/** \file exec.c Functions for executing a program. Some of the code in this file is based on code from the Glibc manual, though the changes performed have been massive. */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_SIGINFO_H #include #endif #include "fallback.h" #include "util.h" #include "iothread.h" #include "postfork.h" #include "common.h" #include "wutil.h" #include "proc.h" #include "exec.h" #include "parser.h" #include "builtin.h" #include "function.h" #include "env.h" #include "wildcard.h" #include "sanity.h" #include "expand.h" #include "signal.h" #include "parse_util.h" /** file descriptor redirection error message */ #define FD_ERROR _( L"An error occurred while redirecting file descriptor %d" ) /** file descriptor redirection error message */ #define WRITE_ERROR _( L"An error occurred while writing output" ) /** file redirection error message */ #define FILE_ERROR _( L"An error occurred while redirecting file '%s'" ) /** Base open mode to pass to calls to open */ #define OPEN_MASK 0666 /** List of all pipes used by internal pipes. These must be closed in many situations in order to make sure that stray fds aren't lying around. Note this is used after fork, so we must not do anything that may allocate memory. Hopefully methods like open_fds.at() don't. */ static std::vector open_fds; // Called in a forked child static void exec_write_and_exit(int fd, const char *buff, size_t count, int status) { if (write_loop(fd, buff, count) == -1) { debug(0, WRITE_ERROR); wperror(L"write"); exit_without_destructors(status); } exit_without_destructors(status); } void exec_close(int fd) { ASSERT_IS_MAIN_THREAD(); /* This may be called in a child of fork(), so don't allocate memory */ if (fd < 0) { debug(0, L"Called close on invalid file descriptor "); return; } while (close(fd) == -1) { if (errno != EINTR) { debug(1, FD_ERROR, fd); wperror(L"close"); break; } } /* Maybe remove this from our set of open fds */ if ((size_t)fd < open_fds.size()) { open_fds[fd] = false; } } int exec_pipe(int fd[2]) { ASSERT_IS_MAIN_THREAD(); int res; while ((res=pipe(fd))) { if (errno != EINTR) { // caller will call wperror return res; } } debug(4, L"Created pipe using fds %d and %d", fd[0], fd[1]); int max_fd = std::max(fd[0], fd[1]); if (max_fd >= 0 && open_fds.size() <= (size_t)max_fd) { open_fds.resize(max_fd + 1, false); } open_fds.at(fd[0]) = true; open_fds.at(fd[1]) = true; return res; } void print_open_fds(void) { for (size_t i=0; i < open_fds.size(); ++i) { if (open_fds.at(i)) { fprintf(stderr, "fd %lu\n", i); } } } /** Check if the specified fd is used as a part of a pipeline in the specidied set of IO redirections. This is called after fork(). \param fd the fd to search for \param io_chain the set of io redirections to search in */ static bool use_fd_in_pipe(int fd, const io_chain_t &io_chain) { for (size_t idx = 0; idx < io_chain.size(); idx++) { const shared_ptr &io = io_chain.at(idx); if ((io->io_mode == IO_BUFFER) || (io->io_mode == IO_PIPE)) { CAST_INIT(const io_pipe_t *, io_pipe, io.get()); if (io_pipe->pipe_fd[0] == fd || io_pipe->pipe_fd[1] == fd) return true; } } return false; } /** Close all fds in open_fds, except for those that are mentioned in the redirection list io. This should make sure that there are no stray opened file descriptors in the child. \param io the list of io redirections for this job. Pipes mentioned here should not be closed. */ void close_unused_internal_pipes(const io_chain_t &io) { /* A call to exec_close will modify open_fds, so be careful how we walk */ for (size_t i=0; i < open_fds.size(); i++) { if (open_fds[i]) { int fd = (int)i; if (!use_fd_in_pipe(fd, io)) { debug(4, L"Close fd %d, used in other context", fd); exec_close(fd); i--; } } } } void get_unused_internal_pipes(std::vector &fds, const io_chain_t &io) { for (size_t i=0; i < open_fds.size(); i++) { if (open_fds[i]) { int fd = (int)i; if (!use_fd_in_pipe(fd, io)) { fds.push_back(fd); } } } } /** Returns the interpreter for the specified script. Returns NULL if file is not a script with a shebang. */ char *get_interpreter(const char *command, char *interpreter, size_t buff_size) { // OK to not use CLO_EXEC here because this is only called after fork int fd = open(command, O_RDONLY); if (fd >= 0) { size_t idx = 0; while (idx + 1 < buff_size) { char ch; ssize_t amt = read(fd, &ch, sizeof ch); if (amt <= 0) break; if (ch == '\n') break; interpreter[idx++] = ch; } interpreter[idx++] = '\0'; close(fd); } if (strncmp(interpreter, "#! /", 4) == 0) { return interpreter + 3; } else if (strncmp(interpreter, "#!