecase) {
return true;
}
}
}
return false;
}
/// Matches the string against the wildcard, and if the wildcard is a possible completion of the
/// string, the remainder of the string is inserted into the out vector.
///
/// We ignore ANY_STRING_RECURSIVE here. The consequence is that you cannot tab complete **
/// wildcards. This is historic behavior.
static wildcard_result_t wildcard_complete_internal(const wchar_t *const str, size_t str_len,
const wchar_t *const wc, size_t wc_len,
const wc_complete_pack_t &params,
complete_flags_t flags,
completion_receiver_t *out,
bool is_first_call = false) {
assert(str != nullptr);
assert(wc != nullptr);
// Maybe early out for hidden files. We require that the wildcard match these exactly (i.e. a
// dot); ANY_STRING not allowed.
if (is_first_call && !params.expand_flags.get(expand_flag::allow_nonliteral_leading_dot) &&
str[0] == L'.' && wc[0] != L'.') {
return wildcard_result_t::no_match;
}
// Locate the next wildcard character position, e.g. ANY_CHAR or ANY_STRING.
const size_t next_wc_char_pos = wildcard_find(wc);
// Maybe we have no more wildcards at all. This includes the empty string.
if (next_wc_char_pos == wcstring::npos) {
// Try matching.
maybe_t<string_fuzzy_match_t> match = string_fuzzy_match_string(wc, str);
if (!match) return wildcard_result_t::no_match;
// If we're not allowing fuzzy match, then we require a prefix match.
bool needs_prefix_match = !(params.expand_flags & expand_flag::fuzzy_match);
if (needs_prefix_match && !match->is_exact_or_prefix()) {
return wildcard_result_t::no_match;
}
// The match was successful. If the string is not requested we're done.
if (out == nullptr) {
return wildcard_result_t::match;
}
// Wildcard complete.
bool full_replacement =
match->requires_full_replacement() || (flags & COMPLETE_REPLACES_TOKEN);
// If we are not replacing the token, be careful to only store the part of the string after
// the wildcard.
assert(!full_replacement || wc_len <= str_len);
wcstring out_completion = full_replacement ? params.orig : str + wc_len;
wcstring out_desc = resolve_description(params.orig, &out_completion, params.expand_flags,
params.desc_func);
// Note: out_completion may be empty if the completion really is empty, e.g. tab-completing
// 'foo' when a file 'foo' exists.
complete_flags_t local_flags = flags | (full_replacement ? COMPLETE_REPLACES_TOKEN : 0);
if (!out->add(std::move(out_completion), std::move(out_desc), local_flags, *match)) {
return wildcard_result_t::overflow;
}
return wildcard_result_t::match;
} else if (next_wc_char_pos > 0) {
// The literal portion of a wildcard cannot be longer than the string itself,
// e.g. `abc*` can never match a string that is only two characters long.
if (next_wc_char_pos >= str_len) {
return wildcard_result_t::no_match;
}
// Here we have a non-wildcard prefix. Note that we don't do fuzzy matching for stuff before
// a wildcard, so just do case comparison and then recurse.
if (std::wcsncmp(str, wc, next_wc_char_pos) == 0) {
// Normal match.
return wildcard_complete_internal(str + next_wc_char_pos, str_len - next_wc_char_pos,
wc + next_wc_char_pos, wc_len - next_wc_char_pos,
params, flags, out);
}
if (wcsncasecmp(str, wc, next_wc_char_pos) == 0) {
// Case insensitive match.
return wildcard_complete_internal(str + next_wc_char_pos, str_len - next_wc_char_pos,
wc + next_wc_char_pos, wc_len - next_wc_char_pos,
params, flags | COMPLETE_REPLACES_TOKEN, out);
}
return wildcard_result_t::no_match;
}
// Our first character is a wildcard.
assert(next_wc_char_pos == 0);
switch (wc[0]) {
case ANY_CHAR: {
if (str[0] == L'\0') {
return wildcard_result_t::no_match;
}
return wildcard_complete_internal(str + 1, str_len - 1, wc + 1, wc_len - 1, params,
flags, out);
}
case ANY_STRING: {
// Hackish. If this is the last character of the wildcard, then just complete with
// the empty string. This fixes cases like "f*<tab>" -> "f*o".
