/** \file exec.c Functions for executing a program. Some of the code in this file is based on code from the Glibc manual, though I the changes performed have been massive. */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_SIGINFO_H #include #endif #include "fallback.h" #include "util.h" #include "common.h" #include "wutil.h" #include "proc.h" #include "exec.h" #include "parser.h" #include "builtin.h" #include "function.h" #include "env.h" #include "wildcard.h" #include "sanity.h" #include "expand.h" #include "signal.h" #include "parse_util.h" /** file descriptor redirection error message */ #define FD_ERROR _( L"An error occurred while redirecting file descriptor %d" ) /** file descriptor redirection error message */ #define WRITE_ERROR _( L"An error occurred while writing output" ) /** file redirection error message */ #define FILE_ERROR _( L"An error occurred while redirecting file '%ls'" ) /** file redirection clobbering error message */ #define NOCLOB_ERROR _( L"The file '%ls' already exists" ) /** fork error message */ #define FORK_ERROR _( L"Could not create child process - exiting" ) /** The number of times to try to call fork() before giving up */ #define FORK_LAPS 5 /** The number of nanoseconds to sleep between attempts to call fork() */ #define FORK_SLEEP_TIME 1000000 /** Base open mode to pass to calls to open */ #define OPEN_MASK 0666 /** List of all pipes used by internal pipes. These must be closed in many situations in order to make sure that stray fds aren't lying around. */ static std::vector open_fds; static int set_child_group( job_t *j, process_t *p, int print_errors ); static void exec_write_and_exit( int fd, char *buff, size_t count, int status ) { if( write_loop(fd, buff, count) == -1 ) { debug( 0, WRITE_ERROR); wperror( L"write" ); exit(status); } exit( status ); } void exec_close( int fd ) { if( fd < 0 ) { debug( 0, L"Called close on invalid file descriptor " ); return; } while( close(fd) == -1 ) { if( errno != EINTR ) { debug( 1, FD_ERROR, fd ); wperror( L"close" ); break; } } /* Maybe remove this form our set of open fds */ open_fds.erase(std::remove(open_fds.begin(), open_fds.end(), fd), open_fds.end()); } int exec_pipe( int fd[2]) { int res; while( ( res=pipe( fd ) ) ) { if( errno != EINTR ) { wperror(L"pipe"); return res; } } debug( 4, L"Created pipe using fds %d and %d", fd[0], fd[1]); open_fds.push_back(fd[0]); open_fds.push_back(fd[1]); return res; } /** Check if the specified fd is used as a part of a pipeline in the specidied set of IO redirections. \param fd the fd to search for \param io the set of io redirections to search in */ static int use_fd_in_pipe( int fd, io_data_t *io ) { if( !io ) return 0; if( ( io->io_mode == IO_BUFFER ) || ( io->io_mode == IO_PIPE ) ) { if( io->param1.pipe_fd[0] == fd || io->param1.pipe_fd[1] == fd ) return 1; } return use_fd_in_pipe( fd, io->next ); } /** Close all fds in open_fds, except for those that are mentioned in the redirection list io. This should make sure that there are no stray opened file descriptors in the child. \param io the list of io redirections for this job. Pipes mentioned here should not be closed. */ static void close_unused_internal_pipes( io_data_t *io ) { /* A call to exec_close will modify open_fds, so be careful how we walk */ for (size_t i=0; i < open_fds.size(); i++) { int fd = open_fds.at(i); if( !use_fd_in_pipe( fd, io) ) { debug( 4, L"Close fd %d, used in other context", fd ); exec_close( fd ); i--; } } } /** Make sure the fd used by this redirection is not used by i.e. a pipe. */ void free_fd( io_data_t *io, int fd ) { if( !io ) return; if( ( io->io_mode == IO_PIPE ) || ( io->io_mode == IO_BUFFER ) ) { int i; for( i=0; i<2; i++ ) { if(io->param1.pipe_fd[i] == fd ) { while(1) { if( (io->param1.pipe_fd[i] = dup(fd)) == -1) { if( errno != EINTR ) { debug( 1, FD_ERROR, fd ); wperror( L"dup" ); FATAL_EXIT(); } } else { break; } } } } } free_fd( io->next, fd ); } /** Set up a childs io redirections. Should only be called by setup_child_process(). Does the following: First it closes any open file descriptors not related to the child by calling close_unused_internal_pipes() and closing the universal variable server file descriptor. It then goes on to perform all the redirections described by \c io. \param io the list of IO redirections for the child \return 0 on sucess, -1 on failiure */ static int handle_child_io( io_data_t *io ) { close_unused_internal_pipes( io ); for( ; io; io=io->next ) { int tmp; if( io->io_mode == IO_FD && io->fd == io->param1.old_fd ) { continue; } if( io->fd > 2 ) { /* Make sure the fd used by this redirection is not used by e.g. a pipe. */ free_fd( io, io->fd ); } switch( io->io_mode ) { case IO_CLOSE: { if( close(io->fd) ) { debug( 0, _(L"Failed to close file descriptor %d"), io->fd ); wperror( L"close" ); } break; } case IO_FILE: { if( (tmp=wopen( io->filename, io->param2.flags, OPEN_MASK ) )==-1 ) { if( ( io->param2.flags & O_EXCL ) && ( errno ==EEXIST ) ) { debug( 1, NOCLOB_ERROR, io->filename.c_str() ); } else { debug( 1, FILE_ERROR, io->filename.c_str() ); wperror( L"open" ); } return -1; } else if( tmp != io->fd) { /* This call will sometimes fail, but that is ok, this is just a precausion. */ close(io->fd); if(dup2( tmp, io->fd ) == -1 ) { debug( 1, FD_ERROR, io->fd ); wperror( L"dup2" ); return -1; } exec_close( tmp ); } break; } case IO_FD: { /* This call will sometimes fail, but that is ok, this is just a precausion. */ close(io->fd); if( dup2( io->param1.old_fd, io->fd ) == -1 ) { debug( 1, FD_ERROR, io->fd ); wperror( L"dup2" ); return -1; } break; } case IO_BUFFER: case IO_PIPE: { int write_pipe; write_pipe = !io->is_input; /* debug( 0, L"%ls %ls on fd %d (%d %d)", write_pipe?L"write":L"read", (io->io_mode == IO_BUFFER)?L"buffer":L"pipe", io->fd, io->param1.pipe_fd[0], io->param1.pipe_fd[1]); */ if( dup2( io->param1.pipe_fd[write_pipe], io->fd ) != io->fd ) { debug( 1, PIPE_ERROR ); wperror( L"dup2" ); return -1; } if( write_pipe ) { exec_close( io->param1.pipe_fd[0]); exec_close( io->param1.pipe_fd[1]); } else { exec_close( io->param1.pipe_fd[0] ); } break; } } } return 0; } /** Initialize a new child process. This should be called right away after forking in the child process. If job control is enabled for this job, the process is put in the process group of the job, all signal handlers are reset, signals are unblocked (this function may only be called inside the exec function, which blocks all signals), and all IO redirections and other file descriptor actions are performed. \param j the job to set up the IO for \param p the child process to set up \return 0 on sucess, -1 on failiure. When this function returns, signals are always unblocked. On failiure, signal handlers, io redirections and process group of the process is undefined. */ static int setup_child_process( job_t *j, process_t *p ) { int res=0; if( p ) { res = set_child_group( j, p, 1 ); } if( !res ) { res = handle_child_io( j->io ); if( p != 0 && res ) { exit( 1 ); } } /* Set the handling for job control signals back to the default. */ if( !res ) { signal_reset_handlers(); } /* Remove all signal blocks */ signal_unblock(); return res; } /** Returns the interpreter for the specified script. Returns false if file is not a script with a shebang. */ static bool get_interpreter( const wcstring &file, wcstring &interpreter ) { wcstring res; FILE *fp = wfopen( file, "r" ); if( fp ) { while( 1 ) { wint_t ch = getwc( fp ); if( ch == WEOF ) break; if( ch == L'\n' ) break; res.push_back(ch); } fclose(fp); } if (string_prefixes_string(L"#! /", res)) { interpreter = 3 + res.c_str(); return true; } else if (string_prefixes_string(L"#!