/", 3) == 0) { return interpreter + 2; } else { return NULL; } } /** This function is executed by the child process created by a call to fork(). It should be called after \c setup_child_process. It calls execve to replace the fish process image with the command specified in \c p. It never returns. */ /* Called in a forked child! Do not allocate memory, etc. */ static void safe_launch_process(process_t *p, const char *actual_cmd, char **argv, char **envv) { int err; // debug( 1, L"exec '%ls'", p->argv[0] ); // Wow, this wcs2str call totally allocates memory execve(actual_cmd, argv, envv); err = errno; /* Something went wrong with execve, check for a ":", and run /bin/sh if encountered. This is a weird predecessor to the shebang that is still sometimes used since it is supported on Windows. */ /* OK to not use CLO_EXEC here because this is called after fork and the file is immediately closed */ int fd = open(actual_cmd, O_RDONLY); if (fd >= 0) { char begin[1] = {0}; ssize_t amt_read = read(fd, begin, 1); close(fd); if ((amt_read==1) && (begin[0] == ':')) { // Relaunch it with /bin/sh. Don't allocate memory, so if you have more args than this, update your silly script! Maybe this should be changed to be based on ARG_MAX somehow. char sh_command[] = "/bin/sh"; char *argv2[128]; argv2[0] = sh_command; for (size_t i=1; i < sizeof argv2 / sizeof *argv2; i++) { argv2[i] = argv[i-1]; if (argv2[i] == NULL) break; } execve(sh_command, argv2, envv); } } errno = err; safe_report_exec_error(errno, actual_cmd, argv, envv); exit_without_destructors(STATUS_EXEC_FAIL); } /** This function is similar to launch_process, except it is not called after a fork (i.e. it only calls exec) and therefore it can allocate memory. */ static void launch_process_nofork(process_t *p) { ASSERT_IS_MAIN_THREAD(); ASSERT_IS_NOT_FORKED_CHILD(); char **argv = wcsv2strv(p->get_argv()); char **envv = env_export_arr(false); char *actual_cmd = wcs2str(p->actual_cmd.c_str()); /* Bounce to launch_process. This never returns. */ safe_launch_process(p, actual_cmd, argv, envv); } /** Check if the IO redirection chains contains redirections for the specified file descriptor */ static int has_fd(const io_chain_t &d, int fd) { return io_chain_get(d, fd) != NULL; } /** Close a list of fds. */ static void io_cleanup_fds(const std::vector &opened_fds) { std::for_each(opened_fds.begin(), opened_fds.end(), close); } /** Make a copy of the specified io redirection chain, but change file redirection into fd redirection. This makes the redirection chain suitable for use as block-level io, since the file won't be repeatedly reopened for every command in the block, which would reset the cursor position. \return the transmogrified chain on sucess, or 0 on failiure */ static bool io_transmogrify(const io_chain_t &in_chain, io_chain_t &out_chain, std::vector &out_opened_fds) { ASSERT_IS_MAIN_THREAD(); assert(out_chain.empty()); /* Just to be clear what we do for an empty chain */ if (in_chain.empty()) { return true; } bool success = true; /* Make our chain of redirections */ io_chain_t result_chain; /* In the event we can't finish transmorgrifying, we'll have to close all the files we opened. */ std::vector opened_fds; for (size_t idx = 0; idx < in_chain.size(); idx++) { const shared_ptr &in = in_chain.at(idx); shared_ptr out; //gets allocated via new switch (in->io_mode) { default: /* Unknown type, should never happen */ fprintf(stderr, "Unknown io_mode %ld\n", (long)in->io_mode); abort(); break; /* These