if (wc[1] == L'\0') {
return wildcard_complete_internal(L"", 0, L"", 0, params, flags, out);
}
// Try all submatches. Issue #929: if the recursive call gives us a prefix match,
// just stop. This is sloppy - what we really want to do is say, once we've seen a
// match of a particular type, ignore all matches of that type further down the
// string, such that the wildcard produces the "minimal match.".
bool has_match = false;
for (size_t i = 0; str[i] != L'\0'; i++) {
const size_t before_count = out ? out->size() : 0;
auto submatch_res = wildcard_complete_internal(str + i, str_len - i, wc + 1,
wc_len - 1, params, flags, out);
switch (submatch_res) {
case wildcard_result_t::no_match:
break;
case wildcard_result_t::match:
has_match = true;
// If out is NULL, we don't care about the actual matches. If out is not
// NULL but we have a prefix match, stop there.
if (out == nullptr || has_prefix_match(out, before_count)) {
return wildcard_result_t::match;
}
break;
case wildcard_result_t::cancel:
case wildcard_result_t::overflow:
// Note early return.
return submatch_res;
}
}
return has_match ? wildcard_result_t::match : wildcard_result_t::no_match;
}
case ANY_STRING_RECURSIVE: {
// We don't even try with this one.
return wildcard_result_t::no_match;
}
default: {
DIE("unreachable code reached");
}
}
DIE("unreachable code reached");
}
wildcard_result_t wildcard_complete(const wcstring &str, const wchar_t *wc,
const std::function<wcstring(const wcstring &)> &desc_func,
completion_receiver_t *out, expand_flags_t expand_flags,
complete_flags_t flags) {
// Note out may be NULL.
assert(wc != nullptr);
wc_complete_pack_t params(str, desc_func, expand_flags);
return wildcard_complete_internal(str.c_str(), str.size(), wc, std::wcslen(wc), params, flags,
out, true /* first call */);
}
/// Obtain a description string for the file specified by the filename.
///
/// It assumes the file exists and won't run stat() to confirm.
/// The returned value is a string constant and should not be free'd.
///
/// \param filename The file for which to find a description string
/// \param is_dir Whether the file is a directory or not (might be behind a link)
/// \param is_link Whether it's a link (that might point to a directory)
/// \param definitely_executable Whether we know that it is executable, or don't know
static const wchar_t *file_get_desc(const wcstring &filename, bool is_dir, bool is_link,
bool definitely_executable) {
if (is_link) {
if (is_dir) {
return COMPLETE_DIRECTORY_SYMLINK_DESC;
}
if (definitely_executable || waccess(filename, X_OK) == 0) {
return COMPLETE_EXEC_LINK_DESC;
}
return COMPLETE_SYMLINK_DESC;
} else if (is_dir) {
return COMPLETE_DIRECTORY_DESC;
} else if (definitely_executable || waccess(filename, X_OK) == 0) {
return COMPLETE_EXEC_DESC;
}
return COMPLETE_FILE_DESC;
}
/// Test if the given file is an executable (if executables_only) or directory (if
/// directories_only). If it matches, call wildcard_complete() with some description that we make
/// up. Note that the filename came from a readdir() call, so we know it exists.
static bool wildcard_test_flags_then_complete(const wcstring &filepath, const wcstring &filename,
const wchar_t *wc, expand_flags_t expand_flags,
completion_receiver_t *out,
const dir_iter_t::entry_t &entry) {
const bool executables_only = expand_flags & expand_flag::executables_only;
const bool need_directory = expand_flags & expand_flag::directories_only;
// Fast path: If we need directories, and we already know it is one,
// and we don't need to do anything else, just return it.
// This is a common case for cd completions, and removes the `stat` entirely in case the system
// supports it.
if (entry.is_dir() && !executables_only && !(expand_flags & expand_flag::gen_descriptions)) {
return wildcard_complete(filename + L'/', wc, const_desc(L""), out, expand_flags,
COMPLETE_NO_SPACE) == wildcard_result_t::match;
}
// Check if it will match before stat().
if (wildcard_complete(filename, wc, {}, nullptr, expand_flags, 0) != wildcard_result_t::match) {
return false;
}
if (need_directory && !entry.is_dir()) {
return false;
}
if (executables_only && is_windows_subsystem_for_linux() &&
string_suffixes_string_case_insensitive(L".dll", filename)) {
return false;
}
// regular file *excludes* broken links - we have no use for them as commands.
const bool is_regular_file = entry.check_type() == dir_entry_type_t::reg;
if (executables_only && (!is_regular_file || waccess(filepath, X_OK) != 0)) {
return false;
}
// Compute the description.
