fish-shell/src/history.cpp
Rosen Penev 33351d7657 [clang-tidy] remove static from namespace
Found with readability-static-definition-in-anonymous-namespace

Signed-off-by: Rosen Penev <rosenp@gmail.com>
2020-02-22 09:34:02 +01:00

1449 lines
55 KiB
C++

// History functions, part of the user interface.
#include "config.h" // IWYU pragma: keep
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <cstdint>
#include <cstring>
// We need the sys/file.h for the flock() declaration on Linux but not OS X.
#include <sys/file.h> // IWYU pragma: keep
#include <sys/stat.h>
#include <time.h>
#include <unistd.h>
#include <wctype.h>
#include <algorithm>
#include <atomic>
#include <cwchar>
#include <functional>
#include <iterator>
#include <map>
#include <numeric>
#include <type_traits>
#include <unordered_set>
#include "common.h"
#include "env.h"
#include "fallback.h" // IWYU pragma: keep
#include "flog.h"
#include "global_safety.h"
#include "history.h"
#include "history_file.h"
#include "io.h"
#include "iothread.h"
#include "lru.h"
#include "parse_constants.h"
#include "parse_util.h"
#include "parser.h"
#include "path.h"
#include "reader.h"
#include "tnode.h"
#include "wcstringutil.h"
#include "wildcard.h" // IWYU pragma: keep
#include "wutil.h" // IWYU pragma: keep
// Our history format is intended to be valid YAML. Here it is:
//
// - cmd: ssh blah blah blah
// when: 2348237
// paths:
// - /path/to/something
// - /path/to/something_else
//
// Newlines are replaced by \n. Backslashes are replaced by \\.
// This is the history session ID we use by default if the user has not set env var fish_history.
#define DFLT_FISH_HISTORY_SESSION_ID L"fish"
// When we rewrite the history, the number of items we keep.
#define HISTORY_SAVE_MAX (1024 * 256)
// Default buffer size for flushing to the history file.
#define HISTORY_OUTPUT_BUFFER_SIZE (64 * 1024)
// The file access mode we use for creating history files
static constexpr int history_file_mode = 0644;
// How many times we retry to save
// Saving may fail if the file is modified in between our opening
// the file and taking the lock
static constexpr int max_save_tries = 1024;
namespace {
/// If the size of \p buffer is at least \p min_size, output the contents of a string \p str to \p
/// fd, and clear the string. \return 0 on success, an error code on failure.
int flush_to_fd(std::string *buffer, int fd, size_t min_size) {
if (buffer->empty() || buffer->size() < min_size) {
return 0;
}
if (write_loop(fd, buffer->data(), buffer->size()) < 0) {
return errno;
}
buffer->clear();
return 0;
}
class time_profiler_t {
const char *what;
double start;
public:
explicit time_profiler_t(const char *w) {
what = w;
start = timef();
}
~time_profiler_t() {
double end = timef();
FLOGF(profile_history, "%s: %.0f ms", what, (end - start) * 1000);
}
};
/// \return the path for the history file for the given \p session_id, or none() if it could not be
/// loaded. If suffix is provided, append that suffix to the path; this is used for temporary files.
maybe_t<wcstring> history_filename(const wcstring &session_id, const wcstring &suffix = {}) {
if (session_id.empty()) return none();
wcstring result;
if (!path_get_data(result)) return none();
result.append(L"/");
result.append(session_id);
result.append(L"_history");
result.append(suffix);
return result;
}
/// Lock the history file.
/// Returns true on success, false on failure.
bool history_file_lock(int fd, int lock_type) {
static std::atomic<bool> do_locking(true);
if (!do_locking) return false;
double start_time = timef();
int retval = flock(fd, lock_type);
double duration = timef() - start_time;
if (duration > 0.25) {
FLOGF(warning, _(L"Locking the history file took too long (%.3f seconds)."), duration);
// we've decided to stop doing any locking behavior
// but make sure we don't leave the file locked!
if (retval == 0 && lock_type != LOCK_UN) {
flock(fd, LOCK_UN);
}
do_locking = false;
return false;
}
return retval != -1;
}
} // anonymous namespace
class history_lru_cache_t : public lru_cache_t<history_lru_cache_t, history_item_t> {
public:
explicit history_lru_cache_t(size_t max)
: lru_cache_t<history_lru_cache_t, history_item_t>(max) {}
/// Function to add a history item.
void add_item(history_item_t item) {
// Skip empty items.
if (item.empty()) return;
// See if it's in the cache. If it is, update the timestamp. If not, we create a new node
// and add it. Note that calling get_node promotes the node to the front.
wcstring key = item.str();
history_item_t *node = this->get(key);
if (node == nullptr) {
this->insert(std::move(key), std::move(item));
} else {
node->creation_timestamp = std::max(node->timestamp(), item.timestamp());
// What to do about paths here? Let's just ignore them.
}
}
};
/// We can merge two items if they are the same command. We use the more recent timestamp, more
/// recent identifier, and the longer list of required paths.
bool history_item_t::merge(const history_item_t &item) {
bool result = false;
if (this->contents == item.contents) {
this->creation_timestamp = std::max(this->creation_timestamp, item.creation_timestamp);
if (this->required_paths.size() < item.required_paths.size()) {
this->required_paths = item.required_paths;
}
if (this->identifier < item.identifier) {
this->identifier = item.identifier;
}
result = true;
}
return result;
}
history_item_t::history_item_t(wcstring str, time_t when, history_identifier_t ident)
: contents(trim(std::move(str))), creation_timestamp(when), identifier(ident) {}
bool history_item_t::matches_search(const wcstring &term, enum history_search_type_t type,
bool case_sensitive) const {
// Note that 'term' has already been lowercased when constructing the
// search object if we're doing a case insensitive search.