redirections don't need transmogrification. They can be passed through. */ case IO_PIPE: case IO_FD: case IO_BUFFER: case IO_CLOSE: { out = in; break; } /* Transmogrify file redirections */ case IO_FILE: { int fd; CAST_INIT(io_file_t *, in_file, in.get()); if ((fd=open(in_file->filename_cstr, in_file->flags, OPEN_MASK))==-1) { debug(1, FILE_ERROR, in_file->filename_cstr); wperror(L"open"); success = false; break; } opened_fds.push_back(fd); out.reset(new io_fd_t(in->fd, fd, true)); break; } } /* Record this IO redirection even if we failed (so we can free it) */ result_chain.push_back(out); /* But don't go any further if we failed */ if (! success) { break; } } /* Now either return success, or clean up */ if (success) { /* Yay */ out_chain.swap(result_chain); out_opened_fds.swap(opened_fds); } else { /* No dice - clean up */ result_chain.clear(); io_cleanup_fds(opened_fds); } return success; } /** Morph an io redirection chain into redirections suitable for passing to eval, call eval, and clean up morphed redirections. \param def the code to evaluate \param block_type the type of block to push on evaluation \param io the io redirections to be performed on this block */ static void internal_exec_helper(parser_t &parser, const wchar_t *def, enum block_type_t block_type, io_chain_t &ios) { io_chain_t morphed_chain; std::vector opened_fds; bool transmorgrified = io_transmogrify(ios, morphed_chain, opened_fds); int is_block_old=is_block; is_block=1; /* Did the transmogrification fail - if so, set error status and return */ if (! transmorgrified) { proc_set_last_status(STATUS_EXEC_FAIL); return; } signal_unblock(); parser.eval(def, morphed_chain, block_type); signal_block(); morphed_chain.clear(); io_cleanup_fds(opened_fds); job_reap(0); is_block=is_block_old; } /* Returns whether we can use posix spawn for a given process in a given job. Per https://github.com/fish-shell/fish-shell/issues/364 , error handling for file redirections is too difficult with posix_spawn So in that case we use fork/exec Furthermore, to avoid the race between the caller calling tcsetpgrp() and the client checking the foreground process group, we don't use posix_spawn if we're going to foreground the process. (If we use fork(), we can call tcsetpgrp after the fork, before the exec, and avoid the racse). */ static bool can_use_posix_spawn_for_job(const job_t *job, const process_t *process) { if (job_get_flag(job, JOB_CONTROL)) { /* We are going to use job control; therefore when we launch this job it will get its own process group ID. But will it be foregrounded? */ if (job_get_flag(job, JOB_TERMINAL) && job_get_flag(job, JOB_FOREGROUND)) { /* It will be foregrounded, so we will call tcsetpgrp(), therefore do not use posix_spawn */ return false; } } bool result = true; for (size_t idx = 0; idx < job->io.size(); idx++) { const shared_ptr &io = job->io.at(idx); if (io->io_mode == IO_FILE) { CAST_INIT(const io_file_t *, io_file, io.get()); const char *path = io_file->filename_cstr; /* This IO action is a file redirection. Only allow /dev/null, which is a common case we assume won't fail. */ if (strcmp(path, "/dev/null") != 0) { result = false; break; } } } return result; } void exec(parser_t &parser, job_t *j) { pid_t pid = 0; sigset_t chldset; shared_ptr io_buffer; /* Set to true if something goes wrong while exec:ing the job, in which case the cleanup code will kick in. */ bool exec_error = false; bool needs_keepalive = false; process_t keepalive; CHECK(j,); CHECK_BLOCK(); if (no_exec) return; sigemptyset(&chldset); sigaddset(&chldset, SIGCHLD); debug(4, L"Exec job '%ls' with id %d", j->command_wcstr(), j->job_id); if (! parser.block_io.empty()) { j->io.insert(j->io.begin(), parser.block_io.begin(), parser.block_io.end()); } const io_buffer_t *input_redirect = NULL; for (size_t idx = 0; idx < j->io.size(); idx++) { const shared_ptr &io = j->io.at(idx); if ((io->io_mode == IO_BUFFER)) { CAST_INIT(io_buffer_t *, io_buffer, io.get()); if (io_buffer->is_input) { /* Input redirection - create a