fish-shell/src/tinyexpr.cpp
2022-10-26 19:58:40 -07:00

579 lines
18 KiB
C++

/*
* TINYEXPR - Tiny recursive descent parser and evaluation engine in C
*
* Copyright (c) 2015, 2016 Lewis Van Winkle
*
* http://CodePlea.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgement in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
// This version has been altered and ported to C++ for inclusion in fish.
#include "config.h"
#include "tinyexpr.h"
#include <ctype.h>
#include <limits.h>
#include <algorithm>
#include <cmath>
#include <cwchar>
#include <iterator>
#include <limits>
#include <vector>
#include "common.h"
#include "fallback.h" // IWYU pragma: keep
#include "wutil.h"
struct te_fun_t {
using fn_va = double (*)(const std::vector<double> &);
using fn_2 = double (*)(double, double);
using fn_1 = double (*)(double);
using fn_0 = double (*)();
constexpr te_fun_t(double val) : type_{CONSTANT}, arity_{0}, value{val} {}
constexpr te_fun_t(fn_0 fn) : type_{FN_FIXED}, arity_{0}, fun0{fn} {}
constexpr te_fun_t(fn_1 fn) : type_{FN_FIXED}, arity_{1}, fun1{fn} {}
constexpr te_fun_t(fn_2 fn) : type_{FN_FIXED}, arity_{2}, fun2{fn} {}
constexpr te_fun_t(fn_va fn) : type_{FN_VARIADIC}, arity_{-1}, fun_va{fn} {}
bool operator==(fn_2 fn) const { return arity_ == 2 && fun2 == fn; }
__warn_unused int arity() const { return arity_; }
double operator()() const {
assert(arity_ == 0);
return type_ == CONSTANT ? value : fun0();
}
double operator()(double a, double b) const {
assert(arity_ == 2);
return fun2(a, b);
}
double operator()(const std::vector<double> &args) const {
if (type_ == FN_VARIADIC) return fun_va(args);
if (arity_ != static_cast<int>(args.size())) return NAN;
switch (arity_) {
case 0:
return type_ == CONSTANT ? value : fun0();
case 1:
return fun1(args[0]);
case 2:
return fun2(args[0], args[1]);
}
return NAN;
}
private:
enum {
CONSTANT,
FN_FIXED,
FN_VARIADIC,
} type_;
int arity_;
union {
double value;
fn_0 fun0;
fn_1 fun1;
fn_2 fun2;
fn_va fun_va;
};
};
enum te_state_type_t {
TOK_NULL,
TOK_ERROR,
TOK_END,
TOK_SEP,
TOK_OPEN,
TOK_CLOSE,
TOK_NUMBER,
TOK_FUNCTION,
TOK_INFIX
};
struct state {
explicit state(const wchar_t *expr) : start_{expr}, next_{expr} { next_token(); }
double eval() { return expr(); }
__warn_unused te_error_t error() const {
if (type_ == TOK_END) return {TE_ERROR_NONE, 0, 0};
// If we have an error position set, use that,
// otherwise the current position.
const wchar_t *tok = errpos_ ? errpos_ : next_;
te_error_t err{error_, static_cast<int>(tok - start_) + 1, errlen_};
if (error_ == TE_ERROR_NONE) {
// If we're not at the end but there's no error, then that means we have a
// superfluous token that we have no idea what to do with.
err.type = TE_ERROR_TOO_MANY_ARGS;
}
return err;
}
private:
te_state_type_t type_{TOK_NULL};
te_error_type_t error_{TE_ERROR_NONE};
const wchar_t *start_;
const wchar_t *next_;
const wchar_t *errpos_{nullptr};
int errlen_{0};
te_fun_t current_{NAN};
void next_token();
double expr();
double power();
double base();
double factor();
double term();
};
static double fac(double a) { /* simplest version of fac */
if (a < 0.0) return NAN;
if (a > UINT_MAX) return INFINITY;
auto ua = static_cast<unsigned int>(a);
unsigned long int result = 1, i;
for (i = 1; i <= ua; i++) {
if (i > ULONG_MAX / result) return INFINITY;
result *= i;
}
return static_cast<double>(result);
}
static double ncr(double n, double r) {
// Doing this for NAN takes ages - just return the result right away.