/", res)) { interpreter = 2 + res.c_str(); return true; } else { return false; } } /** This function is executed by the child process created by a call to fork(). It should be called after \c setup_child_process. It calls execve to replace the fish process image with the command specified in \c p. It never returns. */ static void launch_process( process_t *p ) { FILE* f; int err; // debug( 1, L"exec '%ls'", p->argv[0] ); char **argv = wcsv2strv(p->get_argv()); char **envv = env_export_arr( 0 ); execve ( wcs2str(p->actual_cmd), argv, envv ); err = errno; /* Something went wrong with execve, check for a ":", and run /bin/sh if encountered. This is a weird predecessor to the shebang that is still sometimes used since it is supported on Windows. */ f = wfopen(p->actual_cmd, "r"); if( f ) { char begin[1] = {0}; size_t read; read = fread(begin, 1, 1, f); fclose( f ); if( (read==1) && (begin[0] == ':') ) { wcstring_list_t argv; const wchar_t *sh_command = L"/bin/sh"; argv.push_back(sh_command); argv.push_back(p->actual_cmd); for(size_t i=1; p->argv(i) != NULL; i++ ){ argv.push_back(p->argv(i)); } p->set_argv(argv); p->actual_cmd = wcsdup(sh_command); char **res_real = wcsv2strv( p->get_argv() ); execve ( wcs2str(p->actual_cmd), res_real, envv ); } } errno = err; debug( 0, _( L"Failed to execute process '%ls'. Reason:" ), p->actual_cmd ); switch( errno ) { case E2BIG: { size_t sz = 0; char **p; wcstring sz1, sz2; long arg_max = -1; for(p=argv; *p; p++) { sz += strlen(*p)+1; } for(p=envv; *p; p++) { sz += strlen(*p)+1; } sz1 = format_size(sz); arg_max = sysconf( _SC_ARG_MAX ); if( arg_max > 0 ) { sz2 = format_size(arg_max); debug( 0, L"The total size of the argument and environment lists (%ls) exceeds the operating system limit of %ls.", sz1.c_str(), sz2.c_str()); } else { debug( 0, L"The total size of the argument and environment lists (%ls) exceeds the operating system limit.", sz1.c_str()); } debug( 0, L"Try running the command again with fewer arguments."); exit(STATUS_EXEC_FAIL); break; } case ENOEXEC: { wperror(L"exec"); debug(0, L"The file '%ls' is marked as an executable but could not be run by the operating system.", p->actual_cmd); exit(STATUS_EXEC_FAIL); } case ENOENT: { wcstring interpreter; if( get_interpreter(p->actual_cmd, interpreter) && waccess( interpreter, X_OK ) ) { debug(0, L"The file '%ls' specified the interpreter '%ls', which is not an executable command.", p->actual_cmd, interpreter.c_str() ); } else { debug(0, L"The file '%ls' or a script or ELF interpreter does not exist, or a shared library needed for file or interpreter cannot be found.", p->actual_cmd); } exit(STATUS_EXEC_FAIL); } case ENOMEM: { debug(0, L"Out of memory"); exit(STATUS_EXEC_FAIL); } default: { wperror(L"exec"); // debug(0, L"The file '%ls' is marked as an executable but could not be run by the operating system.", p->actual_cmd); exit(STATUS_EXEC_FAIL); } } } /** Check if the IO redirection chains contains redirections for the specified file descriptor */ static int has_fd( io_data_t *d, int fd ) { return io_get( d, fd ) != 0; } /** Free a transmogrified io chain. Only the chain itself and resources used by a transmogrified IO_FILE redirection are freed, since the original chain may still be needed. */ static void io_untransmogrify( io_data_t * in, io_data_t *out ) { if( !out ) return; io_untransmogrify( in->next, out->next ); switch( in->io_mode ) { case IO_FILE: exec_close( out->param1.old_fd ); break; } delete out; } /** Make a copy of the specified io redirection chain, but change file redirection into fd redirection. This makes the redirection chain suitable for use as block-level io, since the file won't be repeatedly reopened for every command in the block, which would reset the cursor position. \return the transmogrified chain on sucess, or 0 on failiure */ static io_data_t *io_transmogrify( io_data_t * in ) { if( !in ) return 0; std::auto_ptr out(new io_data_t()); out->fd = in->fd; out->io_mode = IO_FD; out->param2.close_old = 1; out->next=0; switch( in->io_mode ) { /* These redirections don't need transmogrification. They can be passed through. */ case IO_FD: case IO_CLOSE: case IO_BUFFER: case IO_PIPE: { *out = *in; break; } /* Transmogrify file redirections */ case IO_FILE: { int fd; if( (fd=wopen( in->filename, in->param2.flags, OPEN_MASK ) )==-1 ) { debug( 1, FILE_ERROR, in->filename.c_str() ); wperror( L"open" ); return NULL; } out->param1.old_fd = fd; break; } } if( in->next) { out->next = io_transmogrify( in->next ); if( !out->next ) { io_untransmogrify( in, out.release() ); return NULL; } } return out.release(); } /** Morph an io redirection chain into redirections suitable for passing to eval, call eval, and clean up morphed redirections. \param def the code to evaluate \param block_type the type of block to push on evaluation \param io the io redirections to be performed on this block */ static void internal_exec_helper( parser_t &parser, const wchar_t *def, enum block_type_t block_type, io_data_t *io ) { io_data_t *io_internal = io_transmogrify( io ); int is_block_old=is_block; is_block=1; /* Did the transmogrification fail - if so, set error status and return */ if( io && !io_internal ) { proc_set_last_status( STATUS_EXEC_FAIL ); return; } signal_unblock(); parser.eval( def, io_internal, block_type ); signal_block(); io_untransmogrify( io, io_internal ); job_reap( 0 ); is_block=is_block_old; } /** This function should be called by both the parent process and the child right after fork() has been called. If job control is enabled, the child is put in the jobs group, and if the child is also in the foreground, it is also given control of the terminal. When called in the parent process, this function may fail, since the child might have already finished and called exit. The parent process may safely ignore the exit status of this call. Returns 0 on sucess, -1 on failiure. */ static int set_child_group( job_t *j, process_t *p, int print_errors ) { int res = 0; if( job_get_flag( j, JOB_CONTROL ) ) { if (!j->pgid) { j->pgid = p->pid; } if( setpgid (p->pid, j->pgid) ) { if( getpgid( p->pid) != j->pgid && print_errors ) { debug( 1, _( L"Could not send process %d, '%ls' in job %d, '%ls' from group %d to group %d" ), p->pid, p->argv0(), j->job_id, j->command_cstr(), getpgid( p->pid), j->pgid ); wperror( L"setpgid" ); res = -1; } } } else { j->pgid = getpid(); } if( job_get_flag( j, JOB_TERMINAL ) && job_get_flag( j, JOB_FOREGROUND ) ) { if( tcsetpgrp (0, j->pgid) && print_errors ) { debug( 1, _( L"Could not send job %d ('%ls') to foreground" ), j->job_id, j->command_cstr() ); wperror( L"tcsetpgrp" ); res = -1; } } return res; } /** This function is a wrapper around fork. If the fork calls fails with EAGAIN, it is retried FORK_LAPS times, with a very slight delay between each lap. If fork fails even then, the process will exit with an error message. */ static pid_t exec_fork() { ASSERT_IS_MAIN_THREAD(); pid_t pid; struct timespec pollint; int i; for( i=0; i= 0) { return pid; } if( errno != EAGAIN ) { break; } pollint.tv_sec = 0; pollint.tv_nsec = FORK_SLEEP_TIME; /* Don't sleep on the final lap - sleeping might change the value of errno, which will break the error reporting below. */ if( i != FORK_LAPS-1 ) { nanosleep( &pollint, NULL ); } } debug( 0, FORK_ERROR ); wperror (L"fork"); FATAL_EXIT(); } /** Perform output from builtins */ static void do_builtin_io( const wchar_t *out, const wchar_t *err ) { if( out ) { if( fwprintf( stdout, L"%ls", out ) == -1 || fflush( stdout ) == EOF ) { debug( 0, L"Error while writing to stdout" ); wperror( L"fwprintf" ); show_stackframe(); } } if( err ) { if( fwprintf( stderr, L"%ls", err ) == -1 || fflush( stderr ) == EOF ) { /* Can't really show any error message here, since stderr is dead. */ } } } void exec( parser_t &parser, job_t *j ) { process_t *p; pid_t pid; int mypipe[2]; sigset_t chldset; int skip_fork; io_data_t pipe_read, pipe_write; io_data_t *tmp; io_data_t *io_buffer =0; /* Set to 1 if something goes wrong while exec:ing the job, in which case the cleanup code will kick in. */ int exec_error=0; int needs_keepalive = 0; process_t keepalive; CHECK( j, ); CHECK_BLOCK(); if( no_exec ) return; sigemptyset( &chldset ); sigaddset( &chldset, SIGCHLD ); debug( 4, L"Exec job '%ls' with id %d", j->command_cstr(), j->job_id ); if( parser.block_io ) { if( j->io ) { j->io = io_add( io_duplicate(parser.block_io), j->io ); } else { j->io=io_duplicate(parser.block_io); } } io_data_t *input_redirect; for( input_redirect = j->io; input_redirect; input_redirect = input_redirect->next ) { if( (input_redirect->io_mode == IO_BUFFER) && input_redirect->is_input ) { /* Input redirection - create a new gobetween process to take care of buffering */ process_t *fake = new process_t(); fake->type = INTERNAL_BUFFER; fake->pipe_write_fd = 1; j->first_process->pipe_read_fd = input_redirect->fd; fake->next = j->first_process; j->first_process = fake; break; } } if( j->first_process->type==INTERNAL_EXEC ) { /* Do a regular launch - but without forking first... */ signal_block(); /* setup_child_process makes sure signals are properly set up. It will also call signal_unblock */ if( !setup_child_process( j, 0 ) ) { /* launch_process _never_ returns */ launch_process( j->first_process ); } else { job_set_flag( j, JOB_CONSTRUCTED, 1 ); j->first_process->completed=1; return; } } pipe_read.fd=0; pipe_write.fd=1; pipe_read.io_mode=IO_PIPE; pipe_read.param1.pipe_fd[0] = -1; pipe_read.param1.pipe_fd[1] = -1; pipe_read.is_input = 1; pipe_write.io_mode=IO_PIPE; pipe_write.is_input = 0; pipe_read.next=0; pipe_write.next=0; pipe_write.param1.pipe_fd[0]=pipe_write.param1.pipe_fd[1]=-1; j->io = io_add( j->io, &pipe_write ); signal_block(); /* See if we need to create a group keepalive process. This is a process that we create to make sure that the process group doesn't die accidentally, and is often needed when a builtin/block/function is inside a pipeline, since that usually means we have to wait for one program to exit before continuing in the pipeline, causing the group leader to exit. */ if( job_get_flag( j, JOB_CONTROL ) ) { for( p=j->first_process; p; p = p->next ) { if( p->type != EXTERNAL ) { if( p->next ) { needs_keepalive = 1; break; } if( p != j->first_process ) { needs_keepalive = 1; break; } } } } if( needs_keepalive ) { keepalive.pid = exec_fork(); if( keepalive.pid == 0 ) { /* Child */ keepalive.pid = getpid(); set_child_group( j, &keepalive, 1 ); pause(); exit(0); } else { /* Parent */ set_child_group( j, &keepalive, 0 ); } } /* This loop loops over every process_t in the job, starting it as appropriate. This turns out to be rather complex, since a process_t can be one of many rather different things. The loop also has to handle pipelining between the jobs. */ for( p=j->first_process; p; p = p->next ) { mypipe[1]=-1; skip_fork=0; pipe_write.fd = p->pipe_write_fd; pipe_read.fd = p->pipe_read_fd; // debug( 0, L"Pipe created from fd %d to fd %d", pipe_write.fd, pipe_read.fd ); /* This call is used so the global environment variable array is regenerated, if needed, before the fork. That way, we avoid a lot of duplicate work where EVERY child would need to generate it, since that result would not get written back to the parent. This call could be safely removed, but it would result in slightly lower performance - at least on uniprocessor systems. */ if( p->type == EXTERNAL ) env_export_arr( 1 ); /* Set up fd:s that will be used in the pipe */ if( p == j->first_process->next ) { j->io = io_add( j->io, &pipe_read ); } if( p->next ) { // debug( 1, L"%ls|%ls" , p->argv[0], p->next->argv[0]); if( exec_pipe( mypipe ) == -1 ) { debug( 1, PIPE_ERROR ); wperror (L"pipe"); exec_error=1; break; } memcpy( pipe_write.param1.pipe_fd, mypipe, sizeof(int)*2); } else { /* This is the last element of the pipeline. Remove the io redirection for pipe output. */ j->io = io_remove( j->io, &pipe_write ); } switch( p->type ) { case INTERNAL_FUNCTION: { wchar_t * def=0; int shadows; /* Calls to function_get_definition might need to source a file as a part of autoloading, hence there must be no blocks. */ signal_unblock(); const wchar_t * orig_def = function_get_definition( p->argv0() ); // function_get_named_arguments may trigger autoload, which deallocates the orig_def. // We should make function_get_definition return a wcstring (but how to handle NULL...) if (orig_def) def = wcsdup(orig_def); wcstring_list_t named_arguments = function_get_named_arguments( p->argv0() ); shadows = function_get_shadows( p->argv0() ); signal_block(); if( def == NULL ) { debug( 0, _( L"Unknown function '%ls'" ), p->argv0() ); break; } parser.push_block( shadows?FUNCTION_CALL:FUNCTION_CALL_NO_SHADOW ); parser.current_block->state2() = p; parser.current_block->state1() = p->argv0(); /* set_argv might trigger an event handler, hence we need to unblock signals. */ signal_unblock(); parse_util_set_argv( p->get_argv()+1, named_arguments ); signal_block(); parser.forbid_function( p->argv0() ); if( p->next ) { io_buffer = io_buffer_create( 0 ); j->io = io_add( j->io, io_buffer ); } internal_exec_helper( parser, def, TOP, j->io ); parser.allow_function(); parser.pop_block(); free(def); break; } case INTERNAL_BLOCK: { if( p->next ) { io_buffer = io_buffer_create( 0 ); j->io = io_add( j->io, io_buffer ); } internal_exec_helper( parser, p->argv0(), TOP, j->io ); break; } case INTERNAL_BUILTIN: { int builtin_stdin=0; int fg; int close_stdin=0; /* If this is the first process, check the io redirections and see where we should be reading from. */ if( p == j->first_process ) { io_data_t *in = io_get( j->io, 0 ); if( in ) { switch( in->io_mode ) { case IO_FD: { builtin_stdin = in->param1.old_fd; break; } case IO_PIPE: { builtin_stdin = in->param1.pipe_fd[0]; break; } case IO_FILE: { builtin_stdin=wopen( in->filename, in->param2.flags, OPEN_MASK ); if( builtin_stdin == -1 ) { debug( 1, FILE_ERROR, in->filename.c_str() ); wperror( L"open" ); } else { close_stdin = 1; } break; } case IO_CLOSE: { /* FIXME: When requesting that stdin be closed, we really don't do anything. How should this be handled? */ builtin_stdin = -1; break; } default: { builtin_stdin=-1; debug( 1, _( L"Unknown input redirection type %d" ), in->io_mode); break; } } } } else { builtin_stdin = pipe_read.param1.pipe_fd[0]; } if( builtin_stdin == -1 ) { exec_error=1; break; } else { int old_out = builtin_out_redirect; int old_err = builtin_err_redirect; /* Since this may be the foreground job, and since a builtin may execute another foreground job, we need to pretend to suspend this job while running the builtin, in order to avoid a situation where two jobs are running at once. The reason this is done here, and not by the relevant builtins, is that this way, the builtin does not need to know what job it is part of. It could probably figure that out by walking the job list, but it seems more robust to make exec handle things. */ builtin_push_io( parser, builtin_stdin ); builtin_out_redirect = has_fd( j->io, 1 ); builtin_err_redirect = has_fd( j->io, 2 ); fg = job_get_flag( j, JOB_FOREGROUND ); job_set_flag( j, JOB_FOREGROUND, 0 ); signal_unblock(); p->status = builtin_run( parser, p->get_argv(), j->io ); builtin_out_redirect=old_out; builtin_err_redirect=old_err; signal_block(); /* Restore the fg flag, which is temporarily set to false during builtin execution so as not to confuse some job-handling builtins. */ job_set_flag( j, JOB_FOREGROUND, fg ); } /* If stdin has been redirected, close the redirection stream. */ if( close_stdin ) { exec_close( builtin_stdin ); } break; } } if( exec_error ) { break; } switch( p->type ) { case INTERNAL_BLOCK: case INTERNAL_FUNCTION: { int status = proc_get_last_status(); /* Handle output from a block or function. This usually means do nothing, but in the case of pipes, we have to buffer such io, since otherwise the internal pipe buffer might overflow. */ if( !io_buffer ) { /* No buffer, so we exit directly. This means we have to manually set the exit status. */ if( p->next == 0 ) { proc_set_last_status( job_get_flag( j, JOB_NEGATE )?(!status):status); } p->completed = 1; break; } j->io = io_remove( j->io, io_buffer ); io_buffer_read( io_buffer ); if( io_buffer->param2.out_buffer->used != 0 ) { pid = exec_fork(); if( pid == 0 ) { /* This is the child process. Write out the contents of the pipeline. */ p->pid = getpid(); setup_child_process( j, p ); exec_write_and_exit(io_buffer->fd, io_buffer->param2.out_buffer->buff, io_buffer->param2.out_buffer->used, status); } else { /* This is the parent process. Store away information on the child, and possibly give it control over the terminal. */ p->pid = pid; set_child_group( j, p, 0 ); } } else { if( p->next == 0 ) { proc_set_last_status( job_get_flag( j, JOB_NEGATE )?(!status):status); } p->completed = 1; } io_buffer_destroy( io_buffer ); io_buffer=0; break; } case INTERNAL_BUFFER: { pid = exec_fork(); if( pid == 0 ) { /* This is the child process. Write out the contents of the pipeline. */ p->pid = getpid(); setup_child_process( j, p ); exec_write_and_exit( 1, input_redirect->param2.out_buffer->buff, input_redirect->param2.out_buffer->used, 0); } else { /* This is the parent process. Store away information on the child, and possibly give it control over the terminal. */ p->pid = pid; set_child_group( j, p, 0 ); } break; } case INTERNAL_BUILTIN: { int skip_fork; /* Handle output from builtin commands. In the general case, this means forking of a worker process, that will write out the contents of the stdout and stderr buffers to the correct file descriptor. Since forking is expensive, fish tries to avoid it wehn possible. */ /* If a builtin didn't produce any output, and it is not inside a pipeline, there is no need to fork */ skip_fork = get_stdout_buffer().empty() && get_stderr_buffer().empty() && !p->next; /* If the output of a builtin is to be sent to an internal buffer, there is no need to fork. This helps out the performance quite a bit in complex completion code. */ io_data_t *io = io_get( j->io, 1 ); int buffer_stdout = io && io->io_mode == IO_BUFFER; if( ( get_stderr_buffer().empty() ) && ( !p->next ) && ( ! get_stdout_buffer().empty() ) && ( buffer_stdout ) ) { std::string res = wcs2string( get_stdout_buffer() ); b_append( io->param2.out_buffer, res.c_str(), res.size() ); skip_fork = 1; } for( io = j->io; io; io=io->next ) { if( io->io_mode == IO_FILE && io->filename != L"/dev/null") { skip_fork = 0; } } if( skip_fork ) { p->completed=1; if( p->next == 0 ) { debug( 3, L"Set status of %ls to %d using short circut", j->command_cstr(), p->status ); int status = p->status; proc_set_last_status( job_get_flag( j, JOB_NEGATE )?(!status):status ); } break; } /* Ok, unfortunatly, we have to do a real fork. Bummer. */ pid = exec_fork(); if( pid == 0 ) { /* This is the child process. Setup redirections, print correct output to stdout and stderr, and then exit. */ p->pid = getpid(); setup_child_process( j, p ); const wcstring &out = get_stdout_buffer(), &err = get_stderr_buffer(); do_builtin_io( out.empty() ? NULL : out.c_str(), err.empty() ? NULL : err.c_str() ); exit( p->status ); } else { /* This is the parent process. Store away information on the child, and possibly give it control over the terminal. */ p->pid = pid; set_child_group( j, p, 0 ); } break; } case EXTERNAL: { pid = exec_fork(); if( pid == 0 ) { /* This is the child process. */ p->pid = getpid(); setup_child_process( j, p ); launch_process( p ); /* launch_process _never_ returns... */ } else { /* This is the parent process. Store away information on the child, and possibly fice it control over the terminal. */ p->pid = pid; set_child_group( j, p, 0 ); } break; } } if( p->type == INTERNAL_BUILTIN ) builtin_pop_io(parser); /* Close the pipe the current process uses to read from the previous process_t */ if( pipe_read.param1.pipe_fd[0] >= 0 ) exec_close( pipe_read.param1.pipe_fd[0] ); /* Set up the pipe the next process uses to read from the current process_t */ if( p->next ) pipe_read.param1.pipe_fd[0] = mypipe[0]; /* If there is a next process in the pipeline, close the output end of the current pipe (the surrent child subprocess already has a copy of the pipe - this makes sure we don't leak file descriptors either in the shell or in the children). */ if( p->next ) { exec_close(mypipe[1]); } } /* The keepalive process is no longer needed, so we terminate it with extreme prejudice */ if( needs_keepalive ) { kill( keepalive.pid, SIGKILL ); } signal_unblock(); debug( 3, L"Job is constructed" ); j->io = io_remove( j->io, &pipe_read ); for( tmp = parser.block_io; tmp; tmp=tmp->next ) j->io = io_remove( j->io, tmp ); job_set_flag( j, JOB_CONSTRUCTED, 1 ); if( !job_get_flag( j, JOB_FOREGROUND ) ) { proc_last_bg_pid = j->pgid; } if( !exec_error ) { job_continue (j, 0); } } static int exec_subshell_internal( const wcstring &cmd, wcstring_list_t *lst ) { ASSERT_IS_MAIN_THREAD(); char *begin, *end; char z=0; int prev_subshell = is_subshell; int status, prev_status; io_data_t *io_buffer; char sep=0; const env_var_t ifs = env_get_string(L"IFS"); if( ! ifs.missing_or_empty() ) { if( ifs.at(0) < 128 ) { sep = '\n';//ifs[0]; } else { sep = 0; debug( 0, L"Warning - invalid command substitution separator '%lc'. Please change the firsta character of IFS", ifs[0] ); } } is_subshell=1; io_buffer= io_buffer_create( 0 ); prev_status = proc_get_last_status(); parser_t &parser = parser_t::principal_parser(); if( parser.eval( cmd, io_buffer, SUBST ) ) { status = -1; } else { status = proc_get_last_status(); } io_buffer_read( io_buffer ); proc_set_last_status( prev_status ); is_subshell = prev_subshell; b_append( io_buffer->param2.out_buffer, &z, 1 ); begin=end=io_buffer->param2.out_buffer->buff; if( lst ) { while( 1 ) { if( *end == 0 ) { if( begin != end ) { wchar_t *el = str2wcs( begin ); if( el ) { lst->push_back(el); free(el); } else { debug( 2, L"Got null string on line %d of file %s", __LINE__, __FILE__ ); } } io_buffer_destroy( io_buffer ); return status; } else if( *end == sep ) { wchar_t *el; *end=0; el = str2wcs( begin ); if( el ) { lst->push_back(el); free(el); } else { debug( 2, L"Got null string on line %d of file %s", __LINE__, __FILE__ ); } begin = end+1; } end++; } } io_buffer_destroy( io_buffer ); return status; } int exec_subshell( const wcstring &cmd, std::vector &outputs ) { ASSERT_IS_MAIN_THREAD(); return exec_subshell_internal(cmd, &outputs); } __warn_unused int exec_subshell( const wcstring &cmd ) { ASSERT_IS_MAIN_THREAD(); return exec_subshell_internal(cmd, NULL); }