// Various functions, mostly string utilities, that are used by most parts of fish. #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_EXECINFO_H #include #endif #ifdef HAVE_SIGINFO_H #include #endif #ifdef HAVE_SYS_IOCTL_H #include #endif #include #include // IWYU pragma: keep #include "common.h" #include "expand.h" #include "fallback.h" // IWYU pragma: keep #include "wildcard.h" #include "wutil.h" // IWYU pragma: keep #define NOT_A_WCHAR (static_cast(WEOF)) struct termios shell_modes; // Note we foolishly assume that pthread_t is just a primitive. But it might be a struct. static pthread_t main_thread_id = 0; static bool thread_assertions_configured_for_testing = false; wchar_t ellipsis_char; wchar_t omitted_newline_char; bool g_profiling_active = false; const wchar_t *program_name; int debug_level = 1; // default maximum debug output level (errors and warnings) int debug_stack_frames = 0; // default number of stack frames to show on debug() calls /// This allows us to notice when we've forked. static pid_t initial_pid = 0; /// Be able to restore the term's foreground process group. static pid_t initial_foreground_process_group = -1; /// This struct maintains the current state of the terminal size. It is updated on demand after /// receiving a SIGWINCH. Do not touch this struct directly, it's managed with a rwlock. Use /// common_get_width()/common_get_height(). static struct winsize termsize; static volatile bool termsize_valid; static rwlock_t termsize_rwlock; static char *wcs2str_internal(const wchar_t *in, char *out); static void debug_shared(const wchar_t msg_level, const wcstring &msg); bool has_working_tty_timestamps = true; #ifdef HAVE_BACKTRACE_SYMBOLS // This function produces a stack backtrace with demangled function & method names. It is based on // https://gist.github.com/fmela/591333 but adapted to the style of the fish project. static const wcstring_list_t __attribute__((noinline)) demangled_backtrace(int max_frames, int skip_levels) { void *callstack[128]; const int n_max_frames = sizeof(callstack) / sizeof(callstack[0]); int n_frames = backtrace(callstack, n_max_frames); char **symbols = backtrace_symbols(callstack, n_frames); wchar_t text[1024]; std::vector backtrace_text; if (skip_levels + max_frames < n_frames) n_frames = skip_levels + max_frames; for (int i = skip_levels; i < n_frames; i++) { Dl_info info; if (dladdr(callstack[i], &info) && info.dli_sname) { char *demangled = NULL; int status = -1; if (info.dli_sname[0] == '_') demangled = abi::__cxa_demangle(info.dli_sname, NULL, 0, &status); swprintf(text, sizeof(text) / sizeof(wchar_t), L"%-3d %s + %td", i - skip_levels, status == 0 ? demangled : info.dli_sname == 0 ? symbols[i] : info.dli_sname, (char *)callstack[i] - (char *)info.dli_saddr); free(demangled); } else { swprintf(text, sizeof(text) / sizeof(wchar_t), L"%-3d %s", i - skip_levels, symbols[i]); } backtrace_text.push_back(text); } free(symbols); return backtrace_text; } void __attribute__((noinline)) show_stackframe(const wchar_t msg_level, int frame_count, int skip_levels) { ASSERT_IS_NOT_FORKED_CHILD(); // TODO: Decide if this is still needed. I'm commenting it out because it caused me some grief // while trying to debug a test failure. And the tests run just fine without spurious failures // if this check is not done. // // Hack to avoid showing backtraces in the tester. // if (program_name && !wcscmp(program_name, L"(ignore)")) return; if (frame_count < 1) frame_count = 999; debug_shared(msg_level, L"Backtrace:"); std::vector bt = demangled_backtrace(frame_count, skip_levels + 2); for (int i = 0; i < bt.size(); i++) { debug_shared(msg_level, bt[i]); } } #else // HAVE_BACKTRACE_SYMBOLS void __attribute__((noinline)) show_stackframe(const wchar_t msg_level, int frame_count, int skip_levels) { debug_shared(msg_level, L"Sorry, but your system does not support backtraces"); } #endif // HAVE_BACKTRACE_SYMBOLS int fgetws2(wcstring *s, FILE *f) { int i = 0; wint_t c; while (1) { errno = 0; c = fgetwc(f); if (errno == EILSEQ || errno == EINTR) { continue; } switch (c) { // End of line. case WEOF: case L'\n': case L'\0': { return i; } // Ignore carriage returns. case L'\r': { break; } default: { i++; s->push_back((wchar_t)c); break; } } } } /// Converts the narrow character string \c in into its wide equivalent, and return it. /// /// The string may contain embedded nulls. /// /// This function encodes illegal character sequences in a reversible way using the private use /// area. static wcstring str2wcs_internal(const char *in, const size_t in_len) { if (in_len == 0) return wcstring(); assert(in != NULL); wcstring result; result.reserve(in_len); size_t in_pos = 0; if (MB_CUR_MAX == 1) { // Single-byte locale, all values are legal. while (in_pos < in_len) { result.push_back((unsigned char)in[in_pos]); in_pos++; } return result; } mbstate_t state = {}; while (in_pos < in_len) { bool use_encode_direct = false; size_t ret; wchar_t wc = 0; if ((in[in_pos] & 0xF8) == 0xF8) { // Protect against broken mbrtowc() implementations which attempt to encode UTF-8 // sequences longer than four bytes (e.g., OS X Snow Leopard). use_encode_direct = true; } else if (sizeof(wchar_t) == 2 && (in[in_pos] & 0xF8) == 0xF0) { // Assume we are in a UTF-16 environment (e.g., Cygwin) using a UTF-8 encoding. // The bits set check will be true for a four byte UTF-8 sequence that requires // two UTF-16 chars. Something that doesn't work with our simple use of mbrtowc(). use_encode_direct = true; } else { ret = mbrtowc(&wc, &in[in_pos], in_len - in_pos, &state); // fprintf(stderr, "WTF in_pos %d ret %d\n", in_pos, ret); // Determine whether to encode this character with our crazy scheme. if (wc >= ENCODE_DIRECT_BASE && wc < ENCODE_DIRECT_BASE + 256) { use_encode_direct = true; } else if (wc == INTERNAL_SEPARATOR) { use_encode_direct = true; } else if (ret == (size_t)-2) { // Incomplete sequence. use_encode_direct = true; } else if (ret == (size_t)-1) { // Invalid data. use_encode_direct = true; } else if (ret > in_len - in_pos) { // Other error codes? Terrifying, should never happen. use_encode_direct = true; } else if (sizeof(wchar_t) == 2 && wc >= 0xD800 && wc <= 0xDFFF) { // If we get a surrogate pair char on a UTF-16 system (e.g., Cygwin) then // it's guaranteed the UTF-8 decoding is wrong so use direct encoding. use_encode_direct = true; } } if (use_encode_direct) { // fprintf(stderr, "WTF use_encode_direct\n"); wc = ENCODE_DIRECT_BASE + (unsigned char)in[in_pos]; result.push_back(wc); in_pos++; memset(&state, 0, sizeof state); } else if (ret == 0) { // fprintf(stderr, "WTF null byte\n"); // Embedded null byte! result.push_back(L'\0'); in_pos++; memset(&state, 0, sizeof state); } else { // fprintf(stderr, "WTF null byte\n"); // Normal case. result.push_back(wc); in_pos += ret; } } return result; } wcstring str2wcstring(const char *in, size_t len) { return str2wcs_internal(in, len); } wcstring str2wcstring(const char *in) { return str2wcs_internal(in, strlen(in)); } wcstring str2wcstring(const std::string &in) { // Handles embedded nulls! return str2wcs_internal(in.data(), in.size()); } char *wcs2str(const wchar_t *in) { if (!in) return NULL; size_t desired_size = MAX_UTF8_BYTES * wcslen(in) + 1; char local_buff[512]; if (desired_size <= sizeof local_buff / sizeof *local_buff) { // Convert into local buff, then use strdup() so we don't waste malloc'd space. char *result = wcs2str_internal(in, local_buff); if (result) { // It converted into the local buffer, so copy it. result = strdup(result); if (!result) DIE_MEM(); } return result; } // Here we probably allocate a buffer probably much larger than necessary. char *out = (char *)malloc(MAX_UTF8_BYTES * wcslen(in) + 1); if (!out) DIE_MEM(); return wcs2str_internal(in, out); } char *wcs2str(const wcstring &in) { return wcs2str(in.c_str()); } /// This function is distinguished from wcs2str_internal in that it allows embedded null bytes. std::string wcs2string(const wcstring &input) { std::string result; result.reserve(input.size()); mbstate_t state = {}; char converted[MB_LEN_MAX + 1]; for (size_t i = 0; i < input.size(); i++) { wchar_t wc = input[i]; if (wc == INTERNAL_SEPARATOR) { // Do nothing. } else if (wc >= ENCODE_DIRECT_BASE && wc < ENCODE_DIRECT_BASE + 256) { result.push_back(wc - ENCODE_DIRECT_BASE); } else if (MB_CUR_MAX == 1) // single-byte locale (C/POSIX/ISO-8859) { // If `wc` contains a wide character we emit a question-mark. if (wc & ~0xFF) { wc = '?'; } converted[0] = wc; result.append(converted, 1); } else { memset(converted, 0, sizeof converted); size_t len = wcrtomb(converted, wc, &state); if (len == (size_t)(-1)) { debug(1, L"Wide character %d has no narrow representation", wc); memset(&state, 0, sizeof(state)); } else { result.append(converted, len); } } } return result; } /// Converts the wide character string \c in into it's narrow equivalent, stored in \c out. \c out /// must have enough space to fit the entire string. /// /// This function decodes illegal character sequences in a reversible way using the private use /// area. static char *wcs2str_internal(const wchar_t *in, char *out) { CHECK(in, 0); CHECK(out, 0); size_t in_pos = 0; size_t out_pos = 0; mbstate_t state = {}; while (in[in_pos]) { if (in[in_pos] == INTERNAL_SEPARATOR) { // Do nothing. } else if (in[in_pos] >= ENCODE_DIRECT_BASE && in[in_pos] < ENCODE_DIRECT_BASE + 256) { out[out_pos++] = in[in_pos] - ENCODE_DIRECT_BASE; } else if (MB_CUR_MAX == 1) // single-byte locale (C/POSIX/ISO-8859) { // If `wc` contains a wide character we emit a question-mark. if (in[in_pos] & ~0xFF) { out[out_pos++] = '?'; } else { out[out_pos++] = (unsigned char)in[in_pos]; } } else { size_t len = wcrtomb(&out[out_pos], in[in_pos], &state); if (len == (size_t)-1) { debug(1, L"Wide character %d has no narrow representation", in[in_pos]); memset(&state, 0, sizeof(state)); } else { out_pos += len; } } in_pos++; } out[out_pos] = 0; return out; } wcstring format_string(const wchar_t *format, ...) { va_list va; va_start(va, format); wcstring result = vformat_string(format, va); va_end(va); return result; } void append_formatv(wcstring &target, const wchar_t *format, va_list va_orig) { const int saved_err = errno; // As far as I know, there is no way to check if a vswprintf-call failed because of a badly // formated string option or because the supplied destination string was to small. In GLIBC, // errno seems to be set to EINVAL either way. // // Because of this, on failiure we try to increase the buffer size until the free space is // larger than max_size, at which point it will conclude that the error was probably due to a // badly formated string option, and return an error. Make sure to null terminate string before // that, though. const size_t max_size = (128 * 1024 * 1024); wchar_t static_buff[256]; size_t size = 0; wchar_t *buff = NULL; int status = -1; while (status < 0) { // Reallocate if necessary. if (size == 0) { buff = static_buff; size = sizeof static_buff; } else { size *= 2; if (size >= max_size) { buff[0] = '\0'; break; } buff = (wchar_t *)realloc((buff == static_buff ? NULL : buff), size); if (buff == NULL) { DIE_MEM(); } } // Try printing. va_list va; va_copy(va, va_orig); status = vswprintf(buff, size / sizeof(wchar_t), format, va); va_end(va); } target.append(buff); if (buff != static_buff) { free(buff); } errno = saved_err; } wcstring vformat_string(const wchar_t *format, va_list va_orig) { wcstring result; append_formatv(result, format, va_orig); return result; } void append_format(wcstring &str, const wchar_t *format, ...) { va_list va; va_start(va, format); append_formatv(str, format, va); va_end(va); } const wchar_t *wcsvarname(const wchar_t *str) { while (*str) { if ((!iswalnum(*str)) && (*str != L'_')) { return str; } str++; } return NULL; } const wchar_t *wcsvarname(const wcstring &str) { return wcsvarname(str.c_str()); } const wchar_t *wcsfuncname(const wcstring &str) { return wcschr(str.c_str(), L'/'); } bool wcsvarchr(wchar_t chr) { return iswalnum(chr) || chr == L'_'; } int fish_wcswidth(const wchar_t *str) { return fish_wcswidth(str, wcslen(str)); } int fish_wcswidth(const wcstring &str) { return fish_wcswidth(str.c_str(), str.size()); } wchar_t *quote_end(const wchar_t *pos) { wchar_t c = *pos; while (1) { pos++; if (!*pos) return 0; if (*pos == L'\\') { pos++; if (!