fish-shell/io.cpp
ridiculousfish 7864d0d416 Rework file descriptor handling
Remove global array of file descriptors, in
favor of relying on CLO_EXEC exclusively.
Also correctly implement "pipe avoidance" so
that fd redirections do not conflict
with pipes.
2015-01-07 18:07:06 -08:00

352 lines
8.3 KiB
C++

/** \file io.c
Utilities for io redirection.
*/
#include "config.h"
#include <stdlib.h>
#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <set>
#include <algorithm>
#ifdef HAVE_SYS_IOCTL_H
#include <sys/ioctl.h>
#endif
#include <unistd.h>
#include <fcntl.h>
#if HAVE_NCURSES_H
#include <ncurses.h>
#elif HAVE_NCURSES_CURSES_H
#include <ncurses/curses.h>
#else
#include <curses.h>
#endif
#if HAVE_TERM_H
#include <term.h>
#elif HAVE_NCURSES_TERM_H
#include <ncurses/term.h>
#endif
#include "fallback.h"
#include "util.h"
#include "wutil.h"
#include "exec.h"
#include "common.h"
#include "io.h"
io_data_t::~io_data_t()
{
}
void io_close_t::print() const
{
fprintf(stderr, "close %d\n", fd);
}
void io_fd_t::print() const
{
fprintf(stderr, "FD map %d -> %d\n", old_fd, fd);
}
void io_file_t::print() const
{
fprintf(stderr, "file (%s)\n", filename_cstr);
}
void io_pipe_t::print() const
{
fprintf(stderr, "pipe {%d, %d} (input: %s)\n", pipe_fd[0], pipe_fd[1],
is_input ? "yes" : "no");
}
void io_buffer_t::print() const
{
fprintf(stderr, "buffer %p (input: %s, size %lu)\n", out_buffer_ptr(),
is_input ? "yes" : "no", (unsigned long) out_buffer_size());
}
void io_buffer_t::read()
{
exec_close(pipe_fd[1]);
if (io_mode == IO_BUFFER)
{
/* if( fcntl( pipe_fd[0], F_SETFL, 0 ) )
{
wperror( L"fcntl" );
return;
} */
debug(4, L"io_buffer_t::read: blocking read on fd %d", pipe_fd[0]);
while (1)
{
char b[4096];
long l;
l=read_blocked(pipe_fd[0], b, 4096);
if (l==0)
{
break;
}
else if (l<0)
{
/*
exec_read_io_buffer is only called on jobs that have
exited, and will therefore never block. But a broken
pipe seems to cause some flags to reset, causing the
EOF flag to not be set. Therefore, EAGAIN is ignored
and we exit anyway.
*/
if (errno != EAGAIN)
{
debug(1,
_(L"An error occured while reading output from code block on file descriptor %d"),
pipe_fd[0]);
wperror(L"io_buffer_t::read");
}
break;
}
else
{
out_buffer_append(b, l);
}
}
}
}
bool io_buffer_t::avoid_conflicts_with_io_chain(const io_chain_t &ios)
{
bool result = pipe_avoid_conflicts_with_io_chain(this->pipe_fd, ios);
if (! result)
{
wperror(L"dup");
}
return result;
}
io_buffer_t *io_buffer_t::create(int fd, const io_chain_t &conflicts)
{
bool success = true;
assert(fd >= 0);
io_buffer_t *buffer_redirect = new io_buffer_t(fd);
if (exec_pipe(buffer_redirect->pipe_fd) == -1)
{
debug(1, PIPE_ERROR);
wperror(L"pipe");
success = false;
}
else if (! buffer_redirect->avoid_conflicts_with_io_chain(conflicts))
{
// The above call closes the fds on error
success = false;
}
else if (make_fd_nonblocking(buffer_redirect->pipe_fd[0]) != 0)
{
debug(1, PIPE_ERROR);
wperror(L"fcntl");
success = false;
}
if (! success)
{
delete buffer_redirect;
buffer_redirect = NULL;
}
return buffer_redirect;
}
io_buffer_t::~io_buffer_t()
{
if (pipe_fd[0] >= 0)
{
exec_close(pipe_fd[0]);
}
/*
Dont free fd for writing. This should already be free'd before
calling exec_read_io_buffer on the buffer
*/
}
void io_chain_t::remove(const shared_ptr<const io_data_t> &element)
{
// See if you can guess why std::find doesn't work here
for (io_chain_t::iterator iter = this->begin(); iter != this->end(); ++iter)
{
if (*iter == element)
{
this->erase(iter);
break;
}
}
}