// This is effectively only for command completions,
// because we disable descriptions for regular file completions.
wcstring desc;
if (expand_flags & expand_flag::gen_descriptions) {
bool is_link = false;
if (!entry.is_possible_link().has_value()) {
// We do not know it's a link from the d_type,
// so we will have to do an lstat().
struct stat lstat_buf = {};
int lstat_res = lwstat(filepath, &lstat_buf);
if (lstat_res < 0) {
// This file is no longer be usable, skip it.
return false;
}
if (S_ISLNK(lstat_buf.st_mode)) {
is_link = true;
}
} else {
is_link = entry.is_possible_link().value();
}
// If we have executables_only, we already checked waccess above,
// so we tell file_get_desc that this file is definitely executable so it can skip the
// check.
desc = file_get_desc(filepath, entry.is_dir(), is_link, executables_only);
}
// Append a / if this is a directory. Note this requirement may be the only reason we have to
// call stat() in some cases.
auto desc_func = const_desc(desc);
if (entry.is_dir()) {
return wildcard_complete(filename + L'/', wc, desc_func, out, expand_flags,
COMPLETE_NO_SPACE) == wildcard_result_t::match;
}
return wildcard_complete(filename, wc, desc_func, out, expand_flags, 0) ==
wildcard_result_t::match;
}
namespace {
class wildcard_expander_t {
// A function to call to check cancellation.
cancel_checker_t cancel_checker;
// The working directory to resolve paths against
const wcstring working_directory;
// The set of items we have resolved, used to efficiently avoid duplication.
std::unordered_set<wcstring> completion_set;
// The set of file IDs we have visited, used to avoid symlink loops.
std::unordered_set<file_id_t> visited_files;
// Flags controlling expansion.
const expand_flags_t flags;
// Resolved items get inserted into here. This is transient of course.
completion_receiver_t *resolved_completions;
// Whether we have been interrupted.
bool did_interrupt{false};
// Whether we have overflowed.
bool did_overflow{false};
// Whether we have successfully added any completions.
bool did_add{false};
// Whether some parent expansion is fuzzy, and therefore completions always prepend their prefix
// This variable is a little suspicious - it should be passed along, not stored here
// If we ever try to do parallel wildcard expansion we'll have to remove this
bool has_fuzzy_ancestor{false};
/// We are a trailing slash - expand at the end.
void expand_trailing_slash(const wcstring &base_dir, const wcstring &prefix);
/// Given a directory base_dir, which is opened as base_dir_iter, expand an intermediate segment
/// of the wildcard. Treat ANY_STRING_RECURSIVE as ANY_STRING. wc_segment is the wildcard
/// segment for this directory, wc_remainder is the wildcard for subdirectories,
/// prefix is the prefix for completions.
void expand_intermediate_segment(const wcstring &base_dir, dir_iter_t &base_dir_iter,
const wcstring &wc_segment, const wchar_t *wc_remainder,
const wcstring &prefix);
/// Given a directory base_dir, which is opened as base_dir_fp, expand an intermediate literal
/// segment. Use a fuzzy matching algorithm.
void expand_literal_intermediate_segment_with_fuzz(const wcstring &base_dir,
dir_iter_t &base_dir_iter,
const wcstring &wc_segment,
const wchar_t *wc_remainder,
const wcstring &prefix);
/// Given a directory base_dir, which is opened as base_dir_iter, expand the last segment of the
/// wildcard. Treat ANY_STRING_RECURSIVE as ANY_STRING. wc is the wildcard segment to use for
/// matching, wc_remainder is the wildcard for subdirectories, prefix is the prefix for
/// completions.
void expand_last_segment(const wcstring &base_dir, dir_iter_t &base_dir_iter,
const wcstring &wc, const wcstring &prefix);
/// Indicate whether we should cancel wildcard expansion. This latches 'interrupt'.
bool interrupted_or_overflowed() {
did_interrupt = did_interrupt || cancel_checker();
return did_interrupt || did_overflow;
}
void add_expansion_result(wcstring &&result) {
// This function is only for the non-completions case.
assert(!(this->flags & expand_flag::for_completions));
if (this->completion_set.insert(result).second) {
if (!this->resolved_completions->add(std::move(result))) {
this->did_overflow = true;
}
}
}
// Given a start point as an absolute path, for any directory that has exactly one non-hidden
// entity in it which is itself a directory, return that. The result is a relative path. For
// example, if start_point is '/usr' we may return 'local/bin/'.
