* Make NULs work for builtins
This switches from passing a c-string to output_stream_t::append to
passing a proper string.
That means a builtin that prints a NUL no longer crashes with "thread '' panicked
at 'String contained intermediate NUL character: ".
Instead, it will actually handle the NUL, even as an argument.
That means something like
`echo foo\x00bar` will now actually print a NUL instead of truncating
after the `foo` because we passed c-strings around everywhere.
The former is *necessary* for e.g. `string`, the latter is a change
that on the whole makes dealing with NULs easier, but it is a
behavioral change.
To restore the c-string behavior we would have to truncate arguments
at NUL.
See #9739.
* Use AsRef instead of trait bound
Prior to this change, parser_t exposed an environment_t, and Rust had to go
through that. But because we have implemented Environment in Rust, it is
better to just expose the native Environment from parser_t. Make that
change and update call sites.
The writembs macro was ported from C++, which attempted to detect when a NULL
termcap was used. However we have never gotten a bug report from this. Bravely
remove it.
The outputter code has a lot of checks that string capabilities are non-empty;
just enforce that at the curses layer so we can remove those checks.
Also remove some types and traits, replacing them with simple functions.
Per code review, we think that tparm does nothing when there are no parameters,
and it is safe to remove it, even though this is a break from C++. This
simplifies some code.
This makes some simplifications to scoped_push and ScopeGuard:
1. ScopeGuard no longer uses ManuallyDrop; the memory management is now
trivial and no longer requires `unsafe`.
2. The functions `cancel` and `rollback` have been removed, as
these were unused. They can be added back later if needed.
3. `scoped_push` has been simplified in both signature and implementation.
4. `Projection` is no longer required and has been removed.
Also add some tests.
We can't just call the Rust version of `fish_setlocale()` without also either
calling the C++ version of `fish_setlocale()` or removing all `src/complete.cpp`
variables that are initialized and aliasing them to their new rust counterparts.
Since we're not interested in keeping the C++ code around, just call the C++
version of the function via ffi until we don't have *any* C++ code referencing
`src/common.h` at all.
Note that *not* doing this and then calling the rust version of
`fish_setlocale()` instead of the C++ version will cause errant behavior and
random segfaults as the C++ code will try to read and use uninitialized values
(including uninitialized pointers) that have only had their rust counterparts
init.
This is not yet used but will take eventually take the place of all (n)curses
access. The curses C library does a lot of header file magic with macro voodoo
to make it easier to perform certain tasks (such as access or override string
capabilities) but this functionality isn't actually directly exposed by the
library's ABI.
The rust wrapper eschews all of that for a more straight-forward implementation,
directly wrapping only the basic curses library calls that are required to
perform the tasks we care about. This should let us avoid the subtle
cross-platform differences between the various curses implementations that
plagued the previous C++ implementation.
All functionality in this module that requires an initialized curses TERMINAL
pointer (`cur_term`, traditionally) has been subsumed by the `Term` instance,
which once initialized with `curses::setup()` can be obtained at any time with
`curses::Term()` (which returns an Option that evaluates to `None` if `cur_term`
hasn't yet been initialized).
Either add rust wrappers for C++ functions called via ffi or port some pure code
from C++ to rust to provide support for the upcoming `env_dispatch` rewrite.
The global variables are moved (not copied) from C++ to rust and exported as
extern C integers. On the rust side they are accessed only with atomic semantics
but regular int access is preserved from the C++ side (until that code is also
ported).
It's not clear whether or not `system_wcwidth()` was picked solely because of
the namespace conflict (which is easily remedied) but using the most obvious
name for this function should be the way to go.
We already have our own overload of `wcwidth()` (`fish_wcwidth()`) so it should
be more obvious which is the bare system call and which isn't.
(I do want to move this w/ some of the other standalone extern C wrappers to the
unix module later.)
Pull in the correct descriptions merged from across the various C++ header and
source files and get rid of the getter function that's only used in one place
but causes us to split the documentation for FISH_EMOJI_WIDTH across multiple
declarations.
This can be used for functions that accept non-Unicode content (i.e. &CStr or
CString) but are often used in our code base with a UTF-8 or UTF-32 string
on-hand.
When such a function is passed a CString, it's passed through as-is and
allocation-free. But when, as is often the case, we have a static string we can
now pass it in directly with all the nice ergonomics thereof instead of having
to manually create and unwrap a CString at the call location.