new gobetween process to take care of buffering, save the redirection in input_redirect */ process_t *fake = new process_t(); fake->type = INTERNAL_BUFFER; fake->pipe_write_fd = 1; j->first_process->pipe_read_fd = io->fd; fake->next = j->first_process; j->first_process = fake; input_redirect = io_buffer; break; } } } if (j->first_process->type==INTERNAL_EXEC) { /* Do a regular launch - but without forking first... */ signal_block(); /* setup_child_process makes sure signals are properly set up. It will also call signal_unblock */ if (!setup_child_process(j, 0)) { /* launch_process _never_ returns */ launch_process_nofork(j->first_process); } else { job_set_flag(j, JOB_CONSTRUCTED, 1); j->first_process->completed=1; return; } } // This is a pipe that the "current" process in our loop below reads from // Only pipe_read->pipe_fd[0] is used shared_ptr pipe_read(new io_pipe_t(0, true)); // This is the pipe that the "current" process in our loop below writes to shared_ptr pipe_write(new io_pipe_t(1, false)); j->io.push_back(pipe_write); signal_block(); /* See if we need to create a group keepalive process. This is a process that we create to make sure that the process group doesn't die accidentally, and is often needed when a builtin/block/function is inside a pipeline, since that usually means we have to wait for one program to exit before continuing in the pipeline, causing the group leader to exit. */ if (job_get_flag(j, JOB_CONTROL)) { for (const process_t *p = j->first_process; p; p = p->next) { if (p->type != EXTERNAL) { if (p->next) { needs_keepalive = true; break; } if (p != j->first_process) { needs_keepalive = true; break; } } } } if (needs_keepalive) { /* Call fork. No need to wait for threads since our use is confined and simple. */ if (g_log_forks) { printf("fork #%d: Executing keepalive fork for '%ls'\n", g_fork_count, j->command_wcstr()); } keepalive.pid = execute_fork(false); if (keepalive.pid == 0) { /* Child */ keepalive.pid = getpid(); set_child_group(j, &keepalive, 1); pause(); exit_without_destructors(0); } else { /* Parent */ set_child_group(j, &keepalive, 0); } } /* This loop loops over every process_t in the job, starting it as appropriate. This turns out to be rather complex, since a process_t can be one of many rather different things. The loop also has to handle pipelining between the jobs. */ /* We can have up to three pipes "in flight" at a time: 1. The pipe the current process should read from (courtesy of the previous process) 2. The pipe that the current process should write to 3. The pipe that the next process should read from (courtesy of us) We are careful to set these to -1 when closed, so if we exit the loop abruptly, we can still close them. */ int pipe_current_read = -1, pipe_current_write = -1, pipe_next_read = -1; for (process_t *p=j->first_process; p; p = p->next) { /* "Consume" any pipe_next_read by making it current */ assert(pipe_current_read == -1); pipe_current_read = pipe_next_read; pipe_next_read = -1; /* Record the current read in pipe_read */ pipe_read->pipe_fd[0] = pipe_current_read; /* See if we need a pipe */ const bool pipes_to_next_command = (p->next != NULL); pipe_write->fd = p->pipe_write_fd; pipe_read->fd = p->pipe_read_fd; // debug( 0, L"Pipe created from fd %d to fd %d", pipe_write->fd, pipe_read->fd ); /* This call is used so the global environment variable array is regenerated, if needed, before the fork. That way, we avoid a lot of duplicate work where EVERY child would need to generate it, since that result would not get written back to the parent. This call could be safely removed, but it would result in slightly lower performance - at least on uniprocessor systems. */ if (p->type == EXTERNAL) env_export_arr(true); /* Set up fd:s that will be used in the pipe */ if (p == j->first_process->next) { /* We are the first process that could possibly read from a pipe (aka the second process), so add the pipe read redirection */ j->io.push_back(pipe_read); } if (pipes_to_next_command) { // debug( 