//
// The result does not have a leading slash, but does have a trailing slash if non-empty.
wcstring descend_unique_hierarchy(const wcstring &start_point) {
assert(!start_point.empty() && start_point.at(0) == L'/');
wcstring unique_hierarchy;
wcstring abs_unique_hierarchy = start_point;
// Ensure we don't fall into a symlink loop.
// Ideally we would compare both devices and inodes, but devices require a stat call, so we
// use inodes exclusively.
std::unordered_set<ino_t> visited_inodes;
for (;;) {
// We keep track of the single unique_entry entry. If we get more than one, it's not
// unique and we stop the descent.
wcstring unique_entry;
dir_iter_t dir(abs_unique_hierarchy);
if (!dir.valid()) {
break;
}
while (const auto *entry = dir.next()) {
if (entry->name.empty() || entry->name.at(0) == L'.') {
continue; // either hidden, or . and .. entries -- skip them
}
if (!visited_inodes.insert(entry->inode).second) {
// Either we've visited this inode already or there's multiple files;
// either way stop.
break;
} else if (entry->is_dir() && unique_entry.empty()) {
unique_entry = entry->name; // first candidate
} else {
// We either have two or more candidates, or the child is not a directory. We're
// done.
unique_entry.clear();
break;
}
}
// We stop if we got two or more entries; also stop if we got zero or were interrupted
if (unique_entry.empty() || interrupted_or_overflowed()) {
break;
}
// We have an entry in the unique hierarchy!
append_path_component(unique_hierarchy, unique_entry);
unique_hierarchy.push_back(L'/');
append_path_component(abs_unique_hierarchy, unique_entry);
abs_unique_hierarchy.push_back(L'/');
}
return unique_hierarchy;
}
void try_add_completion_result(const wcstring &filepath, const wcstring &filename,
const wcstring &wildcard, const wcstring &prefix,
const dir_iter_t::entry_t &entry) {
// This function is only for the completions case.
assert(this->flags & expand_flag::for_completions);
wcstring abs_path = this->working_directory;
append_path_component(abs_path, filepath);
// We must normalize the path to allow 'cd ..' to operate on logical paths.
if (flags & expand_flag::special_for_cd) abs_path = normalize_path(abs_path);
size_t before = this->resolved_completions->size();
if (wildcard_test_flags_then_complete(abs_path, filename, wildcard.c_str(), this->flags,
this->resolved_completions, entry)) {
// Hack. We added this completion result based on the last component of the wildcard.
// Prepend our prefix to each wildcard that replaces its token.
// Note that prepend_token_prefix is a no-op unless COMPLETE_REPLACES_TOKEN is set
size_t after = this->resolved_completions->size();
for (size_t i = before; i < after; i++) {
completion_t *c = &this->resolved_completions->at(i);
if (this->has_fuzzy_ancestor && !(c->flags & COMPLETE_REPLACES_TOKEN)) {
c->flags |= COMPLETE_REPLACES_TOKEN;
c->prepend_token_prefix(wildcard);
}
c->prepend_token_prefix(prefix);
}
// Implement special_for_cd_autosuggestion by descending the deepest unique
// hierarchy we can, and then appending any components to each new result.
// Only descend deepest unique for cd autosuggest and not for cd tab completion
// (issue #4402).
if (flags & expand_flag::special_for_cd_autosuggestion) {
wcstring unique_hierarchy = this->descend_unique_hierarchy(abs_path);
if (!unique_hierarchy.empty()) {
for (size_t i = before; i < after; i++) {
completion_t &c = this->resolved_completions->at(i);
c.completion.append(unique_hierarchy);
}
}
}
this->did_add = true;
}
}
// Helper to resolve using our prefix.
dir_iter_t open_dir(const wcstring &base_dir, bool dotdot = false) const {
wcstring path = this->working_directory;
append_path_component(path, base_dir);
if (flags & expand_flag::special_for_cd) {
// cd operates on logical paths.