wcstring contents_lower;
if (!case_sensitive) {
contents_lower = wcstolower(contents);
}
const wcstring &content_to_match = case_sensitive ? contents : contents_lower;
switch (type) {
case history_search_type_t::exact: {
return term == content_to_match;
}
case history_search_type_t::contains: {
return content_to_match.find(term) != wcstring::npos;
}
case history_search_type_t::prefix: {
return string_prefixes_string(term, content_to_match);
}
case history_search_type_t::contains_glob: {
wcstring wcpattern1 = parse_util_unescape_wildcards(term);
if (wcpattern1.front() != ANY_STRING) wcpattern1.insert(0, 1, ANY_STRING);
if (wcpattern1.back() != ANY_STRING) wcpattern1.push_back(ANY_STRING);
return wildcard_match(content_to_match, wcpattern1);
}
case history_search_type_t::prefix_glob: {
wcstring wcpattern2 = parse_util_unescape_wildcards(term);
if (wcpattern2.back() != ANY_STRING) wcpattern2.push_back(ANY_STRING);
return wildcard_match(content_to_match, wcpattern2);
}
case history_search_type_t::match_everything: {
return true;
}
}
DIE("unexpected history_search_type_t value");
}
struct history_impl_t {
// Privately add an item. If pending, the item will not be returned by history searches until a
// call to resolve_pending.
void add(const history_item_t &item, bool pending = false, bool do_save = true);
// Internal function.
void clear_file_state();
// The name of this list. Used for picking a suitable filename and for switching modes.
const wcstring name;
// New items. Note that these are NOT discarded on save. We need to keep these around so we can
// distinguish between items in our history and items in the history of other shells that were
// started after we were started.
history_item_list_t new_items;
// The index of the first new item that we have not yet written.
size_t first_unwritten_new_item_index{0};
// Whether we have a pending item. If so, the most recently added item is ignored by
// item_at_index.
bool has_pending_item{false};
// Whether we should disable saving to the file for a time.
uint32_t disable_automatic_save_counter{0};
// Deleted item contents.
std::unordered_set<wcstring> deleted_items{};
// The buffer containing the history file contents.
std::unique_ptr<history_file_contents_t> file_contents{};
// The file ID of the history file.
file_id_t history_file_id = kInvalidFileID;
// The boundary timestamp distinguishes old items from new items. Items whose timestamps are <=
// the boundary are considered "old". Items whose timestemps are > the boundary are new, and are
// ignored by this instance (unless they came from this instance). The timestamp may be adjusted
// by incorporate_external_changes().
time_t boundary_timestamp{time(nullptr)};
// How many items we add until the next vacuum. Initially a random value.
int countdown_to_vacuum{-1};
// Whether we've loaded old items.
bool loaded_old{false};
// List of old items, as offsets into out mmap data.
std::deque<size_t> old_item_offsets{};
// Figure out the offsets of our file contents.
void populate_from_file_contents();
// Loads old items if necessary.
void load_old_if_needed();
// Deletes duplicates in new_items.
void compact_new_items();
// Attempts to rewrite the existing file to a target temporary file
// Returns false on error, true on success
bool rewrite_to_temporary_file(int existing_fd, int dst_fd) const;
// Saves history by rewriting the file.
bool save_internal_via_rewrite();
// Saves history by appending to the file.
bool save_internal_via_appending();
// Saves history.
void save(bool vacuum = false);
// Saves history unless doing so is disabled.
void save_unless_disabled();
explicit history_impl_t(wcstring name) : name(std::move(name)) {}
history_impl_t(history_impl_t &&) = default;
~history_impl_t() = default;
/// Returns whether this is using the default name.
bool is_default() const;
// Determines whether the history is empty. Unfortunately this cannot be const, since it may
// require populating the history.
bool is_empty();
// Add a new history item to the end. If pending is set, the item will not be returned by
// item_at_index until a call to resolve_pending(). Pending items are tracked with an offset
// into the array of new items, so adding a non-pending item has the effect of resolving all
// pending items.
void add(const wcstring &str, history_identifier_t ident = 0, bool pending = false,
bool save = true);
// Remove a history item.
void remove(const wcstring &str);
// Add a new pending history item to the end, and then begin file detection on the items to
// determine which arguments are paths
void add_pending_with_file_detection(const wcstring &str, const wcstring &working_dir_slash);
// Resolves any pending history items, so that they may be returned in history searches.
void resolve_pending();
// Enable / disable automatic saving. Main thread only!
void disable_automatic_saving();
void enable_automatic_saving();
// Irreversibly clears history.
void clear();
// Populates from older location ()in config path, rather than data path).
void populate_from_config_path();
// Populates from a bash history file.
void populate_from_bash(FILE *stream);
// Incorporates the history of other shells into this history.
void incorporate_external_changes();
// Gets all the history into a list. This is intended for the $history environment variable.
// This may be long!
void get_history(wcstring_list_t &result);
// Let indexes be a list of one-based indexes into the history, matching the interpretation of
// $history. That is, $history[1] is the most recently executed command. Values less than one
// are skipped. Return a mapping from index to history item text.
std::unordered_map<long, wcstring> items_at_indexes(const std::vector<long> &idxs);
// Sets the valid file paths for the history item with the given identifier.
void set_valid_file_paths(const wcstring_list_t &valid_file_paths, history_identifier_t ident);
// Return the specified history at the specified index. 0 is the index of the current
// commandline. (So the most recent item is at index 1.)
history_item_t item_at_index(size_t idx);
// Return the number of history entries.
size_t size();
};
void history_impl_t::add(const history_item_t &item, bool pending, bool do_save) {
// We use empty items as sentinels to indicate the end of history.