1, L"%ls|%ls" , p->argv[0], p->next->argv[0]); int local_pipe[2] = {-1, -1}; if (exec_pipe(local_pipe) == -1) { debug(1, PIPE_ERROR); wperror(L"pipe"); exec_error = true; job_mark_process_as_failed(j, p); break; } // This tells the redirection about the fds, but the redirection does not close them memcpy(pipe_write->pipe_fd, local_pipe, sizeof(int)*2); // Record our pipes // The fds should be negative to indicate that we aren't overwriting an fd we failed to close assert(pipe_current_write == -1); pipe_current_write = local_pipe[1]; assert(pipe_next_read == -1); pipe_next_read = local_pipe[0]; } else { /* This is the last element of the pipeline. Remove the io redirection for pipe output. */ io_chain_t::iterator where = std::find(j->io.begin(), j->io.end(), pipe_write); if (where != j->io.end()) j->io.erase(where); } switch (p->type) { case INTERNAL_FUNCTION: { int shadows; /* Calls to function_get_definition might need to source a file as a part of autoloading, hence there must be no blocks. */ signal_unblock(); wcstring def; bool function_exists = function_get_definition(p->argv0(), &def); wcstring_list_t named_arguments = function_get_named_arguments(p->argv0()); shadows = function_get_shadows(p->argv0()); signal_block(); if (! function_exists) { debug(0, _(L"Unknown function '%ls'"), p->argv0()); break; } function_block_t *newv = new function_block_t(p, p->argv0(), shadows); parser.push_block(newv); /* set_argv might trigger an event handler, hence we need to unblock signals. */ signal_unblock(); parse_util_set_argv(p->get_argv()+1, named_arguments); signal_block(); parser.forbid_function(p->argv0()); if (p->next) { // Be careful to handle failure, e.g. too many open fds io_buffer.reset(io_buffer_t::create(0)); if (io_buffer.get() == NULL) { exec_error = true; job_mark_process_as_failed(j, p); } else { j->io.push_back(io_buffer); } } if (! exec_error) { internal_exec_helper(parser, def.c_str(), TOP, j->io); } parser.allow_function(); parser.pop_block(); break; } case INTERNAL_BLOCK: { if (p->next) { io_buffer.reset(io_buffer_t::create(0)); if (io_buffer.get() == NULL) { exec_error = true; job_mark_process_as_failed(j, p); } else { j->io.push_back(io_buffer); } } if (! exec_error) { internal_exec_helper(parser, p->argv0(), TOP, j->io); } break; } case INTERNAL_BUILTIN: { int builtin_stdin=0; int close_stdin=0; /* If this is the first process, check the io redirections and see where we should be reading from. */ if (p == j->first_process) { const shared_ptr &in = io_chain_get(j->io, 0); if (in) { switch (in->io_mode) { case IO_FD: { CAST_INIT(const io_fd_t *, in_fd, in.get()); builtin_stdin = in_fd->old_fd; break; } case IO_PIPE: { CAST_INIT(const io_pipe_t *, in_pipe, in.get()); builtin_stdin = in_pipe->pipe_fd[0]; break; } case IO_FILE: { /* Do not set CLO_EXEC because child needs access */ CAST_INIT(const io_file_t *, in_file, in.get()); builtin_stdin=open(in_file->filename_cstr, in_file->flags, OPEN_MASK); if (builtin_stdin == -1) { debug(1, FILE_ERROR, in_file->filename_cstr); wperror(L"open"); } else { close_stdin = 1; } break; } case IO_CLOSE: { /* FIXME: When requesting that stdin be closed, we really don't do anything. How should this be handled? */ builtin_stdin = -1; break; } default: { builtin_stdin=-1; debug(1, _(L"Unknown input redirection type %d"), in->io_mode); break; } } } } else { builtin_stdin = pipe_read->pipe_fd[0]; } if (builtin_stdin == -1) { exec_error = true; break; } else { int old_out = builtin_out_redirect; int old_err = builtin_err_redirect; /* Since this may be the foreground job, and since a builtin may execute another foreground job, we need to pretend to suspend this job while running the builtin, in order to avoid a situation where two jobs are running at once. The reason this is done here, and not by the relevant builtins, is that this way, the builtin does not need to know what job it is part of. It could probably figure that out by walking the job list, but it seems more robust to make exec handle things. */ builtin_push_io(parser, builtin_stdin); builtin_out_redirect = has_fd(j->io, 1); builtin_err_redirect = has_fd(j->io, 2); const int fg = job_get_flag(j, JOB_FOREGROUND); job_set_flag(j, JOB_FOREGROUND, 0); signal_unblock(); p->status = builtin_run(parser, p->get_argv(), j->io); builtin_out_redirect=old_out; builtin_err_redirect=old_err; signal_block(); /* Restore the fg flag, which is temporarily set to false during builtin execution so as not to confuse some job-handling builtins. */ job_set_flag(j, JOB_FOREGROUND, fg); } /* If stdin has been redirected, close the redirection stream. */ if (close_stdin) { exec_close(builtin_stdin); } break; } } if (exec_error) { break; } switch (p->type) { case INTERNAL_BLOCK: case INTERNAL_FUNCTION: { int status = proc_get_last_status(); /* Handle output from a block or function. This usually means do nothing, but in the case of pipes, we have to buffer such io, since otherwise the internal pipe buffer might overflow. */ if (!io_buffer) { /* No buffer, so we exit directly. This means we have to manually set the exit status. */ if (p->next == 0) { proc_set_last_status(job_get_flag(j, JOB_NEGATE)?(!status):status); } p->completed = 1; break; } io_remove(j->io, io_buffer); io_buffer->read(); const char *buffer = io_buffer->out_buffer_ptr(); size_t count = io_buffer->out_buffer_size(); if (io_buffer->out_buffer_size() > 0) { /* We don't have to drain threads here because our child process is simple */ if (g_log_forks) { printf("Executing fork for internal block or function for '%ls'\n", p->argv0()); } pid = execute_fork(false); if (pid == 0) { /* This is the child process. Write out the contents of the pipeline. */ p->pid = getpid(); setup_child_process(j, p); exec_write_and_exit(io_buffer->fd, buffer, count, status); } else { /* This is the parent process. Store away information on the child, and possibly give it control over the terminal. */ p->pid = pid; set_child_group(j, p, 0); } } else { if (p->next == 0) { proc_set_last_status(job_get_flag(j, JOB_NEGATE)?(!status):status); } p->completed = 1; } io_buffer.reset(); break; } case INTERNAL_BUFFER: { const char *buffer = input_redirect->out_buffer_ptr(); size_t count = input_redirect->out_buffer_size(); /* We don't have to drain threads here because our child process is simple */ if (g_log_forks) { printf("fork #%d: Executing fork for internal buffer for '%ls'\n", g_fork_count, p->argv0() ? p->argv0() : L"(null)"); } pid = execute_fork(false); if (pid == 0) { /* This is the child process. Write out the contents of the pipeline. */ p->pid = getpid(); setup_child_process(j, p); exec_write_and_exit(1, buffer, count, 0); } else { /* This is the parent process. Store away information on the child, and possibly give it control over the terminal. */ p->pid = pid; set_child_group(j, p, 0); } break; } case INTERNAL_BUILTIN: { bool skip_fork; /* Handle output from builtin commands. In the general case, this means forking of a worker process, that will write out the contents of the stdout and stderr buffers to the correct file descriptor. Since forking is expensive, fish tries to avoid it wehn possible. */ /* If a builtin didn't produce any output, and it is not inside a pipeline, there is no need to fork */ skip_fork = get_stdout_buffer().empty() && get_stderr_buffer().empty() && !p->next; /* If the output of a builtin is to be sent to an internal buffer, there is no need to fork. This helps out the performance quite a bit in complex completion code. */ const shared_ptr &io = io_chain_get(j->io, 1); bool buffer_stdout = io && io->io_mode == IO_BUFFER; if ((get_stderr_buffer().empty()) && (!p->next) && (! get_stdout_buffer().empty()) && (buffer_stdout)) { CAST_INIT(io_buffer_t *, io_buffer, io.get()); const std::string res = wcs2string(get_stdout_buffer()); io_buffer->out_buffer_append(res.c_str(), res.size()); skip_fork = true; } if (! skip_fork && j->io.empty()) { /* PCA for some reason, fish forks a lot, even for basic builtins like echo just to write out their buffers. I'm certain a lot of this is unnecessary, but I am