/**\file expand.c String expansion functions. These functions perform several kinds of parameter expansion. */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SunOS #include #endif #include "fallback.h" #include "util.h" #include "common.h" #include "wutil.h" #include "env.h" #include "proc.h" #include "parser.h" #include "expand.h" #include "wildcard.h" #include "exec.h" #include "signal.h" #include "tokenizer.h" #include "complete.h" #include "parse_util.h" /** Error issued on invalid variable name */ #define COMPLETE_VAR_DESC _( L"The '$' character begins a variable name. The character '%lc', which directly followed a '$', is not allowed as a part of a variable name, and variable names may not be zero characters long. To learn more about variable expansion in fish, type 'help expand-variable'.") /** Error issued on $? */ #define COMPLETE_YOU_WANT_STATUS _( L"$? is not a valid variable in fish. If you want the exit status of the last command, try $status.") /** Error issued on invalid variable name */ #define COMPLETE_VAR_NULL_DESC _( L"The '$' begins a variable name. It was given at the end of an argument. Variable names may not be zero characters long. To learn more about variable expansion in fish, type 'help expand-variable'.") /** Error issued on invalid variable name */ #define COMPLETE_VAR_BRACKET_DESC _( L"Did you mean %ls{$%ls}%ls? The '$' character begins a variable name. A bracket, which directly followed a '$', is not allowed as a part of a variable name, and variable names may not be zero characters long. To learn more about variable expansion in fish, type 'help expand-variable'." ) /** Error issued on invalid variable name */ #define COMPLETE_VAR_PARAN_DESC _( L"Did you mean (COMMAND)? In fish, the '$' character is only used for accessing variables. To learn more about command substitution in fish, type 'help expand-command-substitution'.") /** Description for child process */ #define COMPLETE_CHILD_PROCESS_DESC _( L"Child process") /** Description for non-child process */ #define COMPLETE_PROCESS_DESC _( L"Process") /** Description for long job */ #define COMPLETE_JOB_DESC _( L"Job") /** Description for short job. The job command is concatenated */ #define COMPLETE_JOB_DESC_VAL _( L"Job: %ls") /** Description for the shells own pid */ #define COMPLETE_SELF_DESC _( L"Shell process") /** Description for the shells own pid */ #define COMPLETE_LAST_DESC _( L"Last background job") /** String in process expansion denoting ourself */ #define SELF_STR L"self" /** String in process expansion denoting last background job */ #define LAST_STR L"last" /** Characters which make a string unclean if they are the first character of the string. See \c expand_is_clean(). */ #define UNCLEAN_FIRST L"~%" /** Unclean characters. See \c expand_is_clean(). */ #define UNCLEAN L"$*?\\\"'({})" static void remove_internal_separator( wcstring &s, bool conv ); int expand_is_clean( const wchar_t *in ) { const wchar_t * str = in; CHECK( in, 1 ); /* Test characters that have a special meaning in the first character position */ if( wcschr( UNCLEAN_FIRST, *str ) ) return 0; /* Test characters that have a special meaning in any character position */ while( *str ) { if( wcschr( UNCLEAN, *str ) ) return 0; str++; } return 1; } /** Return the environment variable value for the string starting at \c in. */ static env_var_t expand_var(const wchar_t *in) { if( !in ) return env_var_t::missing_var(); return env_get_string( in ); } /** Test if the specified string does not contain character which can not be used inside a quoted string. */ static int is_quotable( const wchar_t *str ) { switch( *str ) { case 0: return 1; case L'\n': case L'\t': case L'\r': case L'\b': case L'\x1b': return 0; default: return is_quotable(str+1); } return 0; } static int is_quotable(const wcstring &str) { return is_quotable(str.c_str()); } wcstring expand_escape_variable( const wcstring &in ) { wcstring_list_t lst; wcstring buff; tokenize_variable_array( in, lst ); switch( lst.size() ) { case 0: buff.append(L"''"); break; case 1: { const wcstring &el = lst.at(0); if( el.find(L' ') != wcstring::npos && is_quotable( el ) ) { buff.append(L"'"); buff.append(el); buff.append(L"'"); } else { buff.append(escape_string(el, 1)); } break; } default: { for( size_t j=0; j L'9' ) { return 0; } } return 1; } /** See if the process described by \c proc matches the commandline \c cmd */ static bool match_pid( const wcstring &cmd, const wchar_t *proc, int flags, int *offset) { /* Test for a direct match. If the proc string is empty (e.g. the user tries to complete against %), then return an offset pointing at the base command. That ensures that you don't see a bunch of dumb paths when completing against all processes. */ if( proc[0] != L'\0' && wcsncmp( cmd.c_str(), proc, wcslen( proc ) ) == 0 ) { if( offset ) *offset = 0; return true; } /* Get the command to match against. We're only interested in the last path component. */ const wcstring base_cmd = wbasename(cmd); bool result = string_prefixes_string(proc, base_cmd); if (result) { /* It's a match. Return the offset within the full command. */ if (offset) *offset = cmd.size() - base_cmd.size(); } return result; } /** Helper class for iterating over processes. The names returned have been unescaped (e.g. may include spaces) */ #ifdef KERN_PROCARGS2 /* BSD / OS X process completions */ class process_iterator_t { std::vector pids; size_t idx; wcstring name_for_pid(pid_t pid); public: process_iterator_t(); bool next_process(wcstring *str, pid_t *pid); }; wcstring process_iterator_t::name_for_pid(pid_t pid) { wcstring result; int mib[4], maxarg = 0, numArgs = 0; size_t size = 0; char *args = NULL, *stringPtr = NULL; mib[0] = CTL_KERN; mib[1] = KERN_ARGMAX; size = sizeof(maxarg); if (sysctl(mib, 2, &maxarg, &size, NULL, 0) == -1) { return result; } args = (char *)malloc( maxarg ); if ( args == NULL ) { return result; } mib[0] = CTL_KERN; mib[1] = KERN_PROCARGS2; mib[2] = pid; size = (size_t)maxarg; if ( sysctl(mib, 3, args, &size, NULL, 0) == -1 ) { free( args ); return result;; } memcpy( &numArgs, args, sizeof(numArgs) ); stringPtr = args + sizeof(numArgs); result = str2wcstring(stringPtr); free(args); return result; } bool process_iterator_t::next_process(wcstring *out_str, pid_t *out_pid) { wcstring name; pid_t pid = 0; bool result = false; while (idx < pids.size()) { pid = pids.at(idx++); name = name_for_pid(pid); if (! name.empty()) { result = true; break; } } if (result) { *out_str = name; *out_pid = pid; } return result; } process_iterator_t::process_iterator_t() : idx(0) { int err; struct kinfo_proc * result; bool done; static const int name[] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL, 0 }; // Declaring name as const requires us to cast it when passing it to // sysctl because the prototype doesn't include the const modifier. size_t length; // We start by calling sysctl with result == NULL and length == 0. // That will succeed, and set length to the appropriate length. // We then allocate a buffer of that size and call sysctl again // with that buffer. If that succeeds, we're done. If that fails // with ENOMEM, we have to throw away our buffer and loop. Note // that the loop causes use to call sysctl with NULL again; this // is necessary because the ENOMEM failure case sets length to // the amount of data returned, not the amount of data that // could have been returned. result = NULL; done = false; do { assert(result == NULL); // Call sysctl with a NULL buffer. length = 0; err = sysctl( (int *) name, (sizeof(name) / sizeof(*name)) - 1, NULL, &length, NULL, 0); if (err == -1) { err = errno; } // Allocate an appropriately sized buffer based on the results // from the previous call. if (err == 0) { result = (struct kinfo_proc *)malloc(length); if (result == NULL) { err = ENOMEM; } } // Call sysctl again with the new buffer. If we get an ENOMEM // error, toss away our buffer and start again. if (err == 0) { err = sysctl( (int *) name, (sizeof(name) / sizeof(*name)) - 1, result, &length, NULL, 0); if (err == -1) { err = errno; } if (err == 0) { done = true; } else if (err == ENOMEM) { assert(result != NULL); free(result); result = NULL; err = 0; } } } while (err == 0 && ! done); // Clean up and establish post conditions. if (err == 0 && result != NULL) { for (size_t idx = 0; idx < length / sizeof(struct kinfo_proc); idx++) pids.push_back(result[idx].kp_proc.p_pid); } if (result) free(result); } #else /* /proc style process completions */ class process_iterator_t { DIR *dir; public: process_iterator_t(); ~process_iterator_t(); bool next_process(wcstring *out_str, pid_t *out_pid); }; process_iterator_t::process_iterator_t(void) { dir = opendir( "/proc" ); } process_iterator_t::~process_iterator_t(void) { if (dir) closedir(dir); } bool process_iterator_t::next_process(wcstring *out_str, pid_t *out_pid) { wcstring cmd; pid_t pid = 0; while (cmd.empty()) { wcstring name; if (! dir || ! wreaddir(dir, name)) break; if (!iswnumeric(name.c_str())) continue; wcstring path = wcstring(L"/proc/") + name; struct stat buf; if (wstat(path, &buf)) continue; if( buf.st_uid != getuid() ) continue; /* remember the pid */ pid = (long)wcstol(name.c_str(), NULL, 10); /* the 'cmdline' file exists, it should contain the commandline */ FILE *cmdfile; if ((cmdfile=wfopen(path + L"/cmdline", "r"))) { wcstring full_command_line; signal_block(); fgetws2(&full_command_line, cmdfile); signal_unblock(); /* The command line needs to be escaped */ wchar_t *first_arg = tok_first( full_command_line.c_str() ); if (first_arg) { cmd = first_arg; free(first_arg); } } #ifdef SunOS else if ((cmdfile=wfopen(path + L"/psinfo", "r"))) { psinfo_t info; if (fread(&info, sizeof(info), 1, cmdfile)) { /* The filename is unescaped */ cmd = str2wcstring(info.pr_fname); } } #endif if (cmdfile) fclose(cmdfile); } bool result = ! cmd.empty(); if (result) { *out_str = cmd; *out_pid = pid; } return result; } #endif std::vector expand_get_all_process_names(void) { wcstring name; pid_t pid; process_iterator_t iterator; std::vector result; while (iterator.next_process(&name, &pid)) { result.push_back(name); } return result; } /** Searches for a job with the