// for example, cd ../<tab> should complete "without resolving symlinks".
path = normalize_path(path);
}
return dir_iter_t(path, dotdot);
}
public:
wildcard_expander_t(wcstring wd, expand_flags_t f, cancel_checker_t cancel_checker,
completion_receiver_t *r)
: cancel_checker(std::move(cancel_checker)),
working_directory(std::move(wd)),
flags(f),
resolved_completions(r) {
assert(resolved_completions != nullptr);
// Insert initial completions into our set to avoid duplicates.
for (const auto &resolved_completion : resolved_completions->get_list()) {
this->completion_set.insert(resolved_completion.completion);
}
}
// Do wildcard expansion. This is recursive.
void expand(const wcstring &base_dir, const wchar_t *wc, const wcstring &prefix);
wildcard_result_t status_code() const {
if (this->did_interrupt) {
return wildcard_result_t::cancel;
} else if (this->did_overflow) {
return wildcard_result_t::overflow;
}
return this->did_add ? wildcard_result_t::match : wildcard_result_t::no_match;
}
};
void wildcard_expander_t::expand_trailing_slash(const wcstring &base_dir, const wcstring &prefix) {
if (interrupted_or_overflowed()) {
return;
}
if (!(flags & expand_flag::for_completions)) {
// Trailing slash and not accepting incomplete, e.g. `echo /xyz/`. Insert this file, we
// already know it exists!
this->add_expansion_result(wcstring{base_dir});
} else {
// Trailing slashes and accepting incomplete, e.g. `echo /xyz/<tab>`. Everything is added.
dir_iter_t dir = open_dir(base_dir);
if (dir.valid()) {
// wreaddir_resolving without the out argument is just wreaddir.
// So we can use the information in case we need it.
bool need_dir = flags & expand_flag::directories_only;
wcstring path = base_dir;
if (flags & expand_flag::special_for_cd) {
path = this->working_directory;
append_path_component(path, base_dir);
// cd operates on logical paths.
// for example, cd ../<tab> should complete "without resolving symlinks".
path = normalize_path(path);
}
while (const auto *entry = dir.next()) {
if (interrupted_or_overflowed()) {
break;
}
// Note that is_dir() may cause a stat() call.
bool known_dir = need_dir ? entry->is_dir() : false;
if (need_dir && !known_dir) continue;
if (!entry->name.empty() && entry->name.at(0) != L'.') {
this->try_add_completion_result(base_dir + entry->name, entry->name, L"",
prefix, *entry);
}
}
}
}
}
void wildcard_expander_t::expand_intermediate_segment(const wcstring &base_dir,
dir_iter_t &base_dir_iter,
const wcstring &wc_segment,
const wchar_t *wc_remainder,
const wcstring &prefix) {
std::string narrow;
const dir_iter_t::entry_t *entry{};
bool is_final = !*wc_remainder && wc_segment.find(ANY_STRING_RECURSIVE) == wcstring::npos;
while (!interrupted_or_overflowed() && (entry = base_dir_iter.next())) {
// Note that it's critical we ignore leading dots here, else we may descend into . and ..
if (!wildcard_match(entry->name, wc_segment, true)) {
// Doesn't match the wildcard for this segment, skip it.
continue;
}
if (!entry->is_dir()) {
continue;
}
// Fast path: If this entry can't be a link (we know via d_type),
// we don't need to protect against symlink loops.
// This is *not* deduplication, we just don't want a loop.
//
// We only do this when we are the last `*/` component,
// because we're a bit inconsistent on when we will enter loops.
if (is_final && !entry->is_possible_link().value_or(true)) {
// We made it through.
// Perform normal wildcard expansion on this new directory,
// starting at our tail_wc
wcstring full_path = base_dir + entry->name;
full_path.push_back(L'/');
this->expand(full_path, wc_remainder, prefix + wc_segment + L'/');
continue;
}
auto statbuf = entry->stat();
if (!statbuf) {
continue;
}
const file_id_t file_id = file_id_t::from_stat(*statbuf);
if (!this->visited_files.insert(file_id).second) {
// Symlink loop! This directory was already visited, so skip it.
continue;
}
// (like the fast path above)
wcstring full_path = base_dir + entry->name;
full_path.push_back(L'/');
this->expand(full_path, wc_remainder, prefix + wc_segment + L'/');
// Now remove the visited file. This is for #2414: only directories "beneath" us should be
// considered visited.
