// Functions for handling event triggers. #include "config.h" // IWYU pragma: keep #include #include #include #include #include #include #include "common.h" #include "event.h" #include "fallback.h" // IWYU pragma: keep #include "input_common.h" #include "io.h" #include "parser.h" #include "proc.h" #include "signal.h" #include "wutil.h" // IWYU pragma: keep /// Number of signals that can be queued before an overflow occurs. #define SIG_UNHANDLED_MAX 64 /// This struct contains a list of generated signals waiting to be dispatched. typedef struct { /// Number of delivered signals. volatile int count; /// Whether signals have been skipped. volatile int overflow; /// Array of signal events. volatile int signal[SIG_UNHANDLED_MAX]; } signal_list_t; /// The signal event list. Actually two separate lists. One which is active, which is the one that /// new events is written to. The inactive one contains the events that are currently beeing /// performed. static signal_list_t sig_list[2] = {{}, {}}; /// The index of sig_list that is the list of signals currently written to. static volatile int active_list = 0; typedef std::vector event_list_t; /// List of event handlers. static event_list_t s_event_handlers; /// List of event handlers that should be removed. static event_list_t killme; /// List of events that have been sent but have not yet been delivered because they are blocked. static event_list_t blocked; /// Variables (one per signal) set when a signal is observed. This is inspected by a signal handler. static volatile bool s_observed_signals[NSIG] = {}; static void set_signal_observed(int sig, bool val) { ASSERT_IS_MAIN_THREAD(); if (sig >= 0 && (size_t)sig < sizeof s_observed_signals / sizeof *s_observed_signals) { s_observed_signals[sig] = val; } } /// Tests if one event instance matches the definition of a event class. If both the class and the /// instance name a function, they must name the same function. static int event_match(const event_t &classv, const event_t &instance) { // If the function names are both non-empty and different, then it's not a match. if (!classv.function_name.empty() && !instance.function_name.empty() && classv.function_name != instance.function_name) { return 0; } if (classv.type == EVENT_ANY) return 1; if (classv.type != instance.type) return 0; switch (classv.type) { case EVENT_SIGNAL: { if (classv.param1.signal == EVENT_ANY_SIGNAL) return 1; return classv.param1.signal == instance.param1.signal; } case EVENT_VARIABLE: { return instance.str_param1 == classv.str_param1; } case EVENT_EXIT: { if (classv.param1.pid == EVENT_ANY_PID) return 1; return classv.param1.pid == instance.param1.pid; } case EVENT_JOB_ID: { return classv.param1.job_id == instance.param1.job_id; } case EVENT_GENERIC: { return instance.str_param1 == classv.str_param1; } } // This should never be reached. debug(0, "Warning: Unreachable code reached in event_match in event.cpp\n"); return 0; } /// Test if specified event is blocked. static int event_is_blocked(const event_t &e) { const block_t *block; parser_t &parser = parser_t::principal_parser(); size_t idx = 0; while ((block = parser.block_at_index(idx++))) { if (event_block_list_blocks_type(block->event_blocks, e.type)) return true; } return event_block_list_blocks_type(parser.global_event_blocks, e.type); } wcstring event_get_desc(const event_t &e) { wcstring result; switch (e.type) { case EVENT_SIGNAL: { result = format_string(_(L"signal handler for %ls (%ls)"), sig2wcs(e.param1.signal), signal_get_desc(e.param1.signal)); break; } case EVENT_VARIABLE: { result = format_string(_(L"handler for variable '%ls'"), e.str_param1.c_str()); break; } case EVENT_EXIT: { if (e.param1.pid > 0) { result = format_string(_(L"exit handler for process %d"), e.param1.pid); } else { job_t *j = job_get_from_pid(-e.param1.pid); if (j) result = format_string(_(L"exit handler for job %d, '%ls'"), j->job_id, j->command_wcstr()); else result = format_string(_(L"exit handler for job with process group %d"), -e.param1.pid); } break; } case EVENT_JOB_ID: { job_t *j = job_get(e.param1.job_id); if (j) { result = format_string(_(L"exit handler for job %d, '%ls'"), j->job_id, j->command_wcstr()); } else { result = format_string(_(L"exit handler for job with job id %d"), e.param1.job_id); } break; } case EVENT_GENERIC: { result = format_string(_(L"handler for generic event '%ls'"), e.str_param1.c_str()); break; } default: { result = format_string(_(L"Unknown event type '0x%x'"), e.type); break; } } return result; } #if 0 static void show_all_handlers(void) { puts("event handlers:"); for (event_list_t::const_iterator iter = events.begin(); iter != events.end(); ++iter) { const event_t *foo = *iter; wcstring tmp = event_get_desc(foo); printf(" handler