if (std::isnan(n)) return INFINITY;
if (n < 0.0 || r < 0.0 || n < r) return NAN;
if (n > UINT_MAX || r > UINT_MAX) return INFINITY;
unsigned long int un = static_cast<unsigned int>(n), ur = static_cast<unsigned int>(r), i;
unsigned long int result = 1;
if (ur > un / 2) ur = un - ur;
for (i = 1; i <= ur; i++) {
if (result > ULONG_MAX / (un - ur + i)) return INFINITY;
result *= un - ur + i;
result /= i;
}
return result;
}
static double npr(double n, double r) { return ncr(n, r) * fac(r); }
static constexpr double bit_and(double a, double b) {
return static_cast<double>(static_cast<long long>(a) & static_cast<long long>(b));
}
static constexpr double bit_or(double a, double b) {
return static_cast<double>(static_cast<long long>(a) | static_cast<long long>(b));
}
static constexpr double bit_xor(double a, double b) {
return static_cast<double>(static_cast<long long>(a) ^ static_cast<long long>(b));
}
static double max(double a, double b) {
if (std::isnan(a)) return a;
if (std::isnan(b)) return b;
if (a == b) return std::signbit(a) ? b : a; // treat +0 as larger than -0
return a > b ? a : b;
}
static double min(double a, double b) {
if (std::isnan(a)) return a;
if (std::isnan(b)) return b;
if (a == b) return std::signbit(a) ? a : b; // treat -0 as smaller than +0
return a < b ? a : b;
}
static double maximum(const std::vector<double> &args) {
double ret = -std::numeric_limits<double>::infinity();
for (auto a : args) ret = max(ret, a);
return ret;
}
static double minimum(const std::vector<double> &args) {
double ret = std::numeric_limits<double>::infinity();
for (auto a : args) ret = min(ret, a);
return ret;
}
struct te_builtin {
const wchar_t *name;
te_fun_t fn;
};
static constexpr te_builtin functions[] = {
/* must be in alphabetical order */
// clang-format off
{L"abs", std::fabs},
{L"acos", std::acos},
{L"asin", std::asin},
{L"atan", std::atan},
{L"atan2", std::atan2},
{L"bitand", bit_and},
{L"bitor", bit_or},
{L"bitxor", bit_xor},
{L"ceil", std::ceil},
{L"cos", std::cos},
{L"cosh", std::cosh},
{L"e", M_E},
{L"exp", std::exp},
{L"fac", fac},
{L"floor", std::floor},
{L"ln", std::log},
{L"log", std::log10},
{L"log10", std::log10},
{L"log2", std::log2},
{L"max", maximum},
{L"min", minimum},
{L"ncr", ncr},
{L"npr", npr},
{L"pi", M_PI},
{L"pow", std::pow},
{L"round", std::round},
{L"sin", std::sin},
{L"sinh", std::sinh},
{L"sqrt", std::sqrt},
{L"tan", std::tan},
{L"tanh", std::tanh},
{L"tau", 2 * M_PI},
// clang-format on
};
ASSERT_SORTED_BY_NAME(functions);
static const te_builtin *find_builtin(const wchar_t *name, int len) {
const auto end = std::end(functions);
const te_builtin *found = std::lower_bound(std::begin(functions), end, name,
[len](const te_builtin &lhs, const wchar_t *rhs) {
// The length is important because that's where
// the parens start
return std::wcsncmp(lhs.name, rhs, len) < 0;
});
// We need to compare again because we might have gotten the first "larger" element.
if (found != end && std::wcsncmp(found->name, name, len) == 0 && found->name[len] == 0)
return found;
return nullptr;
}
static constexpr double add(double a, double b) { return a + b; }
static constexpr double sub(double a, double b) { return a - b; }
static constexpr double mul(double a, double b) { return a * b; }
static constexpr double divide(double a, double b) {
// If b isn't zero, divide.
// If a isn't zero, return signed INFINITY.