*pos) return 0; } else { if (*pos == c) { return (wchar_t *)pos; } } } return 0; } void fish_setlocale() { // Use ellipsis if on known unicode system, otherwise use $. ellipsis_char = (fish_wcwidth(L'\x2026') > 0) ? L'\x2026' : L'$'; // U+23CE is the "return" character omitted_newline_char = (fish_wcwidth(L'\x23CE') > 0) ? L'\x23CE' : L'~'; } bool contains_internal(const wchar_t *a, int vararg_handle, ...) { const wchar_t *arg; va_list va; bool res = false; CHECK(a, 0); va_start(va, vararg_handle); while ((arg = va_arg(va, const wchar_t *)) != 0) { if (wcscmp(a, arg) == 0) { res = true; break; } } va_end(va); return res; } /// wcstring variant of contains_internal. The first parameter is a wcstring, the rest are const /// wchar_t *. vararg_handle exists only to give us a POD-value to pass to va_start. __sentinel bool contains_internal(const wcstring &needle, int vararg_handle, ...) { const wchar_t *arg; va_list va; int res = 0; const wchar_t *needle_cstr = needle.c_str(); va_start(va, vararg_handle); while ((arg = va_arg(va, const wchar_t *)) != 0) { // libc++ has an unfortunate implementation of operator== that unconditonally wcslen's the // wchar_t* parameter, so prefer wcscmp directly. if (!wcscmp(needle_cstr, arg)) { res = 1; break; } } va_end(va); return res; } long read_blocked(int fd, void *buf, size_t count) { ssize_t res; sigset_t chldset, oldset; sigemptyset(&chldset); sigaddset(&chldset, SIGCHLD); VOMIT_ON_FAILURE(pthread_sigmask(SIG_BLOCK, &chldset, &oldset)); res = read(fd, buf, count); VOMIT_ON_FAILURE(pthread_sigmask(SIG_SETMASK, &oldset, NULL)); return res; } ssize_t write_loop(int fd, const char *buff, size_t count) { size_t out_cum = 0; while (out_cum < count) { ssize_t out = write(fd, &buff[out_cum], count - out_cum); if (out < 0) { if (errno != EAGAIN && errno != EINTR) { return -1; } } else { out_cum += (size_t)out; } } return (ssize_t)out_cum; } ssize_t read_loop(int fd, void *buff, size_t count) { ssize_t result; do { result = read(fd, buff, count); } while (result < 0 && (errno == EAGAIN || errno == EINTR)); return result; } static bool should_debug(int level) { if (level > debug_level) return false; // Hack to not print error messages in the tests. if (program_name && !wcscmp(program_name, L"(ignore)")) return false; return true; } static void debug_shared(const wchar_t level, const wcstring &msg) { pid_t current_pid = getpid(); if (current_pid == initial_pid) { fwprintf(stderr, L"<%lc> %ls: %ls\n", (unsigned long)level, program_name, msg.c_str()); } else { fwprintf(stderr, L"<%lc> %ls: %d: %ls\n", (unsigned long)level, program_name, current_pid, msg.c_str()); } } static wchar_t level_char[] = {L'E', L'W', L'2', L'3', L'4', L'5'}; void __attribute__((noinline)) debug(int level, const wchar_t *msg, ...) { if (!should_debug(level)) return; int errno_old = errno; va_list va; va_start(va, msg); wcstring local_msg = vformat_string(msg, va); va_end(va); const wchar_t msg_level = level <= 5 ? level_char[level] : L'9'; debug_shared(msg_level, local_msg); if (debug_stack_frames > 0) { show_stackframe(msg_level, debug_stack_frames, 1); } errno = errno_old; } void __attribute__((noinline)) debug(int level, const char *msg, ...) { if (!should_debug(level)) return; int errno_old = errno; char local_msg[512]; va_list va; va_start(va, msg); vsnprintf(local_msg, sizeof local_msg, msg, va); va_end(va); const wchar_t msg_level = level <= 5 ? level_char[level] : L'9'; debug_shared(msg_level, str2wcstring(local_msg)); if (debug_stack_frames > 0) { show_stackframe(msg_level, debug_stack_frames, 1); } errno = errno_old; } void read_ignore(int fd, void *buff, size_t count) { size_t ignore __attribute__((unused)); ignore = read(fd, buff, count); } void write_ignore(int fd, const void *buff, size_t count) { size_t ignore __attribute__((unused)); ignore = write(fd, buff, count); } void debug_safe(int level, const char *msg, const char *param1, const char *param2, const char *param3, const char *param4, const char *param5, const char *param6, const char *param7, const char *param8, const char *param9, const char *param10, const char *param11, const char *param12) { const char *const params[] = {param1, param2, param3, param4, param5, param6, param7, param8, param9, param10, param11, param12}; if (!msg) return; // Can't call printf, that may allocate memory Just call write() over and over. if (level > debug_level) return; int errno_old = errno; size_t param_idx = 0; const char *cursor = msg; while (*cursor != '\0') { const char *end = strchr(cursor, '%'); if (end == NULL) end = cursor + strlen(cursor); write_ignore(STDERR_FILENO, cursor, end - cursor); if (end[0] == '%' && end[1] == 's') { // Handle a format string. assert(param_idx < sizeof params / sizeof *params); const char *format = params[param_idx++]; if (!format) format = "(null)"; write_ignore(STDERR_FILENO, format, strlen(format)); cursor = end + 2; } else if (end[0] == '\0') { // Must be at the end of the string. cursor = end; } else { // Some other format specifier, just skip it. cursor = end + 1; } } // We always append a newline. write_ignore(STDERR_FILENO, "\n", 1); errno = errno_old; } void format_long_safe(char buff[64], long val) { if (val == 0) { strcpy(buff, "0"); } else { // Generate the string in reverse. size_t idx = 0; bool negative = (val < 0); // Note that we can't just negate val if it's negative, because it may be the most negative // value. We do rely on round-towards-zero division though. while (val != 0) { long rem = val % 10; buff[idx++] = '0' + (rem < 0 ? -rem : rem); val /= 10; } if (negative) buff[idx++] = '-'; buff[idx] = 0; size_t left = 0, right = idx - 1; while (left < right) { char tmp = buff[left]; buff[left++] = buff[right]; buff[right--] = tmp; } } } void format_long_safe(wchar_t buff[64], long val) { if (val == 0) { wcscpy(buff, L"0"); } else { // Generate the string in reverse. size_t idx = 0; bool negative = (val < 0); while (val != 0) { long rem = val % 10; buff[idx++] = L'0' + (wchar_t)(rem < 0 ? -rem : rem); val /= 10; } if (negative) buff[idx++] = L'-'; buff[idx] = 0; size_t left = 0, right = idx - 1; while (left < right) { wchar_t tmp = buff[left]; buff[left++] = buff[right]; buff[right--] = tmp; } } } void narrow_string_safe(char buff[64], const wchar_t *s) { size_t idx = 0; for (size_t widx = 0; s[widx] != L'\0'; widx++) { wchar_t c = s[widx]; if (c <= 127) { buff[idx++] = char(c); if (idx + 1 == 