Default math scale to 6

This changes the behavior of builtin math to floating point by default.
If the result of a computation is an integer, then it will be printed as an
integer; otherwise it will be printed as a floating point decimal with up to
'scale' digits past the decimal point (default is 6, matching printf).
Trailing zeros are trimmed. Values are rounded following printf semantics.

Fixes #4478
This commit is contained in:
ridiculousfish 2018-07-24 00:00:06 -07:00
parent 78cac07d3c
commit d2bee105c9
5 changed files with 81 additions and 26 deletions

View File

@ -32,7 +32,7 @@ fish 3.0 is a major release which brings with it both improvements in functional
- `abbr` has been reimplemented to be faster. This means the old `fish_user_abbreviations` variable is ignored (#4048).
- Setting variables is much faster (#4200, #4341).
- Using a read-only variable in a for loop is now an error. Note that this never worked. It simply failed to set the for loop var and thus silently produced incorrect results (#4342).
- `math` is now a builtin rather than a wrapper around `bc` (#3157).
- `math` is now a builtin rather than a wrapper around `bc` (#3157). The default scale is now 6, so that floating point computations produce decimals (#4478).
- `history search` supports globs for wildcard searching (#3136).
- `bind` has a new `--silent` option to ignore bind requests for named keys not available under the current `$TERMINAL` (#4188, #4431).
- Globs are faster (#4579).

View File

@ -6,6 +6,7 @@
#include <algorithm>
#include <cmath>
#include <limits>
#include <string>
#include "tinyexpr.h"
@ -18,9 +19,17 @@
#include "wgetopt.h"
#include "wutil.h" // IWYU pragma: keep
// The maximum number of points after the decimal that we'll print.
static constexpr int kDefaultScale = 6;
// The end of the range such that every integer is representable as a double.
// i.e. this is the first value such that x + 1 == x (or == x + 2, depending on rounding mode).
static constexpr double kMaximumContiguousInteger =
double(1LLU << std::numeric_limits<double>::digits);
struct math_cmd_opts_t {
bool print_help = false;
int scale = 0;
int scale = kDefaultScale;
};
// This command is atypical in using the "+" (REQUIRE_ORDER) option for flag parsing.
@ -130,6 +139,27 @@ static wcstring math_describe_error(te_error_t& error) {
}
}
/// Return a formatted version of the value \p v respecting the given \p opts.
static wcstring format_double(double v, const math_cmd_opts_t &opts) {
wcstring ret = format_string(L"%.*f", opts.scale, v);
// If we contain a decimal separator, trim trailing zeros after it, and then the separator
// itself if there's nothing after it. Detect a decimal separator as a non-digit.
const wchar_t *const digits = L"0123456789";
if (ret.find_first_not_of(digits) != wcstring::npos) {
while (ret.back() == L'0') {
ret.pop_back();
}
if (!wcschr(digits, ret.back())) {
ret.pop_back();
}
}
// If we trimmed everything it must have just been zero.
if (ret.empty()) {
ret.push_back(L'0');
}
return ret;
}
/// Evaluate math expressions.
static int evaluate_expression(const wchar_t *cmd, parser_t &parser, io_streams_t &streams,
math_cmd_opts_t &opts, wcstring &expression) {
@ -150,27 +180,21 @@ static int evaluate_expression(const wchar_t *cmd, parser_t &parser, io_streams_
// TODO: Really, this should be done in tinyexpr
// (e.g. infinite is the result of "x / 0"),
// but that's much more work.
const char *error_message = NULL;
if (std::isinf(v)) {
streams.err.append_format(L"%ls: Error: Result is infinite\n", cmd);
streams.err.append_format(L"'%ls'\n", expression.c_str());
retval = STATUS_CMD_ERROR;
error_message = "Result is infinite";
} else if (std::isnan(v)) {
streams.err.append_format(L"%ls: Error: Result is not a number\n", cmd);
error_message = "Result is not a number";
} else if (std::abs(v) >= kMaximumContiguousInteger) {
error_message = "Result magnitude is too large";
}
if (error_message) {
streams.err.append_format(L"%ls: Error: %s\n", cmd, error_message);
streams.err.append_format(L"'%ls'\n", expression.c_str());
retval = STATUS_CMD_ERROR;
} else if (v >= LONG_MAX) {
streams.err.append_format(L"%ls: Error: Result is too large\n", cmd);
streams.err.append_format(L"'%ls'\n", expression.c_str());
retval = STATUS_CMD_ERROR;
} else if (v <= LONG_MIN) {
streams.err.append_format(L"%ls: Error: Result is too small\n", cmd);
streams.err.append_format(L"'%ls'\n", expression.c_str());
retval = STATUS_CMD_ERROR;
} else if (opts.scale == 0) {
// Normal results
streams.out.append_format(L"%ld\n", static_cast<long>(v));
} else {
streams.out.append_format(L"%.*lf\n", opts.scale, v);
streams.out.append(format_double(v, opts));
streams.out.push_back(L'\n');
}
} else {
streams.err.append_format(L"%ls: Error: %ls\n", cmd, math_describe_error(error).c_str());

View File

@ -2,6 +2,9 @@
####################
# Validate basic expressions
####################
# Validate some integral computations
####################
# Validate how variables in an expression are handled
@ -24,7 +27,7 @@ math: Error: Too many arguments
^
math: Expected at least 1 args, got only 0
math: Expected at least 1 args, got only 0
math: Error: Result is too large
'2^650'
math: Error: Result is infinite
'2^999999'
math: Error: Result is infinite
'1 / 0'

View File

@ -2,6 +2,7 @@ logmsg Validate basic expressions
math 3 / 2
math 10/6
math -s0 10 / 6
math 'floor(10 / 6)'
math -s3 10/6
math '10 % 6'
math -s0 '10 % 6'
@ -14,6 +15,19 @@ math 5 \* -2
math -- -4 / 2
math -- '-4 * 2'
logmsg Validate some integral computations
math 1
math 10
math 100
math 1000
math '10^15'
math '-10^14'
math '-10^15'
math -s0 '1.0 / 2.0'
math -s0 '3.0 / 2.0'
math -s0 '10^15 / 2.0'
logmsg Validate how variables in an expression are handled
math $x + 1
set x 1
@ -21,7 +35,7 @@ math $x + 1
set x 3
set y 1.5
math "-$x * $y"
math -s1 "-$x * $y"
math -s0 "-$x * $y"
logmsg Validate math error reporting
not math '2 - '
@ -31,5 +45,5 @@ not math 'sin()'
not math '2 + 2 4'
not math
not math -s 12
not math 2^650
not math 2^999999
not math 1 / 0

View File

@ -1,14 +1,15 @@
####################
# Validate basic expressions
1
1
1.5
1.666667
2
1
1.667
4
4
2
0.500000
0.5
49
0
4
@ -16,12 +17,25 @@
-2
-8
####################
# Validate some integral computations
1
10
100
1000
1000000000000000
100000000000000
-1000000000000000
0
2
500000000000000
####################
# Validate how variables in an expression are handled
1
2
-4
-4.5
-4
####################
# Validate math error reporting