specified job id, or a job or process which has the string \c proc as a prefix of its commandline. If the ACCEPT_INCOMPLETE flag is set, the remaining string for any matches are inserted. Otherwise, any job matching the specified string is matched, and the job pgid is returned. If no job matches, all child processes are searched. If no child processes match, and fish can understand the contents of the /proc filesystem, all the users processes are searched for matches. */ static int find_process( const wchar_t *proc, int flags, std::vector &out ) { int found = 0; const job_t *j; if( iswnumeric(proc) || (wcslen(proc)==0) ) { /* This is a numeric job string, like '%2' */ if( flags & ACCEPT_INCOMPLETE ) { job_iterator_t jobs; while ((j = jobs.next())) { wchar_t jid[16]; if( j->command_is_empty() ) continue; swprintf( jid, 16, L"%d", j->job_id ); if( wcsncmp( proc, jid, wcslen(proc ) )==0 ) { wcstring desc_buff = format_string(COMPLETE_JOB_DESC_VAL, j->command_wcstr()); append_completion( out, jid+wcslen(proc), desc_buff, 0 ); } } } else { int jid; wchar_t *end; errno = 0; jid = wcstol( proc, &end, 10 ); if( jid > 0 && !errno && !*end ) { j = job_get( jid ); if( (j != 0) && (j->command_wcstr() != 0 ) ) { { append_completion(out, to_string(j->pgid)); found = 1; } } } } } if( found ) return 1; job_iterator_t jobs; while ((j = jobs.next())) { int offset; if( j->command_is_empty() ) continue; if( match_pid( j->command(), proc, flags, &offset ) ) { if( flags & ACCEPT_INCOMPLETE ) { append_completion( out, j->command_wcstr() + offset + wcslen(proc), COMPLETE_JOB_DESC, 0 ); } else { append_completion(out, to_string(j->pgid)); found = 1; } } } if( found ) { return 1; } jobs.reset(); while ((j = jobs.next())) { process_t *p; if( j->command_is_empty() ) continue; for( p=j->first_process; p; p=p->next ) { int offset; if( p->actual_cmd.empty() ) continue; if( match_pid( p->actual_cmd, proc, flags, &offset ) ) { if( flags & ACCEPT_INCOMPLETE ) { append_completion( out, wcstring(p->actual_cmd, offset + wcslen(proc)), COMPLETE_CHILD_PROCESS_DESC, 0 ); } else { append_completion (out, to_string(p->pid), L"", 0); found = 1; } } } } if( found ) { return 1; } /* Iterate over all processes */ wcstring process_name; pid_t process_pid; process_iterator_t iterator; while (iterator.next_process(&process_name, &process_pid)) { int offset; if( match_pid( process_name, proc, flags, &offset ) ) { if( flags & ACCEPT_INCOMPLETE ) { append_completion( out, process_name.c_str() + offset + wcslen(proc), COMPLETE_PROCESS_DESC, 0 ); } else { append_completion(out, to_string(process_pid)); } } } return 1; } /** Process id expansion */ static int expand_pid( const wcstring &instr_with_sep, int flags, std::vector &out ) { /* expand_string calls us with internal separators in instr...sigh */ wcstring instr = instr_with_sep; remove_internal_separator(instr, false); if( instr.empty() || instr.at(0) != PROCESS_EXPAND ) { append_completion(out, instr); return 1; } const wchar_t * const in = instr.c_str(); if( flags & ACCEPT_INCOMPLETE ) { if( wcsncmp( in+1, SELF_STR, wcslen(in+1) )==0 ) { append_completion( out, SELF_STR+wcslen(in+1), COMPLETE_SELF_DESC, 0 ); } else if( wcsncmp( in+1, LAST_STR, wcslen(in+1) )==0 ) { append_completion( out, LAST_STR+wcslen(in+1), COMPLETE_LAST_DESC, 0 ); } } else { if( wcscmp( (in+1), SELF_STR )==0 ) { append_completion(out, to_string(getpid())); return 