// Do not allow them to be added (#6032).
if (item.contents.empty()) {
return;
}
// Try merging with the last item.
if (!new_items.empty() && new_items.back().merge(item)) {
// We merged, so we don't have to add anything. Maybe this item was pending, but it just got
// merged with an item that is not pending, so pending just becomes false.
this->has_pending_item = false;
} else {
// We have to add a new item.
new_items.push_back(item);
this->has_pending_item = pending;
if (do_save) save_unless_disabled();
}
}
void history_impl_t::save_unless_disabled() {
// Respect disable_automatic_save_counter.
if (disable_automatic_save_counter > 0) {
return;
}
// We may or may not vacuum. We try to vacuum every kVacuumFrequency items, but start the
// countdown at a random number so that even if the user never runs more than 25 commands, we'll
// eventually vacuum. If countdown_to_vacuum is -1, it means we haven't yet picked a value for
// the counter.
const int kVacuumFrequency = 25;
if (countdown_to_vacuum < 0) {
unsigned int seed = static_cast<unsigned int>(time(nullptr));
// Generate a number in the range [0, kVacuumFrequency).
countdown_to_vacuum = rand_r(&seed) / (RAND_MAX / kVacuumFrequency + 1);
}
// Determine if we're going to vacuum.
bool vacuum = false;
if (countdown_to_vacuum == 0) {
countdown_to_vacuum = kVacuumFrequency;
vacuum = true;
}
// This might be a good candidate for moving to a background thread.
time_profiler_t profiler(vacuum ? "save vacuum" //!OCLINT(unused var)
: "save no vacuum"); //!OCLINT(side-effect)
this->save(vacuum);
// Update our countdown.
assert(countdown_to_vacuum > 0);
countdown_to_vacuum--;
}
void history_impl_t::add(const wcstring &str, history_identifier_t ident, bool pending,
bool do_save) {
time_t when = time(nullptr);
// Big hack: do not allow timestamps equal to our boundary date. This is because we include
// items whose timestamps are equal to our boundary when reading old history, so we can catch
// "just closed" items. But this means that we may interpret our own items, that we just wrote,
// as old items, if we wrote them in the same second as our birthdate.
if (when == this->boundary_timestamp) {
when++;
}
this->add(history_item_t(str, when, ident), pending, do_save);
}
// Remove matching history entries from our list of new items. This only supports literal,
// case-sensitive, matches.
void history_impl_t::remove(const wcstring &str_to_remove) {
// Add to our list of deleted items.
deleted_items.insert(str_to_remove);
size_t idx = new_items.size();
while (idx--) {
bool matched = new_items.at(idx).str() == str_to_remove;
if (matched) {
new_items.erase(new_items.begin() + idx);
// If this index is before our first_unwritten_new_item_index, then subtract one from
// that index so it stays pointing at the same item. If it is equal to or larger, then
// we have not yet written this item, so we don't have to adjust the index.
if (idx < first_unwritten_new_item_index) {
first_unwritten_new_item_index--;
}
}
}
assert(first_unwritten_new_item_index <= new_items.size());
}
void history_impl_t::set_valid_file_paths(const wcstring_list_t &valid_file_paths,
history_identifier_t ident) {
// 0 identifier is used to mean "not necessary".
if (ident == 0) {
return;
}
// Look for an item with the given identifier. It is likely to be at the end of new_items.
for (history_item_list_t::reverse_iterator iter = new_items.rbegin(); iter != new_items.rend();
++iter) {
if (iter->identifier == ident) { // found it
iter->required_paths = valid_file_paths;
break;
}
}
}
void history_impl_t::get_history(wcstring_list_t &result) {
// If we have a pending item, we skip the first encountered (i.e. last) new item.
bool next_is_pending = this->has_pending_item;
std::unordered_set<wcstring> seen;
// Append new items.
for (auto iter = new_items.crbegin(); iter < new_items.crend(); ++iter) {
// Skip a pending item if we have one.
if (next_is_pending) {
next_is_pending = false;
continue;
}
if (seen.insert(iter->str()).second) result.push_back(iter->str());
}
// Append old items.
load_old_if_needed();
for (auto iter = old_item_offsets.crbegin(); iter != old_item_offsets.crend(); ++iter) {
size_t offset = *iter;
const history_item_t item = file_contents->decode_item(offset);
if (seen.insert(item.str()).second) result.push_back(item.str());
}
}
size_t history_impl_t::size() {
size_t new_item_count = new_items.size();
if (this->has_pending_item && new_item_count > 0) new_item_count -= 1;
load_old_if_needed();
size_t old_item_count = old_item_offsets.size();
return new_item_count + old_item_count;
}
history_item_t history_impl_t::item_at_index(size_t idx) {
// 0 is considered an invalid index.
assert(idx > 0);
idx--;
// Determine how many "resolved" (non-pending) items we have. We can have at most one pending
// item, and it's always the last one.
size_t resolved_new_item_count = new_items.size();
if (this->has_pending_item && resolved_new_item_count > 0) {
resolved_new_item_count -= 1;
}
// idx == 0 corresponds to the last resolved item.
if (idx < resolved_new_item_count) {
return new_items.at(resolved_new_item_count - idx - 1);
}
// Now look in our old items.
idx -= resolved_new_item_count;
load_old_if_needed();
size_t old_item_count = old_item_offsets.size();
if (idx < old_item_count) {
// idx == 0 corresponds to last item in old_item_offsets.
size_t offset = old_item_offsets.at(old_item_count - idx - 1);
return file_contents->decode_item(offset);
}
// Index past the valid range, so return an empty history item.
return history_item_t{};
}
std::unordered_map<long, wcstring> history_impl_t::items_at_indexes(const std::vector<long> &idxs) {
std::unordered_map<long, wcstring> result;
for (long idx : idxs) {
if (idx <= 0) {
// Skip non-positive entries.
continue;
}
// Insert an empty string to see if this is the first time the index is encountered. If so,
// we have to go fetch the item.
auto iter_inserted = result.emplace(idx, wcstring{});
if (iter_inserted.second) {
// New key.
auto item = item_at_index(size_t(idx));
iter_inserted.first->second = std::move(item.contents);
}
}
return result;
}
void history_impl_t::populate_from_file_contents() {
old_item_offsets.clear();
if (file_contents) {
size_t cursor = 0;
while (auto offset = file_contents->offset_of_next_item(&cursor, boundary_timestamp)) {
// Remember this item.
old_item_offsets.push_back(*offset);
}
}
FLOGF(history, "Loaded %lu old items", old_item_offsets.size());
}
void history_impl_t::load_old_if_needed() {
if (loaded_old) return;
loaded_old = true;
time_profiler_t profiler("load_old"); //!OCLINT(side-effect)
if (maybe_t<wcstring> filename = history_filename(name)) {
autoclose_fd_t file{wopen_cloexec(*filename, O_RDONLY)};
int fd = file.fd();
if (fd >= 0) {
// Take a read lock to guard against someone else appending. This is released when the
// file is closed (below). We will read the file after releasing the lock, but that's
// not a problem, because we never modify already written data. In short, the purpose of
// this lock is to ensure we don't see the file size change mid-update.