// Else, return NAN.
return b ? a / b : a ? copysign(1, a) * copysign(1, b) * INFINITY : NAN;
}
void state::next_token() {
type_ = TOK_NULL;
do {
if (!*next_) {
type_ = TOK_END;
return;
}
/* Try reading a number. */
if ((next_[0] >= '0' && next_[0] <= '9') || next_[0] == '.') {
current_ = fish_wcstod_underscores(next_, const_cast<wchar_t **>(&next_));
type_ = TOK_NUMBER;
} else {
/* Look for a function call. */
// But not when it's an "x" followed by whitespace
// - that's the alternative multiplication operator.
if (next_[0] >= 'a' && next_[0] <= 'z' && !(next_[0] == 'x' && isspace(next_[1]))) {
const wchar_t *start = next_;
while ((next_[0] >= 'a' && next_[0] <= 'z') ||
(next_[0] >= '0' && next_[0] <= '9') || (next_[0] == '_'))
next_++;
const te_builtin *var = find_builtin(start, next_ - start);
if (var) {
type_ = TOK_FUNCTION;
current_ = var->fn;
} else if (type_ != TOK_ERROR || error_ == TE_ERROR_UNKNOWN) {
// Our error is more specific, so it takes precedence.
type_ = TOK_ERROR;
error_ = TE_ERROR_UNKNOWN_FUNCTION;
errpos_ = start + 1;
errlen_ = next_ - start;
}
} else {
/* Look for an operator or special character. */
switch (next_++[0]) {
case '+':
type_ = TOK_INFIX;
current_ = add;
break;
case '-':
type_ = TOK_INFIX;
current_ = sub;
break;
case 'x':
case '*':
// We've already checked for whitespace above.
type_ = TOK_INFIX;
current_ = mul;
break;
case '/':
type_ = TOK_INFIX;
current_ = divide;
break;
case '^':
type_ = TOK_INFIX;
current_ = pow;
break;
case '%':
type_ = TOK_INFIX;
current_ = fmod;
break;
case '(':
type_ = TOK_OPEN;
break;
case ')':
type_ = TOK_CLOSE;
break;
case ',':
type_ = TOK_SEP;
break;
case ' ':
case '\t':
case '\n':
case '\r':
break;
case '=':
case '>':
case '<':
case '&':
case '|':
case '!':
type_ = TOK_ERROR;
error_ = TE_ERROR_LOGICAL_OPERATOR;
break;
default:
type_ = TOK_ERROR;
error_ = TE_ERROR_MISSING_OPERATOR;
break;
}
}
}
} while (type_ == TOK_NULL);
}
double state::base() {
/* <base> = <constant> | <function-0> {"(" ")"} | <function-1> <power> |
* <function-X> "(" <expr> {"," <expr>} ")" | "(" <list> ")" */
auto next = next_;
switch (type_) {
case TOK_NUMBER: {
auto val = current_();
next_token();
if (type_ == TOK_NUMBER || type_ == TOK_FUNCTION) {
// Two numbers after each other:
// math '5 2'
// math '3 pi'
// (of course 3 pi could also be interpreted as 3 x pi)
type_ = TOK_ERROR;
error_ = TE_ERROR_MISSING_OPERATOR;
// The error should be given *between*
// the last two tokens.
errpos_ = next + 1;
// Go to the end of whitespace and then one more.
while (wcschr(L" \t\n\r", next[0])) {
next++;
}
next++;
errlen_ = next - errpos_;
}
return val;
}
case TOK_FUNCTION: {
auto fn = current_;
int arity = fn.arity();
next_token();
const bool have_open = type_ == TOK_OPEN;
if (have_open) {
// If we *have* an opening parenthesis,
// we need to consume it and
// expect a closing one.