this->visited_files.erase(file_id);
}
}
void wildcard_expander_t::expand_literal_intermediate_segment_with_fuzz(const wcstring &base_dir,
dir_iter_t &base_dir_iter,
const wcstring &wc_segment,
const wchar_t *wc_remainder,
const wcstring &prefix) {
// Mark that we are fuzzy for the duration of this function
const scoped_push<bool> scoped_fuzzy(&this->has_fuzzy_ancestor, true);
const dir_iter_t::entry_t *entry{};
while (!interrupted_or_overflowed() && (entry = base_dir_iter.next())) {
// Don't bother with . and ..
if (entry->name == L"." || entry->name == L"..") {
continue;
}
const auto match = string_fuzzy_match_string(wc_segment, entry->name);
if (!match || match->is_samecase_exact()) continue;
// Note is_dir() may trigger a stat call.
if (!entry->is_dir()) continue;
// Determine the effective prefix for our children.
// Normally this would be the wildcard segment, but here we know our segment doesn't have
// wildcards ("literal") and we are doing fuzzy expansion, which means we replace the
// segment with files found through fuzzy matching.
const wcstring child_prefix = prefix + entry->name + L'/';
wcstring new_full_path = base_dir + entry->name;
new_full_path.push_back(L'/');
// Ok, this directory matches. Recurse to it. Then mark each resulting completion as fuzzy.
const size_t before = this->resolved_completions->size();
this->expand(new_full_path, wc_remainder, child_prefix);
const size_t after = this->resolved_completions->size();
assert(before <= after);
for (size_t i = before; i < after; i++) {
completion_t *c = &this->resolved_completions->at(i);
// Mark the completion as replacing.
if (!(c->flags & COMPLETE_REPLACES_TOKEN)) {
c->flags |= COMPLETE_REPLACES_TOKEN;
c->prepend_token_prefix(child_prefix);
}
// And every match must be made at least as fuzzy as ours.
// TODO: justify this, tests do not exercise it yet.
if (match->rank() > c->match.rank()) {
// Our match is fuzzier.
c->match = *match;
}
}
}
}
void wildcard_expander_t::expand_last_segment(const wcstring &base_dir, dir_iter_t &base_dir_iter,
const wcstring &wc, const wcstring &prefix) {
bool need_dir = flags & expand_flag::directories_only;
const dir_iter_t::entry_t *entry{};
while (!interrupted_or_overflowed() && (entry = base_dir_iter.next())) {
if (need_dir && !entry->is_dir()) continue;
if (flags & expand_flag::for_completions) {
this->try_add_completion_result(base_dir + entry->name, entry->name, wc, prefix,
*entry);
} else {
// Normal wildcard expansion, not for completions.
if (wildcard_match(entry->name, wc, true /* skip files with leading dots */)) {
this->add_expansion_result(base_dir + entry->name);
}
}
}
}
/// The real implementation of wildcard expansion is in this function. Other functions are just
/// wrappers around this one.
///
/// This function traverses the relevant directory tree looking for matches, and recurses when
/// needed to handle wildcards spanning multiple components and recursive wildcards.
///
/// Args:
/// base_dir: the "working directory" against which the wildcard is to be resolved
/// wc: the wildcard string itself, e.g. foo*bar/baz (where * is actually ANY_CHAR)
/// effective_prefix: the string that should be prepended for completions that replace their token.
/// This is usually the same thing as the original wildcard, but for fuzzy matching, we
/// expand intermediate segments. effective_prefix is always either empty, or ends with a slash
void wildcard_expander_t::expand(const wcstring &base_dir, const wchar_t *wc,
const wcstring &effective_prefix) {
assert(wc != nullptr);
if (interrupted_or_overflowed()) {
return;
}
// Get the current segment and compute interesting properties about it.
const wchar_t *const next_slash = std::wcschr(wc, L'/');
const bool is_last_segment = (next_slash == nullptr);
const size_t wc_segment_len = next_slash ? next_slash - wc : std::wcslen(wc);
const wcstring wc_segment = wcstring(wc, wc_segment_len);
const bool segment_has_wildcards = wildcard_has_internal(wc_segment); // e.g. ANY_STRING.