1; } if( wcscmp( (in+1), LAST_STR )==0 ) { if( proc_last_bg_pid > 0 ) { append_completion(out, to_string(proc_last_bg_pid)); } return 1; } } size_t prev = out.size(); if( !find_process( in+1, flags, out ) ) return 0; if( prev == out.size() ) { if( ! (flags & ACCEPT_INCOMPLETE) ) { return 0; } } return 1; } void expand_variable_error( parser_t &parser, const wchar_t *token, int token_pos, int error_pos ) { int stop_pos = token_pos+1; switch( token[stop_pos] ) { case BRACKET_BEGIN: { wchar_t *cpy = wcsdup( token ); *(cpy+token_pos)=0; wchar_t *name = &cpy[stop_pos+1]; wchar_t *end = wcschr( name, BRACKET_END ); wchar_t *post; int is_var=0; if( end ) { post = end+1; *end = 0; if( !wcsvarname( name ) ) { is_var = 1; } } if( is_var ) { parser.error( SYNTAX_ERROR, error_pos, COMPLETE_VAR_BRACKET_DESC, cpy, name, post ); } else { parser.error( SYNTAX_ERROR, error_pos, COMPLETE_VAR_BRACKET_DESC, L"", L"VARIABLE", L"" ); } free( cpy ); break; } case INTERNAL_SEPARATOR: { parser.error( SYNTAX_ERROR, error_pos, COMPLETE_VAR_PARAN_DESC ); break; } case 0: { parser.error( SYNTAX_ERROR, error_pos, COMPLETE_VAR_NULL_DESC ); break; } default: { wchar_t token_stop_char = token[stop_pos]; // Unescape (see http://github.com/fish-shell/fish-shell/issues/50) if (token_stop_char == ANY_CHAR) token_stop_char = L'?'; else if (token_stop_char == ANY_STRING || token_stop_char == ANY_STRING_RECURSIVE) token_stop_char = L'*'; parser.error( SYNTAX_ERROR, error_pos, (token_stop_char == L'?' ? COMPLETE_YOU_WANT_STATUS : COMPLETE_VAR_DESC), token_stop_char ); break; } } } /** Parse an array slicing specification */ static int parse_slice( const wchar_t *in, wchar_t **end_ptr, std::vector &idx, int size ) { wchar_t *end; int pos = 1; // debug( 0, L"parse_slice on '%ls'", in ); while( 1 ) { long tmp; while( iswspace(in[pos]) || (in[pos]==INTERNAL_SEPARATOR)) pos++; if( in[pos] == L']' ) { pos++; break; } errno=0; tmp = wcstol( &in[pos], &end, 10 ); if( ( errno ) || ( end == &in[pos] ) ) { return 1; } // debug( 0, L"Push idx %d", tmp ); long i1 = tmp>-1 ? tmp : size+tmp+1; pos = end-in; while( in[pos]==INTERNAL_SEPARATOR ) pos++; if ( in[pos]==L'.' && in[pos+1]==L'.' ){ pos+=2; while( in[pos]==INTERNAL_SEPARATOR ) pos++; long tmp1 = wcstol( &in[pos], &end, 10 ); if( ( errno ) || ( end == &in[pos] ) ) { return 1; } pos = end-in; // debug( 0, L"Push range %d %d", tmp, tmp1 ); long i2 = tmp1>-1 ? tmp1 : size+tmp1+1; // debug( 0, L"Push range idx %d %d", i1, i2 ); short direction = i2 &out, int last_idx ); static int expand_variables2( parser_t &parser, const wcstring &instr, std::vector &out, int last_idx ) { wchar_t *in = wcsdup(instr.c_str()); int result = expand_variables_internal(parser, in, out, last_idx); free(in); return result; } static int expand_variables_internal( parser_t &parser, wchar_t * const in, std::vector &out, int last_idx ) { int is_ok= 1; int empty=0; wcstring var_tmp; std::vector var_idx_list; // CHECK( out, 0 ); for( int i=last_idx; (i>=0) && is_ok && !empty; i-- ) { const wchar_t c = in[i]; if( ( c == VARIABLE_EXPAND ) || (c == VARIABLE_EXPAND_SINGLE ) ) { int start_pos = i+1; int stop_pos; int var_len; int is_single = (c==VARIABLE_EXPAND_SINGLE); stop_pos = start_pos; while( 1 ) { if( !(in[stop_pos ]) ) break; if( !( iswalnum( in[stop_pos] ) || (wcschr(L"_", in[stop_pos])!= 0) ) ) break; stop_pos++; } /* printf( "Stop for '%c'\n", in[stop_pos]);*/ var_len = stop_pos - start_pos; if( var_len == 0 ) { expand_variable_error( parser, in, stop_pos-1, -1 ); is_ok = 0; break; } var_tmp.append(in + start_pos, var_len); env_var_t var_val = expand_var(var_tmp.c_str() ); if( ! var_val.missing() ) { int all_vars=1; wcstring_list_t var_item_list; if( is_ok ) { tokenize_variable_array( var_val.c_str(), var_item_list ); if( in[stop_pos] == L'[' ) { wchar_t *slice_end; all_vars=0; if( parse_slice( in + stop_pos, &slice_end, var_idx_list, var_item_list.size() ) ) { parser.error( SYNTAX_ERROR, -1, L"Invalid index value" ); is_ok = 0; break; } stop_pos = (slice_end-in); } if( !all_vars ) { wcstring_list_t string_values(var_idx_list.size()); for( size_t j=0; j var_item_list.size() ) { parser.error( SYNTAX_ERROR, -1, ARRAY_BOUNDS_ERR ); is_ok=0; var_idx_list.resize(j); break; } else { /* Replace each index in var_idx_list inplace with the string value at the specified index */ //al_set( var_idx_list, j, wcsdup((const wchar_t *)al_get( &var_item_list, tmp-1 ) ) ); string_values.at(j) = var_item_list.at(tmp-1); } } // string_values is the new var_item_list var_item_list.swap(string_values); } } if( is_ok ) { if( is_single ) { in[i]=0; wcstring res = in; res.push_back(INTERNAL_SEPARATOR); for( size_t j=0; j 0) new_in.append(in, start_pos - 1); // at this point new_in.size() is start_pos - 1 if(start_pos>1 && new_in[start_pos-2]!=VARIABLE_EXPAND) { new_in.push_back(INTERNAL_SEPARATOR); } new_in.append(next); new_in.append(in + stop_pos); is_ok &= expand_variables2( parser, new_in, out, i ); } } } } } return is_ok; } else { /* Expand a non-existing variable */ if( c == VARIABLE_EXPAND ) { /* Regular expansion, i.e. expand this argument to nothing */ empty = 1; } else { /* Expansion to single argument. */ wcstring res; in[i] = 0; res.append(in); res.append(in + stop_pos); is_ok &= expand_variables2( parser, res, out, i ); return is_ok; } } } } if( !empty ) { append_completion(out, in); } return is_ok; } /** Perform bracket expansion */ static int expand_brackets(parser_t &parser, const wchar_t *in, int flags, std::vector &out ) { const wchar_t *pos; int syntax_error=0; int bracket_count=0; const wchar_t *bracket_begin=0, *bracket_end=0; const wchar_t *last_sep=0; const wchar_t *item_begin; int len1, len2, tot_len; CHECK( in, 0 ); // CHECK( out, 0 ); for( pos=in; (*pos) && !syntax_error; pos++ ) { switch( *pos ) { case BRACKET_BEGIN: { bracket_begin = pos; bracket_count++; break; } case BRACKET_END: { bracket_count--; if( bracket_end < bracket_begin ) { bracket_end = pos; } if( bracket_count < 0 ) { syntax_error = 1; } break; } case BRACKET_SEP: { if( bracket_count == 1 ) last_sep = pos; } } } if( bracket_count > 0 ) { if( !(flags & ACCEPT_INCOMPLETE) ) { syntax_error = 1; } else { wcstring mod; if( last_sep ) { mod.append( in, bracket_begin-in+1 ); mod.append( last_sep+1 ); mod.push_back( BRACKET_END ); } else { mod.append(in); mod.push_back(BRACKET_END); } return expand_brackets( parser, mod.c_str(), 1, out ); } } if( syntax_error ) { parser.error( SYNTAX_ERROR, -1, _(L"Mismatched brackets") ); return 0; } if( bracket_begin == 0 ) { append_completion(out, in); return 1; } len1 = (bracket_begin-in); len2 = wcslen(bracket_end)-1; tot_len = len1+len2; item_begin = bracket_begin+1; for( pos=(bracket_begin+1); 1; pos++ ) { if( bracket_count == 0 ) { if( (*pos == BRACKET_SEP) || (pos==bracket_end) ) { wchar_t *whole_item; int item_len = pos-item_begin; whole_item = (wchar_t *)malloc( sizeof(wchar_t)*(tot_len + item_len + 1) ); wcslcpy( whole_item, in, len1+1 ); wcslcpy( whole_item+len1, item_begin, item_len+1 ); wcscpy( whole_item+len1+item_len, bracket_end+1 ); expand_brackets( parser, whole_item, flags, out ); item_begin = pos+1; if( pos == bracket_end ) break; } } if( *pos == BRACKET_BEGIN ) { bracket_count++; } if( *pos == BRACKET_END ) { bracket_count--; } } return 1; } /** Perform cmdsubst expansion */ static int expand_cmdsubst( parser_t &parser, const wcstring &input, std::vector &outList ) { wchar_t *paran_begin=0, *paran_end=0; int len1; std::vector sub_res; size_t i, j; wchar_t *tail_begin = 0; const wchar_t * const in = input.c_str(); int parse_ret; switch( parse_ret = parse_util_locate_cmdsubst(in, ¶n_begin, ¶n_end, 0 ) ) { case -1: parser.error( SYNTAX_ERROR, -1, L"Mismatched parans" ); return 0; case 0: outList.push_back(completion_t(input)); return 1; case 1: break; } len1 = (paran_begin-in); const wcstring subcmd(paran_begin + 1, paran_end-paran_begin - 1); if( exec_subshell( subcmd, sub_res) == -1 ) { parser.error( CMDSUBST_ERROR, -1, L"Unknown error while evaulating command substitution" ); return 0; } tail_begin = paran_end + 1; if( *tail_begin == L'[' ) { std::vector slice_idx; wchar_t *slice_end; if( parse_slice( tail_begin, &slice_end, slice_idx, sub_res.size() ) ) { parser.error( SYNTAX_ERROR, -1, L"Invalid index value" ); return 0; } else { std::vector sub_res2; tail_begin = slice_end; for( i=0; i < slice_idx.size(); i++ ) { long idx = slice_idx.at(i); if( idx < 1 || (size_t)idx > sub_res.size() ) { parser.error( SYNTAX_ERROR, -1, ARRAY_BOUNDS_ERR ); return 0; } idx = idx-1; sub_res2.push_back(sub_res.at(idx)); // debug( 0, L"Pushing item '%ls' with index %d onto sliced result", al_get( sub_res, idx ), idx ); //sub_res[idx] = 0; // ?? } sub_res = sub_res2; } } /* Recursively call ourselves to expand any remaining command substitutions. The result of this recursive call using the tail of the string is inserted into the tail_expand array list */ std::vector tail_expand; expand_cmdsubst( parser, tail_begin, tail_expand ); /* Combine the result of the current command substitution with the result of the recursive tail expansion */ for( i=0; ipw_dir); } } if (! tilde_error) { input.replace(input.begin(), input.begin() + tail_idx, home); } } } void expand_tilde( wcstring &input) { if( ! input.empty() && input.at(0) == L'~' ) { input.at(0) = HOME_DIRECTORY; expand_tilde_internal( input ); } } /** Remove any internal separators. Also optionally convert wildcard characters to regular equivalents. This is done to support EXPAND_SKIP_WILDCARDS. */ static void remove_internal_separator( wcstring &str, bool conv ) { /* Remove all instances of INTERNAL_SEPARATOR */ str.erase(std::remove(str.begin(), str.end(), (wchar_t)INTERNAL_SEPARATOR), str.end()); /* If conv is true, replace all instances of ANY_CHAR with '?', ANY_STRING with '*', ANY_STRING_RECURSIVE with '*' */ if (conv) { for (size_t idx = 0; idx < str.size(); idx++) { switch (str.at(idx)) { case ANY_CHAR: str.at(idx) = L'?'; break; case ANY_STRING: case ANY_STRING_RECURSIVE: str.at(idx) = L'*'; break; } } } } int expand_string( const wcstring &input, std::vector &output, expand_flags_t flags ) { parser_t parser(PARSER_TYPE_ERRORS_ONLY, true /* show errors */); std::vector list1, list2; std::vector *in, *out; size_t i; int res = EXPAND_OK; if( (!