//
// We may fail to lock (e.g. on lockless NFS - see issue #685. In that case, we proceed
// as if it did not fail. The risk is that we may get an incomplete history item; this
// is unlikely because we only treat an item as valid if it has a terminating newline.
//
// Simulate a failing lock in chaos_mode.
if (!history_t::chaos_mode) history_file_lock(fd, LOCK_SH);
file_contents = history_file_contents_t::create(fd);
this->history_file_id = file_contents ? file_id_for_fd(fd) : kInvalidFileID;
if (!history_t::chaos_mode) history_file_lock(fd, LOCK_UN);
time_profiler_t profiler("populate_from_file_contents"); //!OCLINT(side-effect)
this->populate_from_file_contents();
}
}
}
bool history_search_t::go_backwards() {
// Backwards means increasing our index.
const size_t max_index = static_cast<size_t>(-1);
if (current_index_ == max_index) return false;
size_t index = current_index_;
while (++index < max_index) {
history_item_t item = history_->item_at_index(index);
// We're done if it's empty or we cancelled.
if (item.empty()) {
return false;
}
// Look for an item that matches and (if deduping) that we haven't seen before.
if (!item.matches_search(canon_term_, search_type_, !ignores_case())) {
continue;
}
// Skip if deduplicating.
if (dedup() && !deduper_.insert(item.str()).second) {
continue;
}
// This is our new item.
current_item_ = std::move(item);
current_index_ = index;
return true;
}
return false;
}
const history_item_t &history_search_t::current_item() const {
assert(current_item_ && "No current item");
return *current_item_;
}
const wcstring &history_search_t::current_string() const { return this->current_item().str(); }
void history_impl_t::clear_file_state() {
// Erase everything we know about our file.
file_contents.reset();
loaded_old = false;
old_item_offsets.clear();
}
void history_impl_t::compact_new_items() {
// Keep only the most recent items with the given contents. This algorithm could be made more
// efficient, but likely would consume more memory too.
std::unordered_set<wcstring> seen;
size_t idx = new_items.size();
while (idx--) {
const history_item_t &item = new_items[idx];
if (!seen.insert(item.contents).second) {
// This item was not inserted because it was already in the set, so delete the item at
// this index.
new_items.erase(new_items.begin() + idx);
if (idx < first_unwritten_new_item_index) {
// Decrement first_unwritten_new_item_index if we are deleting a previously written
// item.
first_unwritten_new_item_index--;
}
}
}
}
// Given the fd of an existing history file, or -1 if none, write
// a new history file to temp_fd. Returns true on success, false
// on error
bool history_impl_t::rewrite_to_temporary_file(int existing_fd, int dst_fd) const {
// We are reading FROM existing_fd and writing TO dst_fd
// dst_fd must be valid; existing_fd does not need to be
assert(dst_fd >= 0);
// Make an LRU cache to save only the last N elements.
history_lru_cache_t lru(HISTORY_SAVE_MAX);
// Read in existing items (which may have changed out from underneath us, so don't trust our
// old file contents).
if (auto local_file = history_file_contents_t::create(existing_fd)) {
size_t cursor = 0;
while (auto offset = local_file->offset_of_next_item(&cursor, 0)) {
// Try decoding an old item.
history_item_t old_item = local_file->decode_item(*offset);
if (old_item.empty() || deleted_items.count(old_item.str()) > 0) {
continue;
}
// Add this old item.
lru.add_item(std::move(old_item));
}
}
// Insert any unwritten new items
for (auto iter = new_items.cbegin() + this->first_unwritten_new_item_index;
iter != new_items.cend(); ++iter) {
lru.add_item(*iter);
}
// Stable-sort our items by timestamp
// This is because we may have read "old" items with a later timestamp than our "new" items
// This is the essential step that roughly orders items by history
lru.stable_sort([](const history_item_t &item1, const history_item_t &item2) {
return item1.timestamp() < item2.timestamp();
});
// Write them out.
int err = 0;
std::string buffer;
buffer.reserve(HISTORY_OUTPUT_BUFFER_SIZE + 128);
for (const auto key_item : lru) {
append_history_item_to_buffer(key_item.second, &buffer);
err = flush_to_fd(&buffer, dst_fd, HISTORY_OUTPUT_BUFFER_SIZE);
if (err) break;
}
if (!err) {
err = flush_to_fd(&buffer, dst_fd, 0);
}
if (err) {
FLOGF(history_file, L"Error %d when writing to temporary history file", err);
}
return err == 0;
}
// Returns the fd of an opened temporary file, or an invalid fd on failure.
static autoclose_fd_t create_temporary_file(const wcstring &name_template, wcstring *out_path) {
for (int attempt = 0; attempt < 10; attempt++) {
std::string narrow_str = wcs2string(name_template);
autoclose_fd_t out_fd{fish_mkstemp_cloexec(&narrow_str[0])};
if (out_fd.valid()) {
*out_path = str2wcstring(narrow_str);
return out_fd;
}
}
return autoclose_fd_t{};
}
bool history_impl_t::save_internal_via_rewrite() {
FLOGF(history, "Saving %lu items via rewrite",
new_items.size() - first_unwritten_new_item_index);
bool ok = false;
// We want to rewrite the file, while holding the lock for as briefly as possible
// To do this, we speculatively write a file, and then lock and see if our original file changed
// Repeat until we succeed or give up
const maybe_t<wcstring> target_name = history_filename(name);
const maybe_t<wcstring> tmp_name_template = history_filename(name, L".XXXXXX");
if (!target_name.has_value() || !tmp_name_template.has_value()) {
return false;
}
// Make our temporary file
// Remember that we have to close this fd!