const wchar_t *const wc_remainder = next_slash ? next_slash + 1 : nullptr;
if (wc_segment.empty()) {
// Handle empty segment.
assert(!segment_has_wildcards); //!OCLINT(multiple unary operator)
if (is_last_segment) {
this->expand_trailing_slash(base_dir, effective_prefix);
} else {
// Multiple adjacent slashes in the wildcard. Just skip them.
this->expand(base_dir, wc_remainder, effective_prefix + L'/');
}
} else if (!segment_has_wildcards && !is_last_segment) {
// Literal intermediate match. Note that we may not be able to actually read the directory
// (issue #2099).
assert(next_slash != nullptr);
// Absolute path of the intermediate directory
const wcstring intermediate_dirpath = base_dir + wc_segment + L'/';
// This just trumps everything.
size_t before = this->resolved_completions->size();
this->expand(intermediate_dirpath, wc_remainder, effective_prefix + wc_segment + L'/');
// Maybe try a fuzzy match (#94) if nothing was found with the literal match. Respect
// EXPAND_NO_DIRECTORY_ABBREVIATIONS (issue #2413).
// Don't do fuzzy matches if the literal segment was valid (#3211)
bool allow_fuzzy = this->flags.get(expand_flag::fuzzy_match) &&
!this->flags.get(expand_flag::no_fuzzy_directories);
if (allow_fuzzy && this->resolved_completions->size() == before &&
waccess(intermediate_dirpath, F_OK) != 0) {
assert(this->flags & expand_flag::for_completions);
dir_iter_t base_dir_iter = open_dir(base_dir);
if (base_dir_iter.valid()) {
this->expand_literal_intermediate_segment_with_fuzz(
base_dir, base_dir_iter, wc_segment, wc_remainder, effective_prefix);
}
}
} else {
assert(!wc_segment.empty() && (segment_has_wildcards || is_last_segment));
if (!is_last_segment && wc_segment == wcstring{ANY_STRING_RECURSIVE}) {
// Hack for #7222. This is an intermediate wc segment that is exactly **. The
// tail matches in subdirectories as normal, but also the current directory.
// That is, '**/bar' may match 'bar' and 'foo/bar'.
// Implement this by matching the wildcard tail only, in this directory.
// Note if the segment is not exactly ANY_STRING_RECURSIVE then the segment may only
// match subdirectories.
this->expand(base_dir, wc_remainder, effective_prefix);
if (interrupted_or_overflowed()) {
return;
}
}
// return "." and ".." entries if we're doing completions
dir_iter_t dir =
open_dir(base_dir, /* return . and .. */ flags & expand_flag::for_completions);
if (dir.valid()) {
if (is_last_segment) {
// Last wildcard segment, nonempty wildcard.
this->expand_last_segment(base_dir, dir, wc_segment, effective_prefix);
} else {
// Not the last segment, nonempty wildcard.
assert(next_slash != nullptr);
this->expand_intermediate_segment(base_dir, dir, wc_segment, wc_remainder,
effective_prefix + wc_segment + L'/');
}
size_t asr_idx = wc_segment.find(ANY_STRING_RECURSIVE);
if (asr_idx != wcstring::npos) {
// Apply the recursive **.
// Construct a "head + any" wildcard for matching stuff in this directory, and an
// "any + tail" wildcard for matching stuff in subdirectories. Note that the
// ANY_STRING_RECURSIVE character is present in both the head and the tail.
const wcstring head_any(wc_segment, 0, asr_idx + 1);
const wchar_t *any_tail = wc + asr_idx;
assert(head_any.at(head_any.size() - 1) == ANY_STRING_RECURSIVE);
assert(any_tail[0] == ANY_STRING_RECURSIVE);
dir.rewind();
this->expand_intermediate_segment(base_dir, dir, head_any, any_tail,
effective_prefix);
}
}
}
}
} // namespace
wildcard_result_t wildcard_expand_string(const wcstring &wc, const wcstring &working_directory,
expand_flags_t flags,
const cancel_checker_t &cancel_checker,
completion_receiver_t *output) {
assert(output != nullptr);
// Fuzzy matching only if we're doing completions.
assert(flags.get(expand_flag::for_completions) || !flags.get(expand_flag::fuzzy_match));
// expand_flag::special_for_cd requires expand_flag::directories_only and
// expand_flag::for_completions and !expand_flag::gen_descriptions.