now %ls\n", tmp.c_str()); } } #endif /// Give a more condensed description of \c event compared to \c event_get_desc. It includes what /// function will fire if the \c event is an event handler. static wcstring event_desc_compact(const event_t &event) { wcstring res; wchar_t const *temp; int sig; switch (event.type) { case EVENT_ANY: { res = L"EVENT_ANY"; break; } case EVENT_VARIABLE: { if (event.str_param1.c_str()) { res = format_string(L"EVENT_VARIABLE($%ls)", event.str_param1.c_str()); } else { res = L"EVENT_VARIABLE([any])"; } break; } case EVENT_SIGNAL: { sig = event.param1.signal; if (sig == EVENT_ANY_SIGNAL) { temp = L"[all signals]"; } else if (sig == 0) { temp = L"not set"; } else { temp = sig2wcs(sig); } res = format_string(L"EVENT_SIGNAL(%ls)", temp); break; } case EVENT_EXIT: { if (event.param1.pid == EVENT_ANY_PID) { res = wcstring(L"EVENT_EXIT([all child processes])"); } else if (event.param1.pid > 0) { res = format_string(L"EVENT_EXIT(pid %d)", event.param1.pid); } else { job_t *j = job_get_from_pid(-event.param1.pid); if (j) res = format_string(L"EVENT_EXIT(jobid %d: \"%ls\")", j->job_id, j->command_wcstr()); else res = format_string(L"EVENT_EXIT(pgid %d)", -event.param1.pid); } break; } case EVENT_JOB_ID: { job_t *j = job_get(event.param1.job_id); if (j) res = format_string(L"EVENT_JOB_ID(job %d: \"%ls\")", j->job_id, j->command_wcstr()); else res = format_string(L"EVENT_JOB_ID(jobid %d)", event.param1.job_id); break; } case EVENT_GENERIC: { res = format_string(L"EVENT_GENERIC(%ls)", event.str_param1.c_str()); break; } default: { res = format_string(L"unknown/illegal event(%x)", event.type); } } if (event.function_name.size()) { return format_string(L"%ls: \"%ls\"", res.c_str(), event.function_name.c_str()); } return res; } void event_add_handler(const event_t &event) { event_t *e; if (debug_level >= 3) { wcstring desc = event_desc_compact(event); debug(3, "register: %ls\n", desc.c_str()); } e = new event_t(event); if (e->type == EVENT_SIGNAL) { signal_handle(e->param1.signal, 1); set_signal_observed(e->param1.signal, true); } s_event_handlers.push_back(e); } void event_remove(const event_t &criterion) { event_list_t new_list; if (debug_level >= 3) { wcstring desc = event_desc_compact(criterion); debug(3, "unregister: %ls\n", desc.c_str()); } // Because of concurrency issues (env_remove could remove an event that is currently being // executed), env_remove does not actually free any events - instead it simply moves all events // that should be removed from the event list to the killme list, and the ones that shouldn't be // killed to new_list, and then drops the empty events-list. if (s_event_handlers.empty()) return; for (size_t i = 0; i < s_event_handlers.size(); i++) { event_t *n = s_event_handlers.at(i); if (event_match(criterion, *n)) { killme.push_back(n); // If this event was a signal handler and no other handler handles the specified signal // type, do not handle that type of signal any more. if (n->type == EVENT_SIGNAL) { event_t e = event_t::signal_event(n->param1.signal); if (event_get(e, 0) == 1) { signal_handle(e.param1.signal, 0); set_signal_observed(e.param1.signal, 0); } } } else { new_list.push_back(n); } } s_event_handlers.swap(new_list); } int event_get(const event_t &criterion, std::vector *out) { int found = 0; for (size_t i = 0; i < s_event_handlers.size(); i++) { event_t *n = s_event_handlers.at(i); if (event_match(criterion, *n)) { found++; if (out) out->push_back(n); } } return found; } bool event_is_signal_observed(int sig) { // We are in a signal handler! Don't allocate memory, etc. bool result = false; if (sig >= 0 && (unsigned long)sig < sizeof(s_observed_signals) / sizeof(*s_observed_signals)) { result = s_observed_signals[sig]; } return result; } /// Free all events in the kill list. static void event_free_kills() { for_each(killme.begin(), killme.end(), event_free); killme.resize(0); } /// Test if the specified event is waiting to be killed. static int event_is_killed(const event_t &e) { return std::find(killme.begin(), killme.end(), &e) != killme.end(); } /// Callback for firing (and then deleting) an event. static void fire_event_callback(void *arg) { ASSERT_IS_MAIN_THREAD(); assert(arg != NULL); event_t *event = static_cast(arg); event_fire(event); delete event; } /// Perform the specified event. Since almost all event firings will not be matched by even a single /// event handler, we make sure to optimize the 'no matches' path. This means that nothing is /// allocated/initialized unless needed. static void event_fire_internal(const event_t &event) { event_list_t fire; // First we free all events that have been removed, but only if this invocation of // event_fire_internal is not a recursive