next_token();
}
if (arity == 0) {
if (have_open) {
if (type_ == TOK_CLOSE) {
next_token();
} else if (type_ != TOK_ERROR || error_ == TE_ERROR_UNKNOWN) {
type_ = TOK_ERROR;
error_ = TE_ERROR_MISSING_CLOSING_PAREN;
break;
}
}
return fn();
}
std::vector<double> parameters;
int i;
const wchar_t *first_err = nullptr;
for (i = 0;; i++) {
if (i == arity) first_err = next_;
parameters.push_back(expr());
if (type_ != TOK_SEP) {
break;
}
next_token();
}
if (arity < 0 || i == arity - 1) {
if (!have_open) {
return fn(parameters);
}
if (type_ == TOK_CLOSE) {
// We have an opening and a closing paren, consume the closing one and done.
next_token();
return fn(parameters);
}
if (type_ != TOK_ERROR) {
// If we had the right number of arguments, we're missing a closing paren.
error_ = TE_ERROR_MISSING_CLOSING_PAREN;
type_ = TOK_ERROR;
}
}
if (type_ != TOK_ERROR || error_ == TE_ERROR_UNEXPECTED_TOKEN) {
// Otherwise we complain about the number of arguments *first*,
// a closing parenthesis should be more obvious.
//
// Vararg functions need at least one argument.
error_ = (i < arity || (arity == -1 && i == 0)) ? TE_ERROR_TOO_FEW_ARGS
: TE_ERROR_TOO_MANY_ARGS;
type_ = TOK_ERROR;
if (first_err) {
errpos_ = first_err;
errlen_ = next_ - first_err;
// TODO: Rationalize where we put the cursor exactly.
// If we have a closing paren it's on it, if we don't it's before the number.
if (type_ != TOK_CLOSE) errlen_++;
}
}
break;
}
case TOK_OPEN: {
next_token();
auto ret = expr();
if (type_ == TOK_CLOSE) {
next_token();
return ret;
}
if (type_ != TOK_ERROR && type_ != TOK_END && error_ == TE_ERROR_NONE) {
type_ = TOK_ERROR;
error_ = TE_ERROR_TOO_MANY_ARGS;
} else if (type_ != TOK_ERROR || error_ == TE_ERROR_UNKNOWN) {
type_ = TOK_ERROR;
error_ = TE_ERROR_MISSING_CLOSING_PAREN;
}
break;
}
case TOK_END:
// The expression ended before we expected it.
// e.g. `2 - `.
// This means we have too few things.
// Instead of introducing another error, just call it
// "too few args".
type_ = TOK_ERROR;
error_ = TE_ERROR_TOO_FEW_ARGS;
break;
default:
if (type_ != TOK_ERROR || error_ == TE_ERROR_UNKNOWN) {
type_ = TOK_ERROR;
error_ = TE_ERROR_UNEXPECTED_TOKEN;
}
break;
}
return NAN;
}
double state::power() {
/* <power> = {("-" | "+")} <base> */
int sign = 1;
while (type_ == TOK_INFIX && (current_ == add || current_ == sub)) {
if (current_ == sub) sign = -sign;
next_token();
}
return sign * base();
}
double state::factor() {
/* <factor> = <power> {"^" <power>} */
auto ret = power();
if (type_ == TOK_INFIX && current_ == pow) {
next_token();
ret = pow(ret, factor());
}
return ret;
}
double state::term() {
/* <term> = <factor> {("*" | "/" | "%") <factor>} */
auto ret = factor();
while (type_ == TOK_INFIX && (current_ == mul || current_ == divide || current_ == fmod)) {
auto fn = current_;
auto tok = next_;
next_token();
auto ret2 = factor();
if (ret2 == 0 && (fn == divide || fn == fmod)) {
// Division by zero (also for modulo)
type_ = TOK_ERROR;
error_ = TE_ERROR_DIV_BY_ZERO;
// Error position is the "/" or "%" sign for now
errpos_ = tok;
errlen_ = 1;
}
ret = fn(ret, ret2);
}
return ret;
}
double state::expr() {
/* <expr> = <term> {("+" | "-") <term>} */
auto ret = term();
while (type_ == TOK_INFIX && (current_ == add || current_ == sub)) {
auto fn = current_;
next_token();
ret = fn(ret, term());
}
return ret;
}
double te_interp(const wchar_t *expression, te_error_t *error) {
state s{expression};
double ret = s.eval();
if (error) *error = s.error();
return ret;
}