assert(!(flags.get(expand_flag::special_for_cd)) ||
((flags.get(expand_flag::directories_only)) &&
(flags.get(expand_flag::for_completions)) &&
(!flags.get(expand_flag::gen_descriptions))));
// Hackish fix for issue #1631. We are about to call c_str(), which will produce a string
// truncated at any embedded nulls. We could fix this by passing around the size, etc. However
// embedded nulls are never allowed in a filename, so we just check for them and return 0 (no
// matches) if there is an embedded null.
if (wc.find(L'\0') != wcstring::npos) {
return wildcard_result_t::no_match;
}
// We do not support tab-completing recursive (**) wildcards. This is historic behavior.
// Do not descend any directories if there is a ** wildcard.
if (flags.get(expand_flag::for_completions) &&
wc.find(ANY_STRING_RECURSIVE) != wcstring::npos) {
return wildcard_result_t::no_match;
}
// Compute the prefix and base dir. The prefix is what we prepend for filesystem operations
// (i.e. the working directory), the base_dir is the part of the wildcard consumed thus far,
// which we also have to append. The difference is that the base_dir is returned as part of the
// expansion, and the prefix is not.
//
// Check for a leading slash. If we find one, we have an absolute path: the prefix is empty, the
// base dir is /, and the wildcard is the remainder. If we don't find one, the prefix is the
// working directory, the base dir is empty.
wcstring prefix, base_dir, effective_wc;
if (string_prefixes_string(L"/", wc)) {
base_dir = L"/";
effective_wc = wc.substr(1);
} else {
prefix = working_directory;
effective_wc = wc;
}
wildcard_expander_t expander(prefix, flags, cancel_checker, output);
expander.expand(base_dir, effective_wc.c_str(), base_dir);
return expander.status_code();
}

View File

@ -6,37 +6,10 @@
#include <stddef.h>
#include "common.h"
#include "complete.h"
#include "expand.h"
#if INCLUDE_RUST_HEADERS
#include "wildcard.rs.h"
#endif
/// Description for generic executable.
#define COMPLETE_EXEC_DESC _(L"command")
/// Description for link to executable.
#define COMPLETE_EXEC_LINK_DESC _(L"command link")
/// Description for character device.
#define COMPLETE_CHAR_DESC _(L"char device")
/// Description for block device.
#define COMPLETE_BLOCK_DESC _(L"block device")
/// Description for fifo buffer.
#define COMPLETE_FIFO_DESC _(L"fifo")
/// Description for fifo buffer.
#define COMPLETE_FILE_DESC _(L"file")
/// Description for symlink.
#define COMPLETE_SYMLINK_DESC _(L"symlink")
/// Description for symlink.
#define COMPLETE_DIRECTORY_SYMLINK_DESC _(L"dir symlink")
/// Description for Rotten symlink.
#define COMPLETE_BROKEN_SYMLINK_DESC _(L"broken symlink")
/// Description for symlink loop.
#define COMPLETE_LOOP_SYMLINK_DESC _(L"symlink loop")
/// Description for socket files.
#define COMPLETE_SOCKET_DESC _(L"socket")
/// Description for directories.
#define COMPLETE_DIRECTORY_DESC _(L"directory")
// Enumeration of all wildcard types.
enum {
/// Character representing any character except '/' (slash).
@ -50,28 +23,4 @@ enum {
ANY_SENTINEL
};
/// Expand the wildcard by matching against the filesystem.
///
/// wildcard_expand works by dividing the wildcard into segments at each directory boundary. Each
/// segment is processed separately. All except the last segment are handled by matching the
/// wildcard segment against all subdirectories of matching directories, and recursively calling
/// wildcard_expand for matches. On the last segment, matching is made to any file, and all matches
/// are inserted to the list.
///
/// If wildcard_expand encounters any errors (such as insufficient privileges) during matching, no
/// error messages will be printed and wildcard_expand will continue the matching process.
///
/// \param wc The wildcard string
/// \param working_directory The working directory
/// \param flags flags for the search. Can be any combination of for_completions and
/// executables_only
/// \param output The list in which to put the output
///
enum class wildcard_result_t {
no_match, /// The wildcard did not match.
match, /// The wildcard did match.
cancel, /// Expansion was cancelled (e.g. control-C).
overflow, /// Expansion produced too many results.
};
#endif