void io_chain_t::push_back(const shared_ptr<io_data_t> &element)
{
// Ensure we never push back NULL
assert(element.get() != NULL);
std::vector<shared_ptr<io_data_t> >::push_back(element);
}
void io_chain_t::push_front(const shared_ptr<io_data_t> &element)
{
assert(element.get() != NULL);
this->insert(this->begin(), element);
}
void io_chain_t::append(const io_chain_t &chain)
{
this->insert(this->end(), chain.begin(), chain.end());
}
void io_print(const io_chain_t &chain)
{
if (chain.empty())
{
fprintf(stderr, "Empty chain %p\n", &chain);
return;
}
fprintf(stderr, "Chain %p (%ld items):\n", &chain, (long)chain.size());
for (size_t i=0; i < chain.size(); i++)
{
const shared_ptr<const io_data_t> &io = chain.at(i);
if (io.get() == NULL)
{
fprintf(stderr, "\t(null)\n");
}
else
{
fprintf(stderr, "\t%lu: fd:%d, ", (unsigned long)i, io->fd);
io->print();
}
}
}
/* If the given fd is used by the io chain, duplicates it repeatedly until an fd not used in the io chain is found, or we run out. If we return a new fd or an error, closes the old one. Any fd created is marked close-on-exec. Returns -1 on failure (in which case the given fd is still closed). */
static int move_fd_to_unused(int fd, const io_chain_t &io_chain)
{
int new_fd = fd;
if (fd >= 0 && io_chain.get_io_for_fd(fd).get() != NULL)
{
/* We have fd >= 0, and it's a conflict. dup it and recurse. Note that we recurse before anything is closed; this forces the kernel to give us a new one (or report fd exhaustion). */
int tmp_fd;
do
{
tmp_fd = dup(fd);
} while (tmp_fd < 0 && errno == EINTR);
assert(tmp_fd != fd);
if (tmp_fd < 0)
{
/* Likely fd exhaustion. */
new_fd = -1;
}
else
{
/* Ok, we have a new candidate fd. Recurse. If we get a valid fd, either it's the same as what we gave it, or it's a new fd and what we gave it has been closed. If we get a negative value, the fd also has been closed. */
set_cloexec(tmp_fd);
new_fd = move_fd_to_unused(tmp_fd, io_chain);
}
/* We're either returning a new fd or an error. In both cases, we promise to close the old one. */
assert(new_fd != fd);
int saved_errno = errno;
exec_close(fd);
errno = saved_errno;
}
return new_fd;
}
bool pipe_avoid_conflicts_with_io_chain(int fds[2], const io_chain_t &ios)
{
bool success = true;
for (int i=0; i < 2; i++)
{
fds[i] = move_fd_to_unused(fds[i], ios);
if (fds[i] < 0)
{
success = false;
break;
}
}
/* If any fd failed, close all valid fds */
if (! success)
{
int saved_errno = errno;
for (int i=0; i < 2; i++)
{
if (fds[i] >= 0)
{
exec_close(fds[i]);
fds[i] = -1;
}
}
errno = saved_errno;
}
return success;
}
/* Return the last IO for the given fd */
shared_ptr<const io_data_t> io_chain_t::get_io_for_fd(int fd) const
{
size_t idx = this->size();
while (idx--)
{
const shared_ptr<const io_data_t> &data = this->at(idx);
if (data->fd == fd)
{
return data;
}
}
return shared_ptr<const io_data_t>();
}
shared_ptr<io_data_t> io_chain_t::get_io_for_fd(int fd)
{
size_t idx = this->size();
while (idx--)
{
const shared_ptr<io_data_t> &data = this->at(idx);
if (data->fd == fd)
{
return data;
}
}
return shared_ptr<io_data_t>();
}
/* The old function returned the last match, so we mimic that. */
shared_ptr<const io_data_t> io_chain_get(const io_chain_t &src, int fd)
{
return src.get_io_for_fd(fd);
}
shared_ptr<io_data_t> io_chain_get(io_chain_t &src, int fd)
{
return src.get_io_for_fd(fd);
}
io_chain_t::io_chain_t(const shared_ptr<io_data_t> &data) :
std::vector<shared_ptr<io_data_t> >(1, data)
{
}
io_chain_t::io_chain_t() : std::vector<shared_ptr<io_data_t> >()
{
}