There's an upstream request to add this functionality to the standard library:
https://github.com/rust-lang/rust/issues/71448
This is more complicated than it needs to be thanks to the presence of CMake and
the C++ ffi in the picture. rsconf can correctly detect the required libraries
and instruct rustc to link against them, but since we generate a static rust
library and have CMake link it against the C++ binaries, we are still at the
mercy of CMake picking up the symbols we want.
Unfortunately, we could detect the gettext symbols but discover at runtime that
they weren't linked in because CMake was compiled with `-DWITH_GETTEXT=0` or
similar (as the macOS CI runner does). This means we also need to pass state
between CMake and our build script to communicate which CMake options were
enabled.
Delegate the `view` and `view_mut` to the newly added `Projection<T>`, which
makes everything oh so much clearer and cleaner. Add comments to clarify what is
happening.
This can be used when you primarily want to return a reference but in order for
that reference to live long enough it must be returned with an object.
i.e. given `Mutex<Foo { bar }>` you want a function to lock the mutex and return
a reference to `bar` but you can't return that reference since it has a lifetime
dependency on `MutexGuard` (which only derefs to all of `Foo` and not just
`bar`). You can return a `Projection` owning the `MutexGuard<Foo>` and set it up
to deref to `&bar`.
This wasn't providing a lot of value, and the license compatibility is iffy.
There's a bit of weirdness in that this now uses a `Box<dyn Error>`,
but since currently nothing actually errors out let's punt that for
later.
This is a terrible way of going about things,
and means we're currently broken on any unix that isn't specifically listed.
But at least it'll build and allow us to keep the FreeBSD CI running.
Historically fish has used the functions `fish_wcstol`, `fish_wcstoi`, and
`fish_wcstoul` (and some long long variants) for most integer conversions.
These have semantics that are deliberately different from the libc
functions, such as consuming trailing whitespace, and disallowing `-` in
unsigned versions.
fish has started to drift away from these semantics; some divergence from
C++ has crept in.
Rename the existing `fish_wcs*` functions in Rust to remove the fish
prefix, to express that they attempt to mirror libc semantics; then
introduce `fish_` wrappers which are ported from C++. Also fix some
miscellaneous bugs which have crept in, such as missing range checks.
This implements the primary environment stack, and other environments such
as the null and snapshot environments, in Rust. These are used to implement
the push and pop from block scoped commands such as `for` and `begin`, and
also function calls.
owning_null_terminated_array is used for environment variables, where we need to
provide envp for child processes. This switches the implementation from C++ to
Rust.
We retain the C++ owning_null_terminated_array_t; it simply wraps the Rust
version now.
The `u64::from(buf.f_flag)` was needed in two places. The existing handled macOS
which always has a 32-bit statfs::f_flag, but statvfs::f_flag is an `unsigned
long` which means it needs to be coerced to 64-bits on 32-bit targets.
There's no reason to inject prefix into our newly allocated str after storing
pattern in there. Just allocate with the needed capacity up front and then
insert in the correct order.
There's no reason to inject prefix into our newly allocated str after storing
pattern in there. Just allocate with the needed capacity up front and then
insert in the correct order.
The new asan exit handlers are called to get proper ASAN leak reports (as
calling _exit(0) skips the LSAN reporting stage and exits with success every
time).
They are no-ops when not compiled for ASAN.
This ports some signal setup and handling bits to Rust.
The signal handling machinery requires walking over the list of known signals;
that's not supported by the Signal type. Rather than duplicate the list of
signals yet again, switch back to a table, as we had in C++.
This also adds two further pieces which were neglected by the Signal struct:
1. Localize signal descriptions
2. Support for integers as the signal name
This allows the rust code to free up C++ resources allocated for a callback even
when the callback isn't executed (as opposed to requiring the callback to run
and at the end of the callback cleaning up all allocated resources).
Also add type-erased destructor registration to callback_t. This allows for
freeing variables allocated by the callback for debounce_t's
perform_with_callback() that don't end up having their completion called due to
a timeout.
Largely routine but for the trampolines in iothread.h and iothread.cpp which
were a real PITA to get correct w/ all their variants.
Integration is complete with all old code ripped out and the tests using the
rust version of the code.
