fish-shell/src/io.h
Rosen Penev ffa3e0b4f4 convert const ref to value
clang-tidy wrongly sees an std::move to a const ref parameter and
believes it to be pointless. The copy constructor however is deleted.

Signed-off-by: Rosen Penev <rosenp@gmail.com>
2021-08-20 01:16:24 +02:00

490 lines
17 KiB
C++

#ifndef FISH_IO_H
#define FISH_IO_H
#include <pthread.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdlib.h>
#include <atomic>
#include <future>
#include <memory>
#include <mutex>
#include <vector>
#include "common.h"
#include "env.h"
#include "fds.h"
#include "flog.h"
#include "global_safety.h"
#include "maybe.h"
#include "redirection.h"
using std::shared_ptr;
class job_group_t;
/// separated_buffer_t represents a buffer of output from commands, prepared to be turned into a
/// variable. For example, command substitutions output into one of these. Most commands just
/// produce a stream of bytes, and those get stored directly. However other commands produce
/// explicitly separated output, in particular `string` like `string collect` and `string split0`.
/// The buffer tracks a sequence of elements. Some elements are explicitly separated and should not
/// be further split; other elements have inferred separation and may be split by IFS (or not,
/// depending on its value).
enum class separation_type_t {
inferred, // this element should be further separated by IFS
explicitly, // this element is explicitly separated and should not be further split
};
/// A separated_buffer_t contains a list of elements, some of which may be separated explicitly and
/// others which must be separated further by the user (e.g. via IFS).
class separated_buffer_t : noncopyable_t {
public:
struct element_t {
std::string contents;
separation_type_t separation;
element_t(std::string contents, separation_type_t sep)
: contents(std::move(contents)), separation(sep) {}
bool is_explicitly_separated() const { return separation == separation_type_t::explicitly; }
};
/// We not be copied but may be moved.
/// Note this leaves the moved-from value in a bogus state until clear() is called on it.
separated_buffer_t(separated_buffer_t &&) = default;
separated_buffer_t &operator=(separated_buffer_t &&) = default;
/// Construct a separated_buffer_t with the given buffer limit \p limit, or 0 for no limit.
separated_buffer_t(size_t limit) : buffer_limit_(limit) {}
/// \return the buffer limit size, or 0 for no limit.
size_t limit() const { return buffer_limit_; }
/// \return the contents size.
size_t size() const { return contents_size_; }
/// \return whether the output has been discarded.
bool discarded() const { return discard_; }
/// Serialize the contents to a single string, where explicitly separated elements have a
/// newline appended.
std::string newline_serialized() const {
std::string result;
result.reserve(size());
for (const auto &elem : elements_) {
result.append(elem.contents);
if (elem.is_explicitly_separated()) {
result.push_back('\n');
}
}
return result;
}
/// \return the list of elements.
const std::vector<element_t> &elements() const { return elements_; }
/// Append a string \p str of a given length \p len, with separation type \p sep.
void append(const char *str, size_t len, separation_type_t sep = separation_type_t::inferred) {
if (!try_add_size(len)) return;
// Try merging with the last element.
if (sep == separation_type_t::inferred && last_inferred()) {
elements_.back().contents.append(str, len);
} else {
elements_.emplace_back(std::string(str, len), sep);
}
}
/// Append a string \p str with separation type \p sep.
void append(std::string &&str, separation_type_t sep = separation_type_t::inferred) {
if (!try_add_size(str.size())) return;
// Try merging with the last element.
if (sep == separation_type_t::inferred && last_inferred()) {
elements_.back().contents.append(str);
} else {
elements_.emplace_back(std::move(str), sep);
}
}
/// Remove all elements and unset the discard flag.
void clear() {
elements_.clear();
contents_size_ = 0;
discard_ = false;
}
private:
/// \return true if our last element has an inferred separation type.
bool last_inferred() const {
return !elements_.empty() && !elements_.back().is_explicitly_separated();
}
/// If our last element has an inferred separation, return a pointer to it; else nullptr.
/// This is useful for appending one inferred separation to another.
element_t *last_if_inferred() {
if (!elements_.empty() && !elements_.back().is_explicitly_separated()) {
return &elements_.back();
}
return nullptr;
}
/// Mark that we are about to add the given size \p delta to the buffer. \return true if we
/// succeed, false if we exceed buffer_limit.
bool try_add_size(size_t delta) {
if (discard_) return false;
size_t proposed_size = contents_size_ + delta;
if ((proposed_size < delta) || (buffer_limit_ > 0 && proposed_size > buffer_limit_)) {
clear();
discard_ = true;
return false;
}
contents_size_ = proposed_size;
return true;
}
/// Limit on how much data we'll buffer. Zero means no limit.
size_t buffer_limit_;
/// Current size of all contents.
size_t contents_size_{0};
/// List of buffer elements.
std::vector<element_t> elements_;
/// True if we're discarding input because our buffer_limit has been exceeded.
bool discard_{false};
};
/// Describes what type of IO operation an io_data_t represents.
enum class io_mode_t { file, pipe, fd, close, bufferfill };
/// Represents an FD redirection.
class io_data_t : noncopyable_t, nonmovable_t {
protected:
io_data_t(io_mode_t m, int fd, int source_fd) : io_mode(m), fd(fd), source_fd(source_fd) {}
public:
/// Type of redirect.
const io_mode_t io_mode;
/// FD to redirect.
const int fd;
/// Source fd. This is dup2'd to fd, or if it is -1, then fd is closed.
/// That is, we call dup2(source_fd, fd).
const int source_fd;
virtual void print() const = 0;
virtual ~io_data_t() = 0;
};
class io_close_t final : public io_data_t {
public:
explicit io_close_t(int f) : io_data_t(io_mode_t::close, f, -1) {}
void print() const override;
~io_close_t() override;
};
class io_fd_t final : public io_data_t {
public:
void print() const override;
~io_fd_t() override;
/// fd to redirect specified fd to. For example, in 2>&1, source_fd is 1, and io_data_t::fd
/// is 2.
io_fd_t(int f, int source_fd) : io_data_t(io_mode_t::fd, f, source_fd) {}
};
/// Represents a redirection to or from an opened file.
class io_file_t final : public io_data_t {
public:
void print() const override;
io_file_t(int fd, autoclose_fd_t file)
: io_data_t(io_mode_t::file, fd, file.fd()), file_fd_(std::move(file)) {
// Invalid file redirections are replaced with a closed fd, so the following
// assertion isn't guaranteed to pass:
// assert(file_fd_.valid() && "File is not valid");
}
~io_file_t() override;
private:
// The fd for the file which we are writing to or reading from.
autoclose_fd_t file_fd_;
};
/// Represents (one end) of a pipe.
class io_pipe_t final : public io_data_t {
// The pipe's fd. Conceptually this is dup2'd to io_data_t::fd.
autoclose_fd_t pipe_fd_;
/// Whether this is an input pipe. This is used only for informational purposes.
const bool is_input_;
public:
void print() const override;
io_pipe_t(int fd, bool is_input, autoclose_fd_t pipe_fd)
: io_data_t(io_mode_t::pipe, fd, pipe_fd.fd()),
pipe_fd_(std::move(pipe_fd)),
is_input_(is_input) {
assert(pipe_fd_.valid() && "Pipe is not valid");
}
~io_pipe_t() override;
};
class io_buffer_t;
class io_chain_t;
/// Represents filling an io_buffer_t. Very similar to io_pipe_t.
class io_bufferfill_t final : public io_data_t {
/// Write end. The other end is connected to an io_buffer_t.
const autoclose_fd_t write_fd_;
/// The receiving buffer.
const std::shared_ptr<io_buffer_t> buffer_;
public:
void print() const override;
// The ctor is public to support make_shared() in the static create function below.
// Do not invoke this directly.
io_bufferfill_t(int target, autoclose_fd_t write_fd, std::shared_ptr<io_buffer_t> buffer)
: io_data_t(io_mode_t::bufferfill, target, write_fd.fd()),
write_fd_(std::move(write_fd)),
buffer_(std::move(buffer)) {
assert(write_fd_.valid() && "fd is not valid");
}
~io_bufferfill_t() override;
std::shared_ptr<io_buffer_t> buffer() const { return buffer_; }
/// Create an io_bufferfill_t which, when written from, fills a buffer with the contents.
/// \returns nullptr on failure, e.g. too many open fds.
///
/// \param target the fd which this will be dup2'd to - typically stdout.
static shared_ptr<io_bufferfill_t> create(size_t buffer_limit = 0, int target = STDOUT_FILENO);
/// Reset the receiver (possibly closing the write end of the pipe), and complete the fillthread
/// of the buffer. \return the buffer.
static separated_buffer_t finish(std::shared_ptr<io_bufferfill_t> &&filler);
};
class output_stream_t;
/// An io_buffer_t is a buffer which can populate itself by reading from an fd.
/// It is not an io_data_t.
class io_buffer_t {
public:
explicit io_buffer_t(size_t limit) : buffer_(limit) {}
~io_buffer_t();
/// Append a string to the buffer.
void append(std::string &&str, separation_type_t type = separation_type_t::inferred) {
buffer_.acquire()->append(std::move(str), type);
}
/// \return true if output was discarded due to exceeding the read limit.
bool discarded() { return buffer_.acquire()->discarded(); }
private:
/// Read some, filling the buffer. The buffer is passed in to enforce that the append lock is
/// held. \return positive on success, 0 if closed, -1 on error (in which case errno will be
/// set).
ssize_t read_once(int fd, acquired_lock<separated_buffer_t> &buff);
/// Begin the fill operation, reading from the given fd in the background.
void begin_filling(autoclose_fd_t readfd);
/// End the background fillthread operation, and return the buffer, transferring ownership.
separated_buffer_t complete_background_fillthread_and_take_buffer();
/// Helper to return whether the fillthread is running.
bool fillthread_running() const { return fill_waiter_.get() != nullptr; }
/// Buffer storing what we have read.
owning_lock<separated_buffer_t> buffer_;
/// Atomic flag indicating our fillthread should shut down.
relaxed_atomic_bool_t shutdown_fillthread_{false};
/// A promise, allowing synchronization with the background fill operation.
/// The operation has a reference to this as well, and fulfills this promise when it exits.
std::shared_ptr<std::promise<void>> fill_waiter_{};
/// The item id of our background fillthread fd monitor item.
uint64_t item_id_{0};
friend io_bufferfill_t;
};
using io_data_ref_t = std::shared_ptr<const io_data_t>;
class io_chain_t : public std::vector<io_data_ref_t> {
public:
using std::vector<io_data_ref_t>::vector;
// user-declared ctor to allow const init. Do not default this, it will break the build.
io_chain_t() {}
void remove(const io_data_ref_t &element);
void push_back(io_data_ref_t element);
void append(const io_chain_t &chain);
/// \return the last io redirection in the chain for the specified file descriptor, or nullptr
/// if none.
io_data_ref_t io_for_fd(int fd) const;
/// Attempt to resolve a list of redirection specs to IOs, appending to 'this'.
/// \return true on success, false on error, in which case an error will have been printed.
bool append_from_specs(const redirection_spec_list_t &specs, const wcstring &pwd);
/// Output debugging information to stderr.
void print() const;
};
/// Base class representing the output that a builtin can generate.
/// This has various subclasses depending on the ultimate output destination.
class output_stream_t : noncopyable_t, nonmovable_t {
public:
/// Required override point. The output stream receives a string \p s with \p amt chars.
virtual void append(const wchar_t *s, size_t amt) = 0;
/// \return any internally buffered contents.
/// This is only implemented for a string_output_stream; others flush data to their underlying
/// receiver (fd, or separated buffer) immediately and so will return an empty string here.
virtual const wcstring &contents() const;
/// Flush any unwritten data to the underlying device, and return an error code.
/// A 0 code indicates success. The base implementation returns 0.
virtual int flush_and_check_error();
/// An optional override point. This is for explicit separation.
virtual void append_with_separation(const wchar_t *s, size_t len, separation_type_t type);
/// The following are all convenience overrides.
void append_with_separation(const wcstring &s, separation_type_t type) {
append_with_separation(s.data(), s.size(), type);
}
/// Append a string.
void append(const wcstring &s) { append(s.data(), s.size()); }
void append(const wchar_t *s) { append(s, std::wcslen(s)); }
/// Append a char.
void append(wchar_t s) { append(&s, 1); }
void push_back(wchar_t c) { append(c); }
// Append data from a narrow buffer, widening it.
void append_narrow_buffer(separated_buffer_t buffer);
/// Append a format string.
void append_format(const wchar_t *format, ...) {
va_list va;
va_start(va, format);
append_formatv(format, va);
va_end(va);
}
void append_formatv(const wchar_t *format, va_list va) { append(vformat_string(format, va)); }
output_stream_t() = default;
virtual ~output_stream_t() = default;
};
/// A null output stream which ignores all writes.
class null_output_stream_t final : public output_stream_t {
virtual void append(const wchar_t *s, size_t amt) override;
};
/// An output stream for builtins which outputs to an fd.
/// Note the fd may be something like stdout; there is no ownership implied here.
class fd_output_stream_t final : public output_stream_t {
public:
/// Construct from a file descriptor, which must be nonegative.
explicit fd_output_stream_t(int fd) : fd_(fd) { assert(fd_ >= 0 && "Invalid fd"); }
int flush_and_check_error() override;
void append(const wchar_t *s, size_t amt) override;
private:
/// The file descriptor to write to.
const int fd_;
/// Whether we have received an error.
bool errored_{false};
};
/// A simple output stream which buffers into a wcstring.
class string_output_stream_t final : public output_stream_t {
public:
string_output_stream_t() = default;
void append(const wchar_t *s, size_t amt) override;
/// \return the wcstring containing the output.
const wcstring &contents() const override;
private:
wcstring contents_;
};
/// An output stream for builtins which writes into a separated buffer.
class buffered_output_stream_t final : public output_stream_t {
public:
explicit buffered_output_stream_t(std::shared_ptr<io_buffer_t> buffer)
: buffer_(std::move(buffer)) {
assert(buffer_ && "Buffer must not be null");
}
void append(const wchar_t *s, size_t amt) override;
void append_with_separation(const wchar_t *s, size_t len, separation_type_t type) override;
int flush_and_check_error() override;
private:
/// The buffer we are filling.
std::shared_ptr<io_buffer_t> buffer_;
};
struct io_streams_t : noncopyable_t {
// Streams for out and err.
output_stream_t &out;
output_stream_t &err;
// fd representing stdin. This is not closed by the destructor.
// Note: if stdin is explicitly closed by `<&-` then this is -1!
int stdin_fd{-1};
// Whether stdin is "directly redirected," meaning it is the recipient of a pipe (foo | cmd) or
// direct redirection (cmd < foo.txt). An "indirect redirection" would be e.g.
// begin ; cmd ; end < foo.txt
// If stdin is closed (cmd <&-) this is false.
bool stdin_is_directly_redirected{false};
// Indicates whether stdout and stderr are specifically piped.
// If this is set, then the is_redirected flags must also be set.
bool out_is_piped{false};
bool err_is_piped{false};
// Indicates whether stdout and stderr are at all redirected (e.g. to a file or piped).
bool out_is_redirected{false};
bool err_is_redirected{false};
// Actual IO redirections. This is only used by the source builtin. Unowned.
const io_chain_t *io_chain{nullptr};
// The job group of the job, if any. This enables builtins which run more code like eval() to
// share pgid.
// FIXME: this is awkwardly placed.
std::shared_ptr<job_group_t> job_group{};
io_streams_t(output_stream_t &out, output_stream_t &err) : out(out), err(err) {}
};
#endif