wcstring tmp_name;
autoclose_fd_t tmp_file = create_temporary_file(*tmp_name_template, &tmp_name);
if (!tmp_file.valid()) {
return false;
}
const int tmp_fd = tmp_file.fd();
bool done = false;
for (int i = 0; i < max_save_tries && !done; i++) {
// Open any target file, but do not lock it right away
autoclose_fd_t target_fd_before{
wopen_cloexec(*target_name, O_RDONLY | O_CREAT, history_file_mode)};
file_id_t orig_file_id = file_id_for_fd(target_fd_before.fd()); // possibly invalid
bool wrote = this->rewrite_to_temporary_file(target_fd_before.fd(), tmp_fd);
target_fd_before.close();
if (!wrote) {
// Failed to write, no good
break;
}
// The crux! We rewrote the history file; see if the history file changed while we
// were rewriting it. Make an effort to take the lock before checking, to avoid racing.
// If the open fails, then proceed; this may be because there is no current history
file_id_t new_file_id = kInvalidFileID;
autoclose_fd_t target_fd_after{wopen_cloexec(*target_name, O_RDONLY)};
if (target_fd_after.valid()) {
// critical to take the lock before checking file IDs,
// and hold it until after we are done replacing
// Also critical to check the file at the path, NOT based on our fd
// It's only OK to replace the file while holding the lock
history_file_lock(target_fd_after.fd(), LOCK_EX);
new_file_id = file_id_for_path(*target_name);
}
bool can_replace_file = (new_file_id == orig_file_id || new_file_id == kInvalidFileID);
if (!can_replace_file) {
// The file has changed, so we're going to re-read it
// Truncate our tmp_fd so we can reuse it
if (ftruncate(tmp_fd, 0) == -1 || lseek(tmp_fd, 0, SEEK_SET) == -1) {
FLOGF(history_file, L"Error %d when truncating temporary history file", errno);
}
} else {
// The file is unchanged, or the new file doesn't exist or we can't read it
// We also attempted to take the lock, so we feel confident in replacing it
// Ensure we maintain the ownership and permissions of the original (#2355). If the
// stat fails, we assume (hope) our default permissions are correct. This
// corresponds to e.g. someone running sudo -E as the very first command. If they
// did, it would be tricky to set the permissions correctly. (bash doesn't get this
// case right either).
struct stat sbuf;
if (target_fd_after.valid() && fstat(target_fd_after.fd(), &sbuf) >= 0) {
if (fchown(tmp_fd, sbuf.st_uid, sbuf.st_gid) == -1) {
FLOGF(history_file, L"Error %d when changing ownership of history file", errno);
}
if (fchmod(tmp_fd, sbuf.st_mode) == -1) {
FLOGF(history_file, L"Error %d when changing mode of history file", errno);
}
}
// Slide it into place
if (wrename(tmp_name, *target_name) == -1) {
FLOGF(history_file, L"Error %d when renaming history file", errno);
}
// We did it
done = true;
}
}
// Ensure we never leave the old file around
wunlink(tmp_name);
if (done) {
// We've saved everything, so we have no more unsaved items.
this->first_unwritten_new_item_index = new_items.size();
// We deleted our deleted items.
this->deleted_items.clear();
// Our history has been written to the file, so clear our state so we can re-reference the
// file.
this->clear_file_state();
}
return ok;
}
// Function called to save our unwritten history file by appending to the existing history file
// Returns true on success, false on failure.
bool history_impl_t::save_internal_via_appending() {
FLOGF(history, "Saving %lu items via appending",
new_items.size() - first_unwritten_new_item_index);
// No deleting allowed.
assert(deleted_items.empty());
bool ok = false;
// If the file is different (someone vacuumed it) then we need to update our mmap.
bool file_changed = false;
// Get the path to the real history file.
maybe_t<wcstring> maybe_history_path = history_filename(name);
if (!maybe_history_path) {
return true;
}
wcstring history_path = maybe_history_path.acquire();
// We are going to open the file, lock it, append to it, and then close it
// After locking it, we need to stat the file at the path; if there is a new file there, it
// means the file was replaced and we have to try again.
// Limit our max tries so we don't do this forever.
autoclose_fd_t history_fd{};
for (int i = 0; i < max_save_tries; i++) {
autoclose_fd_t fd{wopen_cloexec(history_path, O_WRONLY | O_APPEND)};
if (!fd.valid()) {
// can't open, we're hosed
break;
}
// Exclusive lock on the entire file. This is released when we close the file (below). This
// may fail on (e.g.) lockless NFS. If so, proceed as if it did not fail; the risk is that
// we may get interleaved history items, which is considered better than no history, or
// forcing everything through the slow copy-move mode. We try to minimize this possibility
// by writing with O_APPEND.
//
// Simulate a failing lock in chaos_mode
if (!history_t::chaos_mode) history_file_lock(fd.fd(), LOCK_EX);
const file_id_t file_id = file_id_for_fd(fd.fd());
if (file_id_for_path(history_path) == file_id) {
// File IDs match, so the file we opened is still at that path
// We're going to use this fd
if (file_id != this->history_file_id) {
file_changed = true;
}
history_fd = std::move(fd);
break;
}
}
if (history_fd.valid()) {
// We (hopefully successfully) took the exclusive lock. Append to the file.
// Note that this is sketchy for a few reasons:
// - Another shell may have appended its own items with a later timestamp, so our file may
// no longer be sorted by timestamp.
// - Another shell may have appended the same items, so our file may now contain
// duplicates.
//
// We cannot modify any previous parts of our file, because other instances may be reading
// those portions. We can only append.