64) { break; } } } buff[idx] = '\0'; } wcstring reformat_for_screen(const wcstring &msg) { wcstring buff; int line_width = 0; int screen_width = common_get_width(); if (screen_width) { const wchar_t *start = msg.c_str(); const wchar_t *pos = start; while (1) { int overflow = 0; int tok_width = 0; // Tokenize on whitespace, and also calculate the width of the token. while (*pos && (!wcschr(L" \n\r\t", *pos))) { // Check is token is wider than one line. If so we mark it as an overflow and break // the token. if ((tok_width + fish_wcwidth(*pos)) > (screen_width - 1)) { overflow = 1; break; } tok_width += fish_wcwidth(*pos); pos++; } // If token is zero character long, we don't do anything. if (pos == start) { pos = pos + 1; } else if (overflow) { // In case of overflow, we print a newline, except if we already are at position 0. wchar_t *token = wcsndup(start, pos - start); if (line_width != 0) buff.push_back(L'\n'); buff.append(format_string(L"%ls-\n", token)); free(token); line_width = 0; } else { // Print the token. wchar_t *token = wcsndup(start, pos - start); if ((line_width + (line_width != 0 ? 1 : 0) + tok_width) > screen_width) { buff.push_back(L'\n'); line_width = 0; } buff.append(format_string(L"%ls%ls", line_width ? L" " : L"", token)); free(token); line_width += (line_width != 0 ? 1 : 0) + tok_width; } // Break on end of string. if (!*pos) { break; } start = pos; } } else { buff.append(msg); } buff.push_back(L'\n'); return buff; } /// Escape a string, storing the result in out_str. static void escape_string_internal(const wchar_t *orig_in, size_t in_len, wcstring *out_str, escape_flags_t flags) { assert(orig_in != NULL); const wchar_t *in = orig_in; bool escape_all = !!(flags & ESCAPE_ALL); bool no_quoted = !!(flags & ESCAPE_NO_QUOTED); bool no_tilde = !!(flags & ESCAPE_NO_TILDE); int need_escape = 0; int need_complex_escape = 0; // Avoid dereferencing all over the place. wcstring &out = *out_str; if (!no_quoted && in_len == 0) { out.assign(L"''"); return; } while (*in != 0) { if ((*in >= ENCODE_DIRECT_BASE) && (*in < ENCODE_DIRECT_BASE + 256)) { int val = *in - ENCODE_DIRECT_BASE; int tmp; out += L'\\'; out += L'X'; tmp = val / 16; out += tmp > 9 ? L'a' + (tmp - 10) : L'0' + tmp; tmp = val % 16; out += tmp > 9 ? L'a' + (tmp - 10) : L'0' + tmp; need_escape = need_complex_escape = 1; } else { wchar_t c = *in; switch (c) { case L'\t': { out += L'\\'; out += L't'; need_escape = need_complex_escape = 1; break; } case L'\n': { out += L'\\'; out += L'n'; need_escape = need_complex_escape = 1; break; } case L'\b': { out += L'\\'; out += L'b'; need_escape = need_complex_escape = 1; break; } case L'\r': { out += L'\\'; out += L'r'; need_escape = need_complex_escape = 1; break; } case L'\x1b': { out += L'\\'; out += L'e'; need_escape = need_complex_escape = 1; break; } case L'\\': case L'\'': { need_escape = need_complex_escape = 1; if (escape_all) out += L'\\'; out += *in; break; } case ANY_CHAR: { // Experimental fix for #1614. The hope is that any time these appear in a // string, they came from wildcard expansion. out += L'?'; break; } case ANY_STRING: { out += L'*'; break; } case ANY_STRING_RECURSIVE: { out += L"**"; break; } case L'&': case L'$': case L' ': case L'#': case L'^': case L'<': case L'>': case L'(': case L')': case L'[': case L']': case L'{': case L'}': case L'?': case L'*': case L'|': case L';': case L'"': case L'%': case L'~': { if (!no_tilde || c != L'~') { need_escape = 1; if (escape_all) out += L'\\'; } out += *in; break; } default: { if (*in < 32) { if (*in < 27 && *in > 0) { out += L'\\'; out += L'c'; out += L'a' + *in - 1; need_escape = need_complex_escape = 1; break; } int tmp = (*in) % 16; out += L'\\'; out += L'x'; out += ((*in > 15) ? L'1' : L'0'); out += tmp > 9 ? L'a' + (tmp - 10) : L'0' + tmp; need_escape = need_complex_escape = 1; } else { out += *in; } break; } } } in++; } // Use quoted escaping if possible, since most people find it easier to read. if (!no_quoted && need_escape && !need_complex_escape && escape_all) { wchar_t single_quote = L'\''; out.clear(); out.reserve(2 + in_len); out.push_back(single_quote); out.append(orig_in, in_len); out.push_back(single_quote); } } wcstring escape(const wchar_t *in, escape_flags_t flags) { wcstring result; escape_string_internal(in, wcslen(in), &result, flags); return result; } wcstring escape_string(const wcstring &in, escape_flags_t flags) { wcstring result; escape_string_internal(in.c_str(), in.size(), &result, flags); return result; } /// Helper to return the last character in a string, or NOT_A_WCHAR. static wint_t string_last_char(const wcstring &str) { size_t len = str.size(); return len == 0 ? NOT_A_WCHAR : str.at(len - 1); } /// Given a null terminated string starting with a backslash, read the escape as if it is unquoted, /// appending to result. Return the number of characters consumed, or 0 on error. size_t read_unquoted_escape(const wchar_t *input, wcstring *result, bool allow_incomplete, bool unescape_special) { if (input[0] != L'\\') { return 0; // not an escape } // Here's the character we'll ultimately append, or NOT_A_WCHAR for none. Note that L'\0' is a // valid thing to append. wint_t result_char_or_none = NOT_A_WCHAR; bool errored = false; size_t in_pos = 1; // in_pos always tracks the next character to read (and therefore the number // of characters read so far) const wchar_t c = input[in_pos++]; switch (c) { // A null character after a backslash is an error. case L'\0': { // Adjust in_pos to only include the backslash. assert(in_pos > 0); in_pos--; // It's an error, unless we're allowing incomplete escapes. if (!allow_incomplete) errored = true; break; } // Numeric escape sequences. No prefix means octal escape, otherwise hexadecimal. case L'0': case L'1': case L'2': case L'3': case L'4': case L'5': case L'6': case L'7': case L'u': case L'U': case L'x': case L'X': { long long res = 0; size_t chars = 2; int base = 16; bool byte_literal = false; wchar_t max_val = ASCII_MAX; switch (c) { case L'u': { chars = 4; max_val = UCS2_MAX; break; } case L'U': { chars = 8; max_val = WCHAR_MAX; // Don't exceed the largest Unicode code point - see #1107. if (0x10FFFF < max_val) max_val = (wchar_t)0x10FFFF; break; } case L'x': { chars = 2; max_val = ASCII_MAX; break; } case