fish-shell/postfork.cpp

369 lines
7.7 KiB
C++

/** \file postfork.cpp
Functions that we may safely call after fork().
*/
#include <fcntl.h>
#include "signal.h"
#include "postfork.h"
#include "iothread.h"
#include "exec.h"
/** The number of times to try to call fork() before giving up */
#define FORK_LAPS 5
/** The number of nanoseconds to sleep between attempts to call fork() */
#define FORK_SLEEP_TIME 1000000
/** Base open mode to pass to calls to open */
#define OPEN_MASK 0666
/** fork error message */
#define FORK_ERROR "Could not create child process - exiting"
/** file redirection clobbering error message */
#define NOCLOB_ERROR "The file '%s' already exists"
/** file redirection error message */
#define FILE_ERROR "An error occurred while redirecting file '%s'"
/** file descriptor redirection error message */
#define FD_ERROR "An error occurred while redirecting file descriptor %s"
/** pipe error */
#define LOCAL_PIPE_ERROR "An error occurred while setting up pipe"
/* Cover for debug_safe that can take an int. The format string should expect a %s */
static void debug_safe_int(int level, const char *format, int val)
{
char buff[128];
format_long_safe(buff, val);
debug_safe(level, format, buff);
}
// PCA These calls to debug are rather sketchy because they may allocate memory. Fortunately they only occur if an error occurs.
int set_child_group( job_t *j, process_t *p, int print_errors )
{
int res = 0;
if( job_get_flag( j, JOB_CONTROL ) )
{
if (!j->pgid)
{
j->pgid = p->pid;
}
if( setpgid (p->pid, j->pgid) )
{
if( getpgid( p->pid) != j->pgid && print_errors )
{
char pid_buff[128];
char job_id_buff[128];
char getpgid_buff[128];
char job_pgid_buff[128];
format_long_safe(pid_buff, p->pid);
format_long_safe(job_id_buff, j->job_id);
format_long_safe(getpgid_buff, getpgid( p->pid));
format_long_safe(job_pgid_buff, j->pgid);
debug_safe( 1,
"Could not send process %s, '%s' in job %s, '%s' from group %s to group %s",
pid_buff,
p->argv0_cstr(),
job_id_buff,
j->command_cstr(),
getpgid_buff,
job_pgid_buff );
wperror( L"setpgid" );
res = -1;
}
}
}
else
{
j->pgid = getpid();
}
if( job_get_flag( j, JOB_TERMINAL ) && job_get_flag( j, JOB_FOREGROUND ) )
{
if( tcsetpgrp (0, j->pgid) && print_errors )
{
char job_id_buff[128];
format_long_safe(job_id_buff, j->job_id);
debug_safe( 1, "Could not send job %s ('%s') to foreground", job_id_buff, j->command_cstr() );
wperror( L"tcsetpgrp" );
res = -1;
}
}
return res;
}
/** Make sure the fd used by this redirection is not used by i.e. a pipe. */
static void free_fd( io_data_t *io, int fd )
{
if( !io )
return;
if( ( io->io_mode == IO_PIPE ) || ( io->io_mode == IO_BUFFER ) )
{
int i;
for( i=0; i<2; i++ )
{
if(io->param1.pipe_fd[i] == fd )
{
while(1)
{
if( (io->param1.pipe_fd[i] = dup(fd)) == -1)
{
if( errno != EINTR )
{
debug_safe_int( 1, FD_ERROR, fd );
wperror( L"dup" );
FATAL_EXIT();
}
}
else
{
break;
}
}
}
}
}
free_fd( io->next, fd );
}
/**
Set up a childs io redirections. Should only be called by
setup_child_process(). Does the following: First it closes any open
file descriptors not related to the child by calling
close_unused_internal_pipes() and closing the universal variable
server file descriptor. It then goes on to perform all the
redirections described by \c io.
\param io the list of IO redirections for the child
\return 0 on sucess, -1 on failiure
*/
static int handle_child_io( io_data_t *io )
{
close_unused_internal_pipes( io );
for( ; io; io=io->next )
{
int tmp;
if( io->io_mode == IO_FD && io->fd == io->param1.old_fd )
{
continue;
}
if( io->fd > 2 )
{
/*
Make sure the fd used by this redirection is not used by e.g. a pipe.
*/
free_fd( io, io->fd );
}
switch( io->io_mode )
{
case IO_CLOSE:
{
if( close(io->fd) )
{
debug_safe_int( 0, "Failed to close file descriptor %s", io->fd );
wperror( L"close" );
}
break;
}
case IO_FILE:
{
// Here we definitely do not want to set CLO_EXEC because our child needs access
if( (tmp=open( io->filename_cstr,
io->param2.flags, OPEN_MASK ) )==-1 )
{
if( ( io->param2.flags & O_EXCL ) &&
( errno ==EEXIST ) )
{
debug_safe( 1, NOCLOB_ERROR, io->filename_cstr );
}
else
{
debug_safe( 1, FILE_ERROR, io->filename_cstr );
perror( "open" );
}
return -1;
}
else if( tmp != io->fd)
{
/*
This call will sometimes fail, but that is ok,
this is just a precausion.
*/
close(io->fd);
if(dup2( tmp, io->fd ) == -1 )
{
debug_safe_int( 1, FD_ERROR, io->fd );
perror( "dup2" );
return -1;
}
exec_close( tmp );
}
break;
}
case IO_FD:
{
/*
This call will sometimes fail, but that is ok,
this is just a precausion.
*/
close(io->fd);
if( dup2( io->param1.old_fd, io->fd ) == -1 )
{
debug_safe_int( 1, FD_ERROR, io->fd );
wperror( L"dup2" );
return -1;
}
break;
}
case IO_BUFFER:
case IO_PIPE:
{
int write_pipe;
write_pipe = !io->is_input;
/*
debug( 0,
L"%ls %ls on fd %d (%d %d)",
write_pipe?L"write":L"read",
(io->io_mode == IO_BUFFER)?L"buffer":L"pipe",
io->fd,
io->param1.pipe_fd[0],
io->param1.pipe_fd[1]);
*/
if( dup2( io->param1.pipe_fd[write_pipe], io->fd ) != io->fd )
{
debