fish-shell/src/fds.cpp
ridiculousfish 57a9fe492e Allow using poll() to check for readability
Cygwin tests are failing because cygwin has a low limit of only 64 fds in
select(). Extend select_wrapper_t to also support using poll(), according to
a FISH_USE_POLL new define. All systems now use poll() except for Mac.

Rename select_wrapper_t to fd_readable_set_t since now it may not wrap
select().

This allows the deep-cmdsub.fish test to pass on Cygwin.
2022-01-02 16:36:33 -08:00

340 lines
9.7 KiB
C++

/** Facilities for working with file descriptors. */
#include "config.h" // IWYU pragma: keep
#include "fds.h"
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <cstring>
#include "flog.h"
#include "wutil.h"
#ifdef HAVE_EVENTFD
#include <sys/eventfd.h>
#endif
// The first fd in the "high range." fds below this are allowed to be used directly by users in
// redirections, e.g. >&3
const int k_first_high_fd = 10;
static constexpr uint64_t kUsecPerMsec = 1000;
static constexpr uint64_t kUsecPerSec [[gnu::unused]] = 1000 * kUsecPerMsec;
void autoclose_fd_t::close() {
if (fd_ < 0) return;
exec_close(fd_);
fd_ = -1;
}
fd_readable_set_t::fd_readable_set_t() { clear(); }
#if FISH_READABLE_SET_USE_POLL
// Convert from a usec to a poll-friendly msec.
static int usec_to_poll_msec(uint64_t timeout_usec) {
uint64_t timeout_msec = timeout_usec / kUsecPerMsec;
// Round to nearest, down for halfway.
timeout_msec += ((timeout_usec % kUsecPerMsec) > kUsecPerMsec / 2) ? 1 : 0;
if (timeout_usec == fd_readable_set_t::kNoTimeout ||
timeout_msec > std::numeric_limits<int>::max()) {
// Negative values mean wait forever in poll-speak.
return -1;
}
return static_cast<int>(timeout_msec);
}
void fd_readable_set_t::clear() { pollfds_.clear(); }
static inline bool pollfd_less_than(const pollfd &lhs, int rhs) { return lhs.fd < rhs; }
void fd_readable_set_t::add(int fd) {
if (fd >= 0) {
auto where = std::lower_bound(pollfds_.begin(), pollfds_.end(), fd, pollfd_less_than);
if (where == pollfds_.end() || where->fd != fd) {
pollfds_.insert(where, pollfd{fd, POLLIN, 0});
}
}
}
bool fd_readable_set_t::test(int fd) const {
// If a pipe is widowed with no data, Linux sets POLLHUP but not POLLIN, so test for both.
auto where = std::lower_bound(pollfds_.begin(), pollfds_.end(), fd, pollfd_less_than);
return where != pollfds_.end() && where->fd == fd && (where->revents & (POLLIN | POLLHUP));
}
// static
int fd_readable_set_t::do_poll(struct pollfd *fds, size_t count, uint64_t timeout_usec) {
assert(count <= std::numeric_limits<nfds_t>::max() && "count too big");
return ::poll(fds, static_cast<nfds_t>(count), usec_to_poll_msec(timeout_usec));
}
int fd_readable_set_t::check_readable(uint64_t timeout_usec) {
if (pollfds_.empty()) return 0;
return do_poll(&pollfds_[0], pollfds_.size(), timeout_usec);
}
// static
bool fd_readable_set_t::is_fd_readable(int fd, uint64_t timeout_usec) {
if (fd < 0) return false;
struct pollfd pfd {
fd, POLLIN, 0
};
int ret = fd_readable_set_t::do_poll(&pfd, 1, timeout_usec);
return ret > 0 && (pfd.revents & POLLIN);
}
#else
// Implementation based on select().
void fd_readable_set_t::clear() {
FD_ZERO(&fdset_);
nfds_ = 0;
}
void fd_readable_set_t::add(int fd) {
if (fd >= FD_SETSIZE) {
FLOGF(error, "fd %d too large for select()", fd);
return;
}
if (fd >= 0) {
FD_SET(fd, &fdset_);
nfds_ = std::max(nfds_, fd + 1);
}
}
bool fd_readable_set_t::test(int fd) const { return fd >= 0 && FD_ISSET(fd, &fdset_); }
int fd_readable_set_t::check_readable(uint64_t timeout_usec) {
if (timeout_usec == kNoTimeout) {
return ::select(nfds_, &fdset_, nullptr, nullptr, nullptr);
} else {
struct timeval tvs;
tvs.tv_sec = timeout_usec / kUsecPerSec;
tvs.tv_usec = timeout_usec % kUsecPerSec;
return ::select(nfds_, &fdset_, nullptr, nullptr, &tvs);
}
}
// static
bool fd_readable_set_t::is_fd_readable(int fd, uint64_t timeout_usec) {
if (fd < 0) return false;
fd_readable_set_t s;
s.add(fd);
int res = s.check_readable(timeout_usec);
return res > 0 && s.test(fd);
}
#endif // not FISH_READABLE_SET_USE_POLL
// static
bool fd_readable_set_t::poll_fd_readable(int fd) { return is_fd_readable(fd, 0); }
#ifdef HAVE_EVENTFD
// Note we do not want to use EFD_SEMAPHORE because we are binary (not counting) semaphore.
fd_event_signaller_t::fd_event_signaller_t() {
int fd = eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK);
if (fd < 0) {
wperror(L"eventfd");
exit_without_destructors(1);
}
fd_.reset(fd);
};
int fd_event_signaller_t::write_fd() const { return fd_.fd(); }
#else
// Implementation using pipes.
fd_event_signaller_t::fd_event_signaller_t() {
auto pipes = make_autoclose_pipes();
if (!pipes) {
wperror(L"pipe");
exit_without_destructors(1);
}
DIE_ON_FAILURE(make_fd_nonblocking(pipes->read.fd()));
DIE_ON_FAILURE(make_fd_nonblocking(pipes->write.fd()));
fd_ = std::move(pipes->read);
write_ = std::move(pipes->write);
}
int fd_event_signaller_t::write_fd() const { return write_.fd(); }
#endif
bool fd_event_signaller_t::try_consume() const {
// If we are using eventfd, we want to read a single uint64.
// If we are using pipes, read a lot; note this may leave data on the pipe if post has been
// called many more times. In no case do we care about the data which is read.
#ifdef HAVE_EVENTFD
uint64_t buff[1];
#else
uint8_t buff[1024];
#endif
ssize_t ret;
do {
ret = read(read_fd(), buff, sizeof buff);
} while (ret < 0 && errno == EINTR);
if (ret < 0 && errno != EAGAIN) {
wperror(L"read");
}
return ret > 0;
}
void fd_event_signaller_t::post() {
// eventfd writes uint64; pipes write 1 byte.
#ifdef HAVE_EVENTFD
const uint64_t c = 1;
#else
const uint8_t c = 1;
#endif
ssize_t ret;
do {
ret = write(write_fd(), &c, sizeof c);
} while (ret < 0 && errno == EINTR);
// EAGAIN occurs if either the pipe buffer is full or the eventfd overflows (very unlikely).
if (ret < 0 && errno != EAGAIN) {
wperror(L"write");
}
}
bool fd_event_signaller_t::poll(bool wait) const {
struct timeval timeout = {0, 0};
fd_set fds;
FD_ZERO(&fds);
FD_SET(read_fd(), &fds);
int res = select(read_fd() + 1, &fds, nullptr, nullptr, wait ? nullptr : &timeout);
return res > 0;
}
fd_event_signaller_t::~fd_event_signaller_t() = default;
/// If the given fd is in the "user range", move it to a new fd in the "high range".
/// zsh calls this movefd().
/// \p input_has_cloexec describes whether the input has CLOEXEC already set, so we can avoid
/// setting it again.
/// \return the fd, which always has CLOEXEC set; or an invalid fd on failure, in
/// which case an error will have been printed, and the input fd closed.
static autoclose_fd_t heightenize_fd(autoclose_fd_t fd, bool input_has_cloexec) {
// Check if the fd is invalid or already in our high range.
if (!fd.valid()) {
return fd;
}
if (fd.fd() >= k_first_high_fd) {
if (!input_has_cloexec) set_cloexec(fd.fd());
return fd;
}
#if defined(F_DUPFD_CLOEXEC)
// Here we are asking the kernel to give us a
int newfd = fcntl(fd.fd(), F_DUPFD_CLOEXEC, k_first_high_fd);
if (newfd < 0) {
wperror(L"fcntl");
return autoclose_fd_t{};
}
return autoclose_fd_t(newfd);
#elif defined(F_DUPFD)
int newfd = fcntl(fd.fd(), F_DUPFD, k_first_high_fd);
if (newfd < 0) {
wperror(L"fcntl");
return autoclose_fd_t{};
}
set_cloexec(newfd);
return autoclose_fd_t(newfd);
#else
// We have fd >= 0, and it's in the user range. dup it and recurse. Note that we recurse before
// anything is closed; this forces the kernel to give us a new one (or report fd exhaustion).
int tmp_fd;
do {
tmp_fd = dup(fd.fd());
} while (tmp_fd < 0 && errno == EINTR);
// Ok, we have a new candidate fd. Recurse.
return heightenize_fd(autoclose_fd_t{tmp_fd}, false);
#endif
}
maybe_t<autoclose_pipes_t> make_autoclose_pipes() {
int pipes[2] = {-1, -1};
bool already_cloexec = false;
#ifdef HAVE_PIPE2
if (pipe2(pipes, O_CLOEXEC) < 0) {
FLOGF(warning, PIPE_ERROR);
wperror(L"pipe2");
return none();
}
already_cloexec = true;
#else
if (pipe(pipes) < 0) {
FLOGF(warning, PIPE_ERROR);
wperror(L"pipe");
return none();
}
#endif
autoclose_fd_t read_end{pipes[0]};
autoclose_fd_t write_end{pipes[1]};
// Ensure our fds are out of the user range.
read_end = heightenize_fd(std::move(read_end), already_cloexec);
if (!read_end.valid()) return none();
write_end = heightenize_fd(std::move(write_end), already_cloexec);
if (!write_end.valid()) return none();
return autoclose_pipes_t(std::move(read_end), std::move(write_end));
}
int set_cloexec(int fd, bool should_set) {
// Note we don't want to overwrite existing flags like O_NONBLOCK which may be set. So fetch the
// existing flags and modify them.
int flags = fcntl(fd, F_GETFD, 0);
if (flags < 0) {
return -1;
}
int new_flags = flags;
if (should_set) {
new_flags |= FD_CLOEXEC;
} else {
new_flags &= ~FD_CLOEXEC;
}
if (flags == new_flags) {
return 0;
} else {
return fcntl(fd, F_SETFD, new_flags);
}
}
int open_cloexec(const std::string &path, int flags, mode_t mode) {
return open_cloexec(path.c_str(), flags, mode);
}
int open_cloexec(const char *path, int flags, mode_t mode) {
int fd;
// Prefer to use O_CLOEXEC.
#ifdef O_CLOEXEC
fd = open(path, flags | O_CLOEXEC, mode);
#else
fd = open(path, flags, mode);
if (fd >= 0 && set_cloexec(fd)) {
exec_close(fd);
fd = -1;
}
#endif
return fd;
}
int wopen_cloexec(const wcstring &pathname, int flags, mode_t mode) {
return open_cloexec(wcs2string(pathname), flags, mode);
}
void exec_close(int fd) {
assert(fd >= 0 && "Invalid fd");
while (close(fd) == -1) {
if (errno != EINTR) {
wperror(L"close");
break;
}
}
}