L'X': { byte_literal = true; max_val = BYTE_MAX; break; } default: { base = 8; chars = 3; // Note that in_pos currently is just after the first post-backslash character; // we want to start our escape from there. assert(in_pos > 0); in_pos--; break; } } for (size_t i = 0; i < chars; i++) { long d = convert_digit(input[in_pos], base); if (d < 0) { break; } res = (res * base) + d; in_pos++; } if (res <= max_val) { result_char_or_none = (wchar_t)((byte_literal ? ENCODE_DIRECT_BASE : 0) + res); } else { errored = true; } break; } // \a means bell (alert). case L'a': { result_char_or_none = L'\a'; break; } // \b means backspace. case L'b': { result_char_or_none = L'\b'; break; } // \cX means control sequence X. case L'c': { const wchar_t sequence_char = input[in_pos++]; if (sequence_char >= L'a' && sequence_char <= (L'a' + 32)) { result_char_or_none = sequence_char - L'a' + 1; } else if (sequence_char >= L'A' && sequence_char <= (L'A' + 32)) { result_char_or_none = sequence_char - L'A' + 1; } else { errored = true; } break; } // \x1b means escape. case L'e': { result_char_or_none = L'\x1b'; break; } // \f means form feed. case L'f': { result_char_or_none = L'\f'; break; } // \n means newline. case L'n': { result_char_or_none = L'\n'; break; } // \r means carriage return. case L'r': { result_char_or_none = L'\r'; break; } // \t means tab. case L't': { result_char_or_none = L'\t'; break; } // \v means vertical tab. case L'v': { result_char_or_none = L'\v'; break; } // If a backslash is followed by an actual newline, swallow them both. case L'\n': { result_char_or_none = NOT_A_WCHAR; break; } default: { if (unescape_special) result->push_back(INTERNAL_SEPARATOR); result_char_or_none = c; break; } } if (!errored && result_char_or_none != NOT_A_WCHAR) { wchar_t result_char = static_cast(result_char_or_none); // If result_char is not NOT_A_WCHAR, it must be a valid wchar. assert((wint_t)result_char == result_char_or_none); result->push_back(result_char); } return errored ? 0 : in_pos; } /// Returns the unescaped version of input_str into output_str (by reference). Returns true if /// successful. If false, the contents of output_str are undefined (!). static bool unescape_string_internal(const wchar_t *const input, const size_t input_len, wcstring *output_str, unescape_flags_t flags) { // Set up result string, which we'll swap with the output on success. wcstring result; result.reserve(input_len); const bool unescape_special = !!(flags & UNESCAPE_SPECIAL); const bool allow_incomplete = !!(flags & UNESCAPE_INCOMPLETE); int bracket_count = 0; bool errored = false; enum { mode_unquoted, mode_single_quotes, mode_double_quotes } mode = mode_unquoted; for (size_t input_position = 0; input_position < input_len && !errored; input_position++) { const wchar_t c = input[input_position]; // Here's the character we'll append to result, or NOT_A_WCHAR to suppress it. wint_t to_append_or_none = c; if (mode == mode_unquoted) { switch (c) { case L'\\': { // Backslashes (escapes) are complicated and may result in errors, or appending // INTERNAL_SEPARATORs, so we have to handle them specially. size_t escape_chars = read_unquoted_escape(input + input_position, &result, allow_incomplete, unescape_special); if (escape_chars == 0) { // A 0 return indicates an error. errored = true; } else { // Skip over the characters we read, minus one because the outer loop will // increment it. assert(escape_chars > 0); input_position += escape_chars - 1; } // We've already appended, don't append anything else. to_append_or_none = NOT_A_WCHAR; break; } case L'~': { if (unescape_special && (input_position == 0)) { to_append_or_none = HOME_DIRECTORY; } break; } case L'%': { if (unescape_special && (input_position == 0)) { to_append_or_none = PROCESS_EXPAND; } break; } case L'*': { if (unescape_special) { // In general, this is ANY_STRING. But as a hack, if the last appended char // is ANY_STRING, delete the last char and store ANY_STRING_RECURSIVE to // reflect the fact that ** is the recursive wildcard. if (string_last_char(result) == ANY_STRING) { assert(result.size() > 0); result.resize(result.size() - 1); to_append_or_none = ANY_STRING_RECURSIVE; } else { to_append_or_none = ANY_STRING; } } break; } case L'?': { if (unescape_special) { to_append_or_none = ANY_CHAR; } break; } case L'$': { if (unescape_special) { to_append_or_none = VARIABLE_EXPAND; } break; } case L'{': { if (unescape_special) { bracket_count++; to_append_or_none = BRACKET_BEGIN; } break; } case L'}': { if (unescape_special) { bracket_count--; to_append_or_none = BRACKET_END; } break; } case L',': { // If the last character was a separator, then treat this as a literal comma. if (unescape_special && bracket_count > 0 && string_last_char(result) != BRACKET_SEP) { to_append_or_none = BRACKET_SEP; } break; } case L'\'': { mode = mode_single_quotes; to_append_or_none = unescape_special ? INTERNAL_SEPARATOR : NOT_A_WCHAR; break; } case L'\"': { mode = mode_double_quotes; to_append_or_none = unescape_special ? INTERNAL_SEPARATOR : NOT_A_WCHAR; break; } } } else if (mode == mode_single_quotes) { if (c == L'\\') { // A backslash may or may not escape something in single quotes. switch (input[input_position + 1]) { case '\\': case L'\'': { to_append_or_none = input[input_position + 1]; input_position += 1; // skip over the backslash break; } case L'\0': { if (!allow_incomplete) { errored = true; } else { // PCA this line had the following cryptic comment: 'We may ever escape // a NULL character, but still appending a \ in case I am wrong.' Not // sure what it means or the importance of this. input_position += 1; /* Skip over the backslash */ to_append_or_none = L'\\'; } break; } default: { // Literal backslash that doesn't escape anything! Leave things alone; we'll // append the backslash itself. break; } } } else if (c == L'\'') { to_append_or_none = unescape_special ? INTERNAL_SEPARATOR : NOT_A_WCHAR; mode = mode_unquoted; } } else if (mode == mode_double_quotes) { switch (c) { case L'"': { mode = mode_unquoted; to_append_or_none = unescape_special ? INTERNAL_SEPARATOR : NOT_A_WCHAR; break; } case '\\': { switch (input[input_position + 1]) { case L'\0': { if (!allow_incomplete) { errored = true; } else { to_append_or_none = L'\0'; } break; } case '\\': case L'$': case '"': { to_append_or_none = input[input_position + 1]; input_position += 1; /* Skip over the backslash */ break; } case '\n': { /* Swallow newline */ to_append_or_none = NOT_A_WCHAR; input_position += 1; /* Skip over the backslash */ break; } default: { /* Literal backslash that doesn't escape anything! Leave things alone; * we'll append the backslash itself */ break; } } break; } case '$': { if (unescape_special) { to_append_or_none = VARIABLE_EXPAND_SINGLE; } break; } } } // Now maybe append the char. if (to_append_or_none != NOT_A_WCHAR) { wchar_t to_append_char = static_cast(to_append_or_none); // If result_char is not NOT_A_WCHAR, it must be a valid wchar. assert((wint_t)to_append_char == to_append_or_none); result.push_back(to_append_char); } } // Return the string by reference, and then success. if (!errored) { output_str->swap(result); } return !errored; } bool unescape_string_in_place(wcstring *str, unescape_flags_t escape_special) { assert(str != NULL); wcstring output; bool success = unescape_string_internal(str->c_str(), str->size(), &output, escape_special); if (success) { str->swap(output); } return success; } bool unescape_string(const wchar_t *input, wcstring *output, unescape_flags_t escape_special) { bool success = unescape_string_internal(input, wcslen(input), output, escape_special); if (!success) output->clear(); return success; } bool unescape_string(const wcstring &input, wcstring *output, unescape_flags_t escape_special) { bool success = unescape_string_internal(input.c_str(), input.size(), output, escape_special); if (!success) output->clear(); return success; } void common_handle_winch(int signal) { // Don't run ioctl() here, it's not safe to use in signals. termsize_valid = false; } /// Updates termsize as needed, and returns a copy of the winsize. static struct winsize get_current_winsize() { #ifndef HAVE_WINSIZE struct winsize retval = {0}; retval.ws_col = 80; retval.ws_row = 24; return retval; #endif scoped_rwlock guard(termsize_rwlock, true); struct winsize retval = termsize; if (!termsize_valid) { struct winsize size; if (ioctl(1, TIOCGWINSZ, &size) == 0) { retval = size; guard.upgrade(); termsize = retval; } termsize_valid = true; } return retval; } int common_get_width() { return get_current_winsize().ws_col; } int common_get_height() { return get_current_winsize().ws_row; } void tokenize_variable_array(const wcstring &val, std::vector &out) { size_t pos = 0, end = val.size(); while (pos <= end) { size_t next_pos = val.find(ARRAY_SEP, pos); if (next_pos == wcstring::npos) { next_pos = end; } out.resize(out.size() + 1); out.back().assign(val, pos, next_pos - pos); pos = next_pos + 1; // skip the separator, or skip past the end } } bool string_prefixes_string(const wchar_t *proposed_prefix, const wcstring &value) { size_t prefix_size = wcslen(proposed_prefix); return prefix_size <= value.size() && value.compare(0, prefix_size, proposed_prefix) == 0; } bool string_prefixes_string(const wcstring &proposed_prefix, const wcstring &value) { size_t prefix_size = proposed_prefix.size(); return prefix_size <= value.size() && value.compare(0, prefix_size, proposed_prefix) == 0; } bool string_prefixes_string_case_insensitive(const wcstring &proposed_prefix, const wcstring &value) { size_t prefix_size = proposed_prefix.size(); return prefix_size <= value.size() && wcsncasecmp(proposed_prefix.c_str(), value.c_str(), prefix_size) == 0; } bool string_suffixes_string(const wcstring &proposed_suffix, const wcstring &value) { size_t suffix_size = proposed_suffix.size(); return suffix_size <= value.size() && value.compare(value.size() - suffix_size, suffix_size, proposed_suffix) == 0; } bool string_suffixes_string(const wchar_t *proposed_suffix, const wcstring &value) { size_t suffix_size = wcslen(proposed_suffix); return suffix_size <= value.size() && value.compare(value.size() - suffix_size, suffix_size, proposed_suffix) == 0; } /// Returns true if seq, represented as a subsequence, is contained within string. static bool subsequence_in_string(const wcstring &seq, const wcstring &str) { // Impossible if seq is larger than string. if (seq.size() > str.size()) { return false; } // Empty strings are considered to be subsequences of everything. if (seq.empty()) { return true; } size_t str_idx, seq_idx; for (seq_idx = str_idx = 0; seq_idx < seq.size() && str_idx < str.size(); seq_idx++) { wchar_t c = seq.at(seq_idx); size_t char_loc = str.find(c, str_idx); if (char_loc == wcstring::npos) { break; // didn't find this character } else { str_idx = char_loc + 1; // we found it, continue the search just after it } } // We succeeded if we exhausted our sequence. assert(seq_idx <= seq.size()); return seq_idx == seq.size(); } string_fuzzy_match_t::string_fuzzy_match_t(enum fuzzy_match_type_t t, size_t distance_first, size_t distance_second) : type(t), match_distance_first(distance_first), match_distance_second(distance_second) {} string_fuzzy_match_t string_fuzzy_match_string(const wcstring &string, const wcstring &match_against, fuzzy_match_type_t limit_type) { // Distances are generally the amount of text not matched. string_fuzzy_match_t result(fuzzy_match_none, 0, 0); size_t location; if (limit_type >= fuzzy_match_exact && string == match_against) { result.type = fuzzy_match_exact; } else if (limit_type >= fuzzy_match_prefix && string_prefixes_string(string, match_against)) { result.type = fuzzy_match_prefix; assert(match_against.size() >= string.size()); result.match_distance_first = match_against.size() - string.size(); } else if (limit_type >= fuzzy_match_case_insensitive && wcscasecmp(string.c_str(), match_against.c_str()) == 0) { result.type = fuzzy_match_case_insensitive; } else if (limit_type >= fuzzy_match_prefix_case_insensitive && string_prefixes_string_case_insensitive(string, match_against)) { result.type = fuzzy_match_prefix_case_insensitive; assert(match_against.size() >= string.size()); result.match_distance_first = match_against.size() - string.size(); } else if (limit_type >= fuzzy_match_substring && (location = match_against.find(string)) != wcstring::npos) { // String is contained within match against. result.type = fuzzy_match_substring; assert(match_against.size() >= string.size()); result.match_distance_first = match_against.size() - string.size(); result.match_distance_second = location; // prefer earlier matches } else if (limit_type >= fuzzy_match_subsequence_insertions_only && subsequence_in_string(string, match_against)) { result.type = fuzzy_match_subsequence_insertions_only; assert(match_against.size() >= string.size()); result.match_distance_first = match_against.size() - string.size(); // It would be nice to prefer matches with greater matching runs here. } return result; } template static inline int compare_ints(T a, T b) { if (a < b) return -1; if (a == b) return 0; return 1; } /// Compare types; if the types match, compare distances. int string_fuzzy_match_t::compare(const string_fuzzy_match_t &rhs) const { if (this->type != rhs.type) { return compare_ints(this->type, rhs.type); } else if (this->match_distance_first != rhs.match_distance_first) { return compare_ints(this->match_distance_first, rhs.match_distance_first); } else if (this->match_distance_second != rhs.match_distance_second) { return compare_ints(this->match_distance_second, rhs.match_distance_second); } return 0; // equal } bool list_contains_string(const wcstring_list_t &list, const wcstring &str) { return std::find(list.begin(), list.end(), str) != list.end(); } int create_directory(const wcstring &d) { int ok = 0; struct stat buf; int stat_res = 0; while ((stat_res = wstat(d, &buf)) != 0) { if (errno != EAGAIN) break; } if (stat_res == 0) { if (S_ISDIR(buf.st_mode)) { ok = 1; } } else { if (errno == ENOENT) { wcstring dir = wdirname(d); if (!create_directory(dir)) { if (!wmkdir(d, 0700)) { ok = 1; } } } } return ok ? 0 : -1; } __attribute__((noinline)) void bugreport() { debug(1, _(L"This is a bug. Break on bugreport to debug. " L"If you can reproduce it, please send a bug report to %s."), PACKAGE_BUGREPORT); } wcstring format_size(long long sz) { wcstring result; const wchar_t *sz_name[] = {L"kB", L"MB", L"GB", L"TB", L"PB", L"EB", L"ZB", L"YB", 0}; if (sz < 0) { result.append(L"unknown"); } else if (sz < 1) { result.append(_(L"empty")); } else if (sz < 1024) { result.append(format_string(L"%lldB", sz)); } else { int i; for (i = 0; sz_name[i]; i++) { if (sz < (1024 * 1024) || !sz_name[i + 1]) { long isz = ((long)sz) / 1024; if (isz > 9) result.append(format_string(L"%d%ls", isz, sz_name[i])); else result.append(format_string(L"%.1f%ls", (double)sz / 1024, sz_name[i])); break; } sz /= 1024; } } return result; } /// Crappy function to extract the most significant digit of an unsigned long long value. static char extract_most_significant_digit(unsigned long long *xp) { unsigned long long place_value = 1; unsigned long long x = *xp; while (x >= 10) { x /= 10; place_value *= 10; } *xp -= (place_value * x); return x + '0'; } void append_ull(char *buff, unsigned long long val, size_t *inout_idx, size_t max_len) { size_t idx = *inout_idx; while (val > 0 && idx < max_len) buff[idx++] = extract_most_significant_digit(&val); *inout_idx = idx; } void append_str(char *buff, const char *str, size_t *inout_idx, size_t max_len) { size_t idx = *inout_idx; while (*str && idx < max_len) buff[idx++] = *str++; *inout_idx = idx; } void format_size_safe(char buff[128], unsigned long long sz) { const size_t buff_size = 128; const size_t max_len = buff_size - 1; // need to leave room for a null terminator memset(buff, 0, buff_size); size_t idx = 0; const char *const sz_name[] = {"kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB", NULL}; if (sz < 1) { strncpy(buff, "empty", buff_size); } else if (sz < 1024) { append_ull(buff, sz, &idx, max_len); append_str(buff, "B", &idx, max_len); } else { for (size_t i = 0; sz_name[i]; i++) { if (sz < (1024 * 1024) || !sz_name[i + 1]) { unsigned long long isz = sz / 1024; if (isz > 9) { append_ull(buff, isz, &idx, max_len); } else { if (isz == 0) { append_str(buff, "0", &idx, max_len); } else { append_ull(buff, isz, &idx, max_len); } // Maybe append a single fraction digit. unsigned long long remainder = sz % 1024; if (remainder > 0) { char tmp[3] = {'.', extract_most_significant_digit(&remainder), 0}; append_str(buff, tmp, &idx, max_len); } } append_str(buff, sz_name[i], &idx, max_len); break; } sz /= 1024; } } } /// Return the number of seconds from the UNIX epoch, with subsecond precision. This function uses /// the gettimeofday function and will have the same precision as that function. double timef() { struct timeval tv; VOMIT_ON_FAILURE(gettimeofday(&tv, 0)); // return (double)tv.tv_sec + 0.000001 * tv.tv_usec; return (double)tv.tv_sec + 1e-6 * tv.tv_usec; } void exit_without_destructors(int code) { _exit(code); } /// Helper function to convert from a null_terminated_array_t to a /// null_terminated_array_t. void convert_wide_array_to_narrow(const null_terminated_array_t &wide_arr, null_terminated_array_t *output) { const wchar_t *const *arr = wide_arr.get(); if (!arr) { output->clear(); return; } std::vector list; for (size_t i = 0; arr[i]; i++) { list.push_back(wcs2string(arr[i])); } output->set(list); } void append_path_component(wcstring &path, const wcstring &component) { if (path.empty() || component.empty()) { path.append(component); } else { size_t path_len = path.size(); bool path_slash = path.at(path_len - 1) == L'/'; bool comp_slash = component.at(0) == L'/'; if (!path_slash && !comp_slash) { // Need a slash path.push_back(L'/'); } else if (path_slash && comp_slash) { // Too many slashes. path.erase(path_len - 1, 1); } path.append(component); } } extern "C" { __attribute__((noinline)) void debug_thread_error(void) { while (1) sleep(9999999); } } void set_main_thread() { main_thread_id = pthread_self(); } void configure_thread_assertions_for_testing(void) { thread_assertions_configured_for_testing = true; } bool is_forked_child(void) { // Just bail if nobody's called setup_fork_guards, e.g. some of our tools. if (!initial_pid) return false; bool is_child_of_fork = (getpid() != initial_pid); if (is_child_of_fork) { printf("Uh-oh: %d\n", getpid()); while (1) sleep(10000); } return is_child_of_fork; } void setup_fork_guards(void) { // Notice when we fork by stashing our pid. This seems simpler than pthread_atfork(). initial_pid = getpid(); } void save_term_foreground_process_group(void) { initial_foreground_process_group = tcgetpgrp(STDIN_FILENO); } void restore_term_foreground_process_group(void) { if (initial_foreground_process_group != -1) { // This is called during shutdown and from a signal handler. We don't bother to complain on // failure. tcsetpgrp(STDIN_FILENO, initial_foreground_process_group); } } bool is_main_thread() { assert(main_thread_id != 0); return main_thread_id == pthread_self(); } void assert_is_main_thread(const char *who) { if (!is_main_thread() && !thread_assertions_configured_for_testing) { fprintf(stderr, "Warning: %s called off of main thread. Break on debug_thread_error to debug.