Like the WSL check, this was incorrectly assuming WSL implies
cfg(windows) when it's actually picked up as Linux.
Also, improve over the C++ code by not relying on the build-time WSL
status to determine if we are running on WSL at runtime since it's often
the case that the fish binaries are built on a non-WSL host (for
packaging) then executed on a WSL only at runtime.
(But it's ok to assume if fish has been built for Windows or not Linux
that it will either be run or not run on top of a Win32 character device
system.)
Also, port of the comment and relevant WSL and fish issue links over
from the CPP codebase for posterity.
* Since we already have an allocation of length wstr.len(), it's
probably better to allocate the result (which is strictly less than or
equal to the input length) up-front rather than risk thrashing the Vec
allocation,
* There's no need to compare c2 against '\0' since that will just cause
to_digit(16) to return None anyway,
* Our convert_hex() specialization of to_digit(16) that only checks
capital letters A-F without also checking lowercase a-f isn't
significantly faster than just use to_digit(16), and we already assert
that the input *wasn't* a lowercase a-f before making the call, so
there's no point in using a special function to handle that.
Prior to this change, wstr::split had two weird behaviors:
1. Splitting an empty string would yield nothing, rather than an empty
string.
2. Splitting a string with the separator character as last character
would not yield an empty string.
For example L!("x:y:").split(':') would return ["x", "y"] instead of
what it does in C++, which is ["x", "y", ""].
Fix these.
This reverts commit 76dc849fca.
The warning added in that commit is incorrect. The functions
unescape_string_url and unescape_string_var will not panic, because
char_at() return 0 if the index is equal to its length.
This reverts commit f9c92753c4.
This commit attempted to replace exit_without_destructors() with
std::process::exit; however this is wrong for two reasons:
1. std::process::exit() runs Rust runtime cleanup stuff we don't want
2. std::process::exit() invokes destructors, meaning atexit handlers,
which we don't want.
The type system no longer guarantees that the input string is nul-terminated,
meaning accessing beyond the range-checked `i` a char-at-a-time is no longer
safe. (In C++, we would either be using a plain C string which is always
nul-terminated or we would be using (w)string::cstr() which similarly grants
access to its nul-terminated buffer.)
Aside from that, there's no need to explicitly check `if c2 == '\0'` because
'\0' is not a valid hex digit so the `?` tacked on to `convert_hex_digit(c2)?`
will abort and return `None` anyway.
convert_hex_digit() is not appreciably faster than char::to_digit(16) and makes
the code less maintainable since it encodes certain assumptions; since it's also
not used consistently just drop it in favor of the std fn.
Since the output string (per the decode logic) is always shorter than or equal
to the input string, just reserve the input string size upfront to prevent vec
reallocations.
Somewhat counter-intuitively, this code is active when compiling under *Linux*
and is always false when compiling under Windows. The logic was incorrectly
reversed before (it's easier to reason about when you realize that fish doesn't
even compile under Windows because it uses tons of libc functions).
As the code was actually never compiled, it wasn't actually tested for validity
either and there were some issues that prevented it from compiling that have
since been fixed. The logic has also been adjusted a bit to make it possible to
use the rust-native int parsing instead of `libc::strtod()`.
The code has been changed to use `once_cell::race::OnceBool` instead of
`once_cell::sync::Lazy<T>` which imposes a greater runtime burden with locking
and other overhead. We don't care if the code runs more than once on init (if
calls were to race, though they probably don't) - just that the code isn't
subsequently executed on each call. The `once_cell::race` module is a better fit
here, though it doesn't expose the ergonomic `Lazy<T>` façade around its types.
is_main_thread() and co were previously ported to threads.rs, so remove the
duplicate code and move everything else related to threads there as well. No
need for common.rs to be as long as our old common.cpp!
I left #[deprecated] stubs in common.rs to help redirect anyone porting code
over that we can remove after the port has finished.
Additionally, the fork guards had previously been left as a todo!() item but I
ported that over. They're all called from the now-central threads::init()
function so there isn't a need to call each individual thread-management-fn
manually.
The decision was made a while back to try and embrace/use the native rust thread
functionality and utilities so the manual thread management code has been ripped
out and was replaced with code that marshals the native rust values instead. The
values won't line up with what the C++ code sees, but it never lined up anyway
since each was using a separate counter to keep track of the values.