//
// Originally we always rewrote the file on saving, which avoided both of these problems.
// However, appending allows us to save history after every command, which is nice!
//
// Periodically we "clean up" the file by rewriting it, so that most of the time it doesn't
// have duplicates, although we don't yet sort by timestamp (the timestamp isn't really used
// for much anyways).
// So far so good. Write all items at or after first_unwritten_new_item_index. Note that we
// write even a pending item - pending items are ignored by history within the command
// itself, but should still be written to the file.
// TODO: consider filling the buffer ahead of time, so we can just lock, splat, and unlock?
int err = 0;
// Use a small buffer size for appending, we usually only have 1 item
std::string buffer;
while (first_unwritten_new_item_index < new_items.size()) {
const history_item_t &item = new_items.at(first_unwritten_new_item_index);
append_history_item_to_buffer(item, &buffer);
err = flush_to_fd(&buffer, history_fd.fd(), HISTORY_OUTPUT_BUFFER_SIZE);
if (err) break;
// We wrote this item, hooray.
first_unwritten_new_item_index++;
}
if (!err) {
err = flush_to_fd(&buffer, history_fd.fd(), 0);
}
// Since we just modified the file, update our mmap_file_id to match its current state
// Otherwise we'll think the file has been changed by someone else the next time we go to
// write.
// We don't update the mapping since we only appended to the file, and everything we
// appended remains in our new_items
this->history_file_id = file_id_for_fd(history_fd.fd());
ok = (err == 0);
}
history_fd.close();
// If someone has replaced the file, forget our file state.
if (file_changed) {
this->clear_file_state();
}
return ok;
}
/// Save the specified mode to file; optionally also vacuums.
void history_impl_t::save(bool vacuum) {
// Nothing to do if there's no new items.
if (first_unwritten_new_item_index >= new_items.size() && deleted_items.empty()) return;
if (!history_filename(name).has_value()) {
// We're in the "incognito" mode. Pretend we've saved the history.
this->first_unwritten_new_item_index = new_items.size();
this->deleted_items.clear();
this->clear_file_state();
}
// Compact our new items so we don't have duplicates.
this->compact_new_items();
// Try saving. If we have items to delete, we have to rewrite the file. If we do not, we can
// append to it.
bool ok = false;
if (!vacuum && deleted_items.empty()) {
// Try doing a fast append.
ok = save_internal_via_appending();
if (!ok) {
FLOGF(history, "Appending failed");
}
}
if (!ok) {
// We did not or could not append; rewrite the file ("vacuum" it).
this->save_internal_via_rewrite();
}
}
// Formats a single history record, including a trailing newline.
//
// Returns nothing. The only possible failure involves formatting the timestamp. If that happens we
// simply omit the timestamp from the output.
static void format_history_record(const history_item_t &item, const wchar_t *show_time_format,
bool null_terminate, wcstring *result) {
result->clear();
if (show_time_format) {
const time_t seconds = item.timestamp();
struct tm timestamp;
if (localtime_r(&seconds, &timestamp)) {
const int max_tstamp_length = 100;
wchar_t timestamp_string[max_tstamp_length + 1];
if (std::wcsftime(timestamp_string, max_tstamp_length, show_time_format, &timestamp) !=
0) {
result->append(timestamp_string);
}
}
}
result->append(item.str());
result->push_back(null_terminate ? L'\0' : L'\n');
}
void history_impl_t::disable_automatic_saving() {
disable_automatic_save_counter++;
assert(disable_automatic_save_counter != 0); // overflow!
}
void history_impl_t::enable_automatic_saving() {
assert(disable_automatic_save_counter > 0); // underflow
disable_automatic_save_counter--;
save_unless_disabled();
}
void history_impl_t::clear() {
new_items.clear();
deleted_items.clear();
first_unwritten_new_item_index = 0;
old_item_offsets.clear();
if (maybe_t<wcstring> filename = history_filename(name)) {
wunlink(*filename);
}
this->clear_file_state();
}
bool history_impl_t::is_default() const { return name == DFLT_FISH_HISTORY_SESSION_ID; }
bool history_impl_t::is_empty() {
// If we have new items, we're not empty.
if (!new_items.empty()) return false;
bool empty = false;
if (loaded_old) {
// If we've loaded old items, see if we have any offsets.
empty = old_item_offsets.empty();
} else {
// If we have not loaded old items, don't actually load them (which may be expensive); just
// stat the file and see if it exists and is nonempty.
const maybe_t<wcstring> where = history_filename(name);
if (!where.has_value()) {
return true;
}
struct stat buf = {};
if (wstat(*where, &buf) != 0) {
// Access failed, assume missing.
empty = true;
} else {
// We're empty if the file is empty.
empty = (buf.st_size == 0);
}
}
return empty;
}
/// Populates from older location (in config path, rather than data path) This is accomplished by
/// clearing ourselves, and copying the contents of the old history file to the new history file.
/// The new contents will automatically be re-mapped later.
void history_impl_t::populate_from_config_path() {
maybe_t<wcstring> new_file = history_filename(name);
if (!new_file.has_value()) {
return;
}
wcstring old_file;
if (path_get_config(old_file)) {
old_file.append(L"/");
old_file.append(name);
old_file.append(L"_history");
autoclose_fd_t src_fd{wopen_cloexec(old_file, O_RDONLY, 0)};
if (src_fd.valid()) {
// Clear must come after we've retrieved the new_file name, and before we open
// destination file descriptor, since it destroys the name and the file.
this->clear();
autoclose_fd_t dst_fd{wopen_cloexec(*new_file, O_WRONLY | O_CREAT, history_file_mode)};
char buf[BUFSIZ];
ssize_t size;
while ((size = read(src_fd.fd(), buf, BUFSIZ)) > 0) {
ssize_t written = write(dst_fd.fd(), buf, static_cast<size_t>(size));
if (written < 0) {
// This message does not have high enough priority to be shown by default.