not sure exactly when. If j->io is NULL, then it means there's no pipes or anything, so we can certainly just write out our data. Beyond that, we may be able to do the same if io_get returns 0 for STDOUT_FILENO and STDERR_FILENO. */ if (g_log_forks) { printf("fork #-: Skipping fork for internal builtin for '%ls'\n", p->argv0()); } const wcstring &out = get_stdout_buffer(), &err = get_stderr_buffer(); const std::string outbuff = wcs2string(out); const std::string errbuff = wcs2string(err); bool builtin_io_done = do_builtin_io(outbuff.data(), outbuff.size(), errbuff.data(), errbuff.size()); if (! builtin_io_done) { show_stackframe(); } skip_fork = true; } for (io_chain_t::iterator iter = j->io.begin(); iter != j->io.end(); iter++) { const shared_ptr &tmp_io = *iter; if (tmp_io->io_mode == IO_FILE && strcmp(static_cast(tmp_io.get())->filename_cstr, "/dev/null") != 0) { skip_fork = false; break; } } if (skip_fork) { p->completed=1; if (p->next == 0) { debug(3, L"Set status of %ls to %d using short circuit", j->command_wcstr(), p->status); int status = p->status; proc_set_last_status(job_get_flag(j, JOB_NEGATE)?(!status):status); } break; } /* Ok, unfortunatly, we have to do a real fork. Bummer. We work hard to make sure we don't have to wait for all our threads to exit, by arranging things so that we don't have to allocate memory or do anything except system calls in the child. */ /* Get the strings we'll write before we fork (since they call malloc) */ const wcstring &out = get_stdout_buffer(), &err = get_stderr_buffer(); /* These strings may contain embedded nulls, so don't treat them as C strings */ const std::string outbuff_str = wcs2string(out); const char *outbuff = outbuff_str.data(); size_t outbuff_len = outbuff_str.size(); const std::string errbuff_str = wcs2string(err); const char *errbuff = errbuff_str.data(); size_t errbuff_len = errbuff_str.size(); fflush(stdout); fflush(stderr); if (g_log_forks) { printf("fork #%d: Executing fork for internal builtin for '%ls'\n", g_fork_count, p->argv0()); io_print(io_chain_t(io)); } pid = execute_fork(false); if (pid == 0) { /* This is the child process. Setup redirections, print correct output to stdout and stderr, and then exit. */ p->pid = getpid(); setup_child_process(j, p); do_builtin_io(outbuff, outbuff_len, errbuff, errbuff_len); exit_without_destructors(p->status); } else { /* This is the parent process. Store away information on the child, and possibly give it control over the terminal. */ p->pid = pid; set_child_group(j, p, 0); } break; } case EXTERNAL: { /* Get argv and envv before we fork */ null_terminated_array_t argv_array = convert_wide_array_to_narrow(p->get_argv_array()); null_terminated_array_t envv_array; env_export_arr(false, envv_array); char **envv = envv_array.get(); char **argv = argv_array.get(); std::string actual_cmd_str = wcs2string(p->actual_cmd); const char *actual_cmd = actual_cmd_str.c_str(); const wchar_t *reader_current_filename(void); if (g_log_forks) { const wchar_t *file = reader_current_filename(); const wchar_t *func = parser_t::principal_parser().is_function(); printf("fork #%d: forking for '%s' in '%ls:%ls'\n", g_fork_count, actual_cmd, file ? file : L"", func ? func : L"?"); fprintf(stderr, "IO chain for %s:\n", actual_cmd); io_print(j->io); } #if FISH_USE_POSIX_SPAWN /* Prefer to use posix_spawn, since it's faster on some systems like OS X */ bool use_posix_spawn = g_use_posix_spawn && can_use_posix_spawn_for_job(j, p); if (use_posix_spawn) { /* Create posix spawn attributes and actions */ posix_spawnattr_t attr = posix_spawnattr_t(); posix_spawn_file_actions_t actions = posix_spawn_file_actions_t(); bool made_it = fork_actions_make_spawn_properties(&attr, &actions, j, p); if (made_it) { /* We successfully made the attributes and actions; actually call posix_spawn */ int spawn_ret = posix_spawn(&pid, actual_cmd, &actions, &attr, argv, envv); /* This usleep can be used to test for various race conditions (https://github.com/fish-shell/fish-shell/issues/360) */ //usleep(10000); if (spawn_ret != 0) { safe_report_exec_error(spawn_ret, actual_cmd, argv, envv); /* Make sure our pid isn't set */ pid = 0; } /* Clean up our actions */ posix_spawn_file_actions_destroy(&actions); posix_spawnattr_destroy(&attr); } /* A 0 pid means we failed to posix_spawn. Since we have no pid, we'll never get told when it's exited, so we have to mark the process as failed. */ if (pid == 0) { job_mark_process_as_failed(j, p); exec_error = true; } } else #endif { pid = execute_fork(false); if (pid == 0) { /* This is the child process. */ p->pid = getpid(); setup_child_process(j, p); safe_launch_process(p, actual_cmd, argv, envv); /* safe_launch_process _never_ returns... */ } else if (pid < 0) { job_mark_process_as_failed(j, p); exec_error = true; } } /* This is the parent process. Store away information on the child, and possibly fice it control over the terminal. */ p->pid = pid; set_child_group(j, p, 0); break; } } if (p->type == INTERNAL_BUILTIN) builtin_pop_io(parser); /* Close the pipe the current process uses to read from the previous process_t */ if (pipe_current_read >= 0) { exec_close(pipe_current_read); pipe_current_read = -1; } /* Close the write end too, since the curent child subprocess already has a copy of it. */ if (pipe_current_write >= 0) { exec_close(pipe_current_write); pipe_current_write = -1; } } /* Clean up any file descriptors we left open */ if (pipe_current_read >= 0) exec_close(pipe_current_read); if (pipe_current_write >= 0) exec_close(pipe_current_write); if (pipe_next_read >= 0) exec_close(pipe_next_read); /* The keepalive process is no longer needed, so we terminate it with extreme prejudice */ if (needs_keepalive) { kill(keepalive.pid, SIGKILL); } signal_unblock(); debug(3, L"Job is constructed"); io_remove(j->io, pipe_read); job_set_flag(j, JOB_CONSTRUCTED, 1); if (!job_get_flag(j, JOB_FOREGROUND)) { proc_last_bg_pid = j->pgid; } if (! exec_error) { job_continue(j, false); } else { /* Mark the errored job as not in the foreground. I can't fully justify whether this is the right place, but it prevents sanity_lose from complaining. */ job_set_flag(j, JOB_FOREGROUND, 0); } } static int exec_subshell_internal(const wcstring &cmd, wcstring_list_t *lst) { ASSERT_IS_MAIN_THREAD(); int prev_subshell = is_subshell; int status, prev_status; char sep=0; const env_var_t ifs = env_get_string(L"IFS"); if (! ifs.missing_or_empty()) { if (ifs.at(0) < 128) { sep = '\n';//ifs[0]; } else { sep = 0; debug(0, L"Warning - invalid command substitution separator '%lc'. Please change the firsta character of IFS", ifs[0]); } } is_subshell=1; prev_status = proc_get_last_status(); const shared_ptr io_buffer(io_buffer_t::create(0)); // IO buffer creation may fail (e.g. if we have too many open files to make a pipe), so this may be null if (io_buffer.get() == NULL) { status = -1; } else { parser_t &parser = parser_t::principal_parser(); if (parser.eval(cmd, io_chain_t(io_buffer), SUBST)) { status = -1; } else { status = proc_get_last_status(); } io_buffer->read(); } proc_set_last_status(prev_status); is_subshell = prev_subshell; if (lst != NULL && io_buffer.get() != NULL) { const char *begin = io_buffer->out_buffer_ptr(); const char *end = begin + io_buffer->out_buffer_size(); const char *cursor = begin; while (cursor < end) { // Look for the next separator const char *stop = (const char *)memchr(cursor, sep, end - cursor); const bool hit_separator = (stop != NULL); if (! hit_separator) { // If it's not found, just use the end stop = end; } // Stop now points at the first character we do not want to copy const wcstring wc = str2wcstring(cursor, stop - cursor); lst->push_back(wc); // If we hit a separator, skip over it; otherwise we're at the end cursor = stop + (hit_separator ? 1 : 0); } } return status; } int exec_subshell(const wcstring &cmd, std::vector &outputs) { ASSERT_IS_MAIN_THREAD(); return exec_subshell_internal(cmd, &outputs); } __warn_unused int exec_subshell(const wcstring &cmd) { ASSERT_IS_MAIN_THREAD(); return exec_subshell_internal(cmd, NULL); }