call. if (is_event <= 1) event_free_kills(); if (s_event_handlers.empty()) return; // Then we iterate over all events, adding events that should be fired to a second list. We need // to do this in a separate step since an event handler might call event_remove or // event_add_handler, which will change the contents of the \c events list. for (size_t i = 0; i < s_event_handlers.size(); i++) { event_t *criterion = s_event_handlers.at(i); // Check if this event is a match. if (event_match(*criterion, event)) { fire.push_back(criterion); } } // No matches. Time to return. if (fire.empty()) return; if (signal_is_blocked()) { // Fix for https://github.com/fish-shell/fish-shell/issues/608. Don't run event handlers // while signals are blocked. event_t *heap_event = new event_t(event); input_common_add_callback(fire_event_callback, heap_event); return; } // Iterate over our list of matching events. for (size_t i = 0; i < fire.size(); i++) { event_t *criterion = fire.at(i); int prev_status; // Check if this event has been removed, if so, dont fire it. if (event_is_killed(*criterion)) continue; // Fire event. wcstring buffer = criterion->function_name; for (size_t j = 0; j < event.arguments.size(); j++) { wcstring arg_esc = escape_string(event.arguments.at(j), 1); buffer += L" "; buffer += arg_esc; } // debug( 1, L"Event handler fires command '%ls'", buffer.c_str() ); // Event handlers are not part of the main flow of code, so they are marked as // non-interactive. proc_push_interactive(0); prev_status = proc_get_last_status(); parser_t &parser = parser_t::principal_parser(); block_t *block = new event_block_t(event); parser.push_block(block); parser.eval(buffer, io_chain_t(), TOP); parser.pop_block(); proc_pop_interactive(); proc_set_last_status(prev_status); } // Free killed events. if (is_event <= 1) event_free_kills(); } /// Handle all pending signal events. static void event_fire_delayed() { // If is_event is one, we are running the event-handler non-recursively. // // When the event handler has called a piece of code that triggers another event, we do not want // to fire delayed events because of concurrency problems. if (!blocked.empty() && is_event == 1) { event_list_t new_blocked; for (size_t i = 0; i < blocked.size(); i++) { event_t *e = blocked.at(i); if (event_is_blocked(*e)) { new_blocked.push_back(new event_t(*e)); } else { event_fire_internal(*e); event_free(e); } } blocked.swap(new_blocked); } int al = active_list; while (sig_list[al].count > 0) { signal_list_t *lst; // Switch signal lists. sig_list[1 - al].count = 0; sig_list[1 - al].overflow = 0; al = 1 - al; active_list = al; // Set up. lst = &sig_list[1 - al]; event_t e = event_t::signal_event(0); e.arguments.resize(1); if (lst->overflow) { debug(0, _(L"Signal list overflow. Signals have been ignored.")); } // Send all signals in our private list. for (int i = 0; i < lst->count; i++) { e.param1.signal = lst->signal[i]; e.arguments.at(0) = sig2wcs(e.param1.signal); if (event_is_blocked(e)) { blocked.push_back(new event_t(e)); } else { event_fire_internal(e); } } } } void event_fire_signal(int signal) { // This means we are in a signal handler. We must be very careful not do do anything that could // cause a memory allocation or something else that might be bad when in a signal handler. if (sig_list[active_list].count < SIG_UNHANDLED_MAX) sig_list[active_list].signal[sig_list[active_list].count++] = signal; else sig_list[active_list].overflow = 1; } void event_fire(const event_t *event) { if (event && event->type == EVENT_SIGNAL) { event_fire_signal(event->param1.signal); } else { is_event++; // Fire events triggered by signals. event_fire_delayed(); if (event) { if (event_is_blocked(*event)) { blocked.push_back(new event_t(*event)); } else { event_fire_internal(*event); } } is_event--; } } void event_init() {} void event_destroy() { for_each(s_event_handlers.begin(), s_event_handlers.end(), event_free); s_event_handlers.clear(); for_each(killme.begin(), killme.end(), event_free); killme.clear(); } void event_free(event_t *e) { CHECK(e, ); delete e; } void event_fire_generic(const wchar_t *name, wcstring_list_t *args) { CHECK(name, ); event_t ev(EVENT_GENERIC); ev.str_param1 = name; if (args) ev.arguments = *args; event_fire(&ev); } event_t::event_t(int t) : type(t), param1(), str_param1(), function_name(), arguments() {} event_t::~event_t() {} event_t event_t::signal_event(int sig) { event_t event(EVENT_SIGNAL); event.param1.signal = sig; return event; } event_t event_t::variable_event(const wcstring &str) { event_t event(EVENT_VARIABLE); event.str_param1 = str; return event; } event_t event_t::generic_event(const wcstring &str) { event_t event(EVENT_GENERIC); event.str_param1 = str; return event; }