FLOGF(history_file, L"Error when writing history file");
break;
}
}
}
}
}
/// Decide whether we ought to import a bash history line into fish. This is a very crude heuristic.
static bool should_import_bash_history_line(const wcstring &line) {
if (line.empty()) return false;
parse_node_tree_t parse_tree;
if (!parse_tree_from_string(line, parse_flag_none, &parse_tree, nullptr)) return false;
// In doing this test do not allow incomplete strings. Hence the "false" argument.
parse_error_list_t errors;
parse_util_detect_errors(line, &errors, false);
if (!errors.empty()) return false;
// The following are Very naive tests!
// Skip comments.
if (line[0] == '#') return false;
// Skip lines with backticks.
if (line.find('`') != std::string::npos) return false;
// Skip lines with [[...]] and ((...)) since we don't handle those constructs.
if (line.find(L"[[") != std::string::npos) return false;
if (line.find(L"]]") != std::string::npos) return false;
if (line.find(L"((") != std::string::npos) return false;
if (line.find(L"))") != std::string::npos) return false;
// Skip lines that end with a backslash. We do not handle multiline commands from bash history.
if (line.back() == L'\\') return false;
return true;
}
/// Import a bash command history file. Bash's history format is very simple: just lines with #s for
/// comments. Ignore a few commands that are bash-specific. It makes no attempt to handle multiline
/// commands. We can't actually parse bash syntax and the bash history file does not unambiguously
/// encode multiline commands.
void history_impl_t::populate_from_bash(FILE *stream) {
// Process the entire history file until EOF is observed.
bool eof = false;
while (!eof) {
auto line = std::string();
// Loop until we've read a line or EOF is observed.
while (true) {
char buff[128];
if (!fgets(buff, sizeof buff, stream)) {
eof = true;
break;
}
// Deal with the newline if present.
char *a_newline = std::strchr(buff, '\n');
if (a_newline) *a_newline = '\0';
line.append(buff);
if (a_newline) break;
}
wcstring wide_line = str2wcstring(line);
// Add this line if it doesn't contain anything we know we can't handle.
if (should_import_bash_history_line(wide_line)) {
this->add(wide_line, 0, false /* pending */, false /* do_save */);
}
}
this->save_unless_disabled();
}
void history_impl_t::incorporate_external_changes() {
// To incorporate new items, we simply update our timestamp to now, so that items from previous
// instances get added. We then clear the file state so that we remap the file. Note that this
// is somehwhat expensive because we will be going back over old items. An optimization would be
// to preserve old_item_offsets so that they don't have to be recomputed. (However, then items
// *deleted* in other instances would not show up here).
time_t new_timestamp = time(nullptr);
// If for some reason the clock went backwards, we don't want to start dropping items; therefore
// we only do work if time has progressed. This also makes multiple calls cheap.
if (new_timestamp > this->boundary_timestamp) {
this->boundary_timestamp = new_timestamp;
this->clear_file_state();
// We also need to erase new_items, since we go through those first, and that means we
// will not properly interleave them with items from other instances.
// We'll pick them up from the file (#2312)
this->save(false);
this->new_items.clear();
this->first_unwritten_new_item_index = 0;
}
}
/// Return the prefix for the files to be used for command and read history.
wcstring history_session_id(const environment_t &vars) {
wcstring result = DFLT_FISH_HISTORY_SESSION_ID;
const auto var = vars.get(L"fish_history");
if (var) {
wcstring session_id = var->as_string();
if (session_id.empty()) {
result.clear();
} else if (session_id == L"default") {
// using the default value
} else if (valid_var_name(session_id)) {
result = session_id;
} else {
FLOGF(error,
_(L"History session ID '%ls' is not a valid variable name. "
L"Falling back to `%ls`."),
session_id.c_str(), result.c_str());
}
}
return result;
}
path_list_t valid_paths(const path_list_t &paths, const wcstring &working_directory) {
ASSERT_IS_BACKGROUND_THREAD();
wcstring_list_t result;
for (const wcstring &path : paths) {
if (path_is_valid(path, working_directory)) {
result.push_back(path);
}
}
return result;
}
bool all_paths_are_valid(const path_list_t &paths, const wcstring &working_directory) {
ASSERT_IS_BACKGROUND_THREAD();
for (const wcstring &path : paths) {
if (!path_is_valid(path, working_directory)) {
return false;
}
}
return true;
}
static bool string_could_be_path(const wcstring &potential_path) {
// Assume that things with leading dashes aren't paths.
return !(potential_path.empty() || potential_path.at(0) == L'-');
}
/// Very simple, just mark that we have no more pending items.
void history_impl_t::resolve_pending() { this->has_pending_item = false; }
bool history_t::chaos_mode = false;
bool history_t::never_mmap = false;
history_t::history_t(wcstring name)
: impl_(make_unique<owning_lock<history_impl_t>>(history_impl_t(std::move(name)))) {}
history_t::~history_t() = default;
acquired_lock<history_impl_t> history_t::impl() { return impl_->acquire(); }
acquired_lock<const history_impl_t> history_t::impl() const { return impl_->acquire(); }
bool history_t::is_default() const { return impl()->is_default(); }
bool history_t::is_empty() { return impl()->is_empty(); }
void history_t::add(const history_item_t &item, bool pending) { impl()->add(item, pending); }
void history_t::add(const wcstring &str, history_identifier_t ident, bool pending) {
impl()->add(str, ident, pending);
}
void history_t::remove(const wcstring &str) { impl()->remove(str); }
void history_t::add_pending_with_file_detection(const wcstring &str,
const wcstring &working_dir_slash) {
// We use empty items as sentinels to indicate the end of history.