\n", who); debug_thread_error(); } } void assert_is_not_forked_child(const char *who) { if (is_forked_child()) { fprintf(stderr, "Warning: %s called in a forked child. Break on debug_thread_error to debug.\n", who); debug_thread_error(); } } void assert_is_background_thread(const char *who) { if (is_main_thread() && !thread_assertions_configured_for_testing) { fprintf(stderr, "Warning: %s called on the main thread (may block!). Break on debug_thread_error " "to debug.\n", who); debug_thread_error(); } } void assert_is_locked(void *vmutex, const char *who, const char *caller) { pthread_mutex_t *mutex = static_cast(vmutex); if (0 == pthread_mutex_trylock(mutex)) { fprintf(stderr, "Warning: %s is not locked when it should be in '%s'. Break on debug_thread_error " "to debug.\n", who, caller); debug_thread_error(); pthread_mutex_unlock(mutex); } } void scoped_lock::lock(void) { assert(!locked); ASSERT_IS_NOT_FORKED_CHILD(); VOMIT_ON_FAILURE_NO_ERRNO(pthread_mutex_lock(lock_obj)); locked = true; } void scoped_lock::unlock(void) { assert(locked); ASSERT_IS_NOT_FORKED_CHILD(); VOMIT_ON_FAILURE_NO_ERRNO(pthread_mutex_unlock(lock_obj)); locked = false; } scoped_lock::scoped_lock(pthread_mutex_t &mutex) : lock_obj(&mutex), locked(false) { this->lock(); } scoped_lock::scoped_lock(mutex_lock_t &lock) : lock_obj(&lock.mutex), locked(false) { this->lock(); } scoped_lock::~scoped_lock() { if (locked) this->unlock(); } void scoped_rwlock::lock(void) { assert(!(locked || locked_shared)); ASSERT_IS_NOT_FORKED_CHILD(); VOMIT_ON_FAILURE_NO_ERRNO(pthread_rwlock_rdlock(rwlock_obj)); locked = true; } void scoped_rwlock::unlock(void) { assert(locked); ASSERT_IS_NOT_FORKED_CHILD(); VOMIT_ON_FAILURE_NO_ERRNO(pthread_rwlock_unlock(rwlock_obj)); locked = false; } void scoped_rwlock::lock_shared(void) { assert(!(locked || locked_shared)); ASSERT_IS_NOT_FORKED_CHILD(); VOMIT_ON_FAILURE_NO_ERRNO(pthread_rwlock_wrlock(rwlock_obj)); locked_shared = true; } void scoped_rwlock::unlock_shared(void) { assert(locked_shared); ASSERT_IS_NOT_FORKED_CHILD(); VOMIT_ON_FAILURE_NO_ERRNO(pthread_rwlock_unlock(rwlock_obj)); locked_shared = false; } void scoped_rwlock::upgrade(void) { assert(locked_shared); ASSERT_IS_NOT_FORKED_CHILD(); VOMIT_ON_FAILURE_NO_ERRNO(pthread_rwlock_unlock(rwlock_obj)); locked = false; VOMIT_ON_FAILURE_NO_ERRNO(pthread_rwlock_wrlock(rwlock_obj)); locked_shared = true; } scoped_rwlock::scoped_rwlock(pthread_rwlock_t &rwlock, bool shared) : rwlock_obj(&rwlock), locked(false), locked_shared(false) { if (shared) { this->lock_shared(); } else { this->lock(); } } scoped_rwlock::scoped_rwlock(rwlock_t &rwlock, bool shared) : rwlock_obj(&rwlock.rwlock), locked(false), locked_shared(false) { if (shared) { this->lock_shared(); } else { this->lock(); } } scoped_rwlock::~scoped_rwlock() { if (locked) { this->unlock(); } else if (locked_shared) { this->unlock_shared(); } } wcstokenizer::wcstokenizer(const wcstring &s, const wcstring &separator) : buffer(), str(), state(), sep(separator) { buffer = wcsdup(s.c_str()); str = buffer; state = NULL; } bool wcstokenizer::next(wcstring &result) { wchar_t *tmp = wcstok(str, sep.c_str(), &state); str = NULL; if (tmp) result = tmp; return tmp != NULL; } wcstokenizer::~wcstokenizer() { free(buffer); } template static CharType_t **make_null_terminated_array_helper( const std::vector > &argv) { size_t count = argv.size(); // We allocate everything in one giant block. First compute how much space we need. // N + 1 pointers. size_t pointers_allocation_len = (count + 1) * sizeof(CharType_t *); // In the very unlikely event that CharType_t has stricter alignment requirements than does a // pointer, round us up to the size of a CharType_t. pointers_allocation_len += sizeof(CharType_t) - 1; pointers_allocation_len -= pointers_allocation_len % sizeof(CharType_t); // N null terminated strings. size_t strings_allocation_len = 0; for (size_t i = 0; i < count; i++) { // The size of the string, plus a null terminator. strings_allocation_len += (argv.at(i).size() + 1) * sizeof(CharType_t); } // Now allocate their sum. unsigned char *base = static_cast(malloc(pointers_allocation_len + strings_allocation_len)); if (!base) return NULL; // Divvy it up into the pointers and strings. CharType_t **pointers = reinterpret_cast(base); CharType_t *strings = reinterpret_cast(base + pointers_allocation_len); // Start copying. for (size_t i = 0; i < count; i++) { const std::basic_string &str = argv.at(i); *pointers++ = strings; // store the current string pointer into self strings = std::copy(str.begin(), str.end(), strings); // copy the string into strings *strings++ = (CharType_t)(0); // each string needs a null terminator } *pointers++ = NULL; // array of pointers needs a null terminator // Make sure we know what we're doing. assert((unsigned char *)pointers - base == (std::ptrdiff_t)pointers_allocation_len); assert((unsigned char *)strings - (unsigned char *)pointers == (std::ptrdiff_t)strings_allocation_len); assert((unsigned char *)strings - base == (std::ptrdiff_t)(pointers_allocation_len + strings_allocation_len)); return reinterpret_cast(base); } wchar_t **make_null_terminated_array(const wcstring_list_t &lst) { return make_null_terminated_array_helper(lst); } char **make_null_terminated_array(const std::vector &lst) { return make_null_terminated_array_helper(lst); } long convert_digit(wchar_t d, int base) { long res = -1; if ((d <= L'9') && (d >= L'0')) { res = d - L'0'; } else if ((d <= L'z') && (d >= L'a')) { res = d + 10 - L'a'; } else if ((d <= L'Z') && (d >= L'A')) { res = d + 10 - L'A'; } if (res >= base) { res = -1; } return res; }