(flags & ACCEPT_INCOMPLETE)) && expand_is_clean( input.c_str() ) ) { output.push_back(completion_t(input)); return EXPAND_OK; } if( EXPAND_SKIP_CMDSUBST & flags ) { wchar_t *begin, *end; if( parse_util_locate_cmdsubst( input.c_str(), &begin, &end, 1 ) != 0 ) { parser.error( CMDSUBST_ERROR, -1, L"Command substitutions not allowed" ); return EXPAND_ERROR; } list1.push_back(completion_t(input)); } else { int cmdsubst_ok = expand_cmdsubst(parser, input, list1); if (! cmdsubst_ok) return EXPAND_ERROR; } in = &list1; out = &list2; for( i=0; i < in->size(); i++ ) { /* We accept incomplete strings here, since complete uses expand_string to expand incomplete strings from the commandline. */ int unescape_flags = UNESCAPE_SPECIAL | UNESCAPE_INCOMPLETE; wcstring next = expand_unescape_string( in->at(i).completion, unescape_flags ); if( EXPAND_SKIP_VARIABLES & flags ) { for (size_t i=0; i < next.size(); i++) { if (next.at(i) == VARIABLE_EXPAND) { next[i] = L'$'; } } out->push_back(completion_t(next)); } else { if(!expand_variables2( parser, next, *out, next.size() - 1 )) { return EXPAND_ERROR; } } } in->clear(); in = &list2; out = &list1; for( i=0; i < in->size(); i++ ) { wcstring next = in->at(i).completion; if( !expand_brackets( parser, next.c_str(), flags, *out )) { return EXPAND_ERROR; } } in->clear(); in = &list1; out = &list2; for( i=0; i < in->size(); i++ ) { wcstring next = in->at(i).completion; expand_tilde_internal(next); if( flags & ACCEPT_INCOMPLETE ) { if( next[0] == PROCESS_EXPAND ) { /* If process expansion matches, we are not interested in other completions, so we short-circut and return */ if (! (flags & EXPAND_SKIP_PROCESS )) expand_pid( next, flags, output ); return EXPAND_OK; } else { out->push_back(completion_t(next)); } } else { if( ! (flags & EXPAND_SKIP_PROCESS ) && ! expand_pid( next, flags, *out ) ) { return EXPAND_ERROR; } } } in->clear(); in = &list2; out = &list1; for( i=0; i < in->size(); i++ ) { wcstring next_str = in->at(i).completion; int wc_res; remove_internal_separator( next_str, (EXPAND_SKIP_WILDCARDS & flags) ? true : false ); const wchar_t *next = next_str.c_str(); if( ((flags & ACCEPT_INCOMPLETE) && (!(flags & EXPAND_SKIP_WILDCARDS))) || wildcard_has( next, 1 ) ) { const wchar_t *start, *rest; std::vector *list = out; if( next[0] == '/' ) { start = L"/"; rest = &next[1]; } else { start = L""; rest = next; } if( flags & ACCEPT_INCOMPLETE ) { list = &output; } wc_res = wildcard_expand_string(rest, start, flags, *list); if( !(flags & ACCEPT_INCOMPLETE) ) { switch( wc_res ) { case 0: { if( !(flags & ACCEPT_INCOMPLETE) ) { if( res == EXPAND_OK ) res = EXPAND_WILDCARD_NO_MATCH; break; } } case 1: { size_t j; res = EXPAND_WILDCARD_MATCH; sort_completions( *out ); for( j=0; j< out->size(); j++ ) { output.push_back( out->at(j) ); } out->clear(); break; } case -1: { return EXPAND_ERROR; } } } } else { if( flags & ACCEPT_INCOMPLETE) { } else { output.push_back(completion_t(next)); } } } return res; } bool expand_one(wcstring &string, expand_flags_t flags) { std::vector completions; bool result = false; if( (!(flags & ACCEPT_INCOMPLETE)) && expand_is_clean( string.c_str() ) ) { return true; } if (expand_string(string, completions, flags)) { if (completions.size() == 1) { string = completions.at(0).completion; result = true; } } return result; }