// Do not allow them to be added (#6032).
if (str.empty()) {
return;
}
// Find all arguments that look like they could be file paths.
bool needs_sync_write = false;
parse_node_tree_t tree;
parse_tree_from_string(str, parse_flag_none, &tree, nullptr);
path_list_t potential_paths;
for (const parse_node_t &node : tree) {
if (!node.has_source()) {
continue;
}
if (node.type == symbol_argument) {
wcstring potential_path = node.get_source(str);
bool unescaped = unescape_string_in_place(&potential_path, UNESCAPE_DEFAULT);
if (unescaped && string_could_be_path(potential_path)) {
potential_paths.push_back(potential_path);
}
} else if (node.type == symbol_plain_statement) {
// Hack hack hack - if the command is likely to trigger an exit, then don't do
// background file detection, because we won't be able to write it to our history file
// before we exit.
// Also skip it for 'echo'. This is because echo doesn't take file paths, but also
// because the history file test wants to find the commands in the history file
// immediately after running them, so it can't tolerate the asynchronous file detection.
if (get_decoration({&tree, &node}) == parse_statement_decoration_exec) {
needs_sync_write = true;
}
if (maybe_t<wcstring> command = command_for_plain_statement({&tree, &node}, str)) {
unescape_string_in_place(&*command, UNESCAPE_DEFAULT);
if (*command == L"exit" || *command == L"reboot" || *command == L"restart" ||
*command == L"echo") {
needs_sync_write = true;
}
}
}
}
// If we got a path, we'll perform file detection for autosuggestion hinting.
bool wants_file_detection = !potential_paths.empty() && !needs_sync_write;
auto imp = this->impl();
history_identifier_t identifier = 0;
if (wants_file_detection) {
// Grab the next identifier.
static relaxed_atomic_t<history_identifier_t> s_last_identifier{0};
identifier = ++s_last_identifier;
imp->disable_automatic_saving();
// Add the item. Then check for which paths are valid on a background thread,
// and unblock the item.
// Don't hold the lock while we perform this file detection.
imp->add(str, identifier, true /* pending */);
iothread_perform([=]() {
auto validated_paths = valid_paths(potential_paths, working_dir_slash);
auto imp = this->impl();
imp->set_valid_file_paths(validated_paths, identifier);
imp->enable_automatic_saving();
});
} else {
// Add the item.
// If we think we're about to exit, save immediately, regardless of any disabling. This may
// cause us to lose file hinting for some commands, but it beats losing history items.
imp->add(str, identifier, true /* pending */);
if (needs_sync_write) {
imp->save();
}
}
}
void history_t::resolve_pending() { impl()->resolve_pending(); }
void history_t::save() { impl()->save(); }
/// Perform a search of \p hist for \p search_string. Invoke a function \p func for each match. If
/// \p func returns true, continue the search; else stop it.
static void do_1_history_search(history_t &hist, history_search_type_t search_type,
const wcstring &search_string, bool case_sensitive,
const std::function<bool(const history_item_t &item)> &func,
const cancel_checker_t &cancel_check) {
history_search_t searcher = history_search_t(hist, search_string, search_type,
case_sensitive ? 0 : history_search_ignore_case);
while (!cancel_check() && searcher.go_backwards()) {
if (!func(searcher.current_item())) {
break;
}
}
}
// Searches history.
bool history_t::search(history_search_type_t search_type, const wcstring_list_t &search_args,
const wchar_t *show_time_format, size_t max_items, bool case_sensitive,
bool null_terminate, bool reverse, const cancel_checker_t &cancel_check,
io_streams_t &streams) {
wcstring_list_t collected;
wcstring formatted_record;
size_t remaining = max_items;
// The function we use to act on each item.
std::function<bool(const history_item_t &item)> func = [&](const history_item_t &item) -> bool {
if (remaining == 0) return false;
remaining -= 1;
format_history_record(item, show_time_format, null_terminate, &formatted_record);
if (reverse) {
// We need to collect this for later.
collected.push_back(std::move(formatted_record));
} else {
// We can output this immediately.
streams.out.append(formatted_record);
}
return true;
};
if (search_args.empty()) {
// The user had no search terms; just append everything.
do_1_history_search(*this, history_search_type_t::match_everything, {}, false, func,
cancel_check);
} else {
for (const wcstring &search_string : search_args) {
if (search_string.empty()) {
streams.err.append_format(L"Searching for the empty string isn't allowed");
return false;
}
do_1_history_search(*this, search_type, search_string, case_sensitive, func,
cancel_check);
}
}
// Output any items we collected (which only happens in reverse).
for (auto iter = collected.rbegin(); iter != collected.rend(); ++iter) {
streams.out.append(*iter);
}
return true;
}
void history_t::clear() { impl()->clear(); }
void history_t::populate_from_config_path() { impl()->populate_from_config_path(); }
void history_t::populate_from_bash(FILE *f) { impl()->populate_from_bash(f); }
void history_t::incorporate_external_changes() { impl()->incorporate_external_changes(); }
void history_t::get_history(wcstring_list_t &result) { impl()->get_history(result); }
std::unordered_map<long, wcstring> history_t::items_at_indexes(const std::vector<long> &idxs) {
return impl()->items_at_indexes(idxs);
}
history_item_t history_t::item_at_index(size_t idx) { return impl()->item_at_index(idx); }
size_t history_t::size() { return impl()->size(); }
/// The set of all histories.
static owning_lock<std::map<wcstring, std::unique_ptr<history_t>>> s_histories;
void history_save_all() {
auto histories = s_histories.acquire();
for (auto &p : *histories) {
p.second->save();
}
}
history_t &history_t::history_with_name(const wcstring &name) {
// Return a history for the given name, creating it if necessary
// Note that histories are currently never deleted, so we can return a reference to them without
// using something like shared_ptr
auto hs = s_histories.acquire();
std::unique_ptr<history_t> &hist = (*hs)[name];
if (!hist) {
hist = make_unique<history_t>(name);
}
return *hist;
}
static relaxed_atomic_bool_t private_mode{false};
void start_private_mode(env_stack_t &vars) {
private_mode = true;
vars.set_one(L"fish_history", ENV_GLOBAL, L"");
vars.set_one(L"fish_private_mode", ENV_GLOBAL, L"1");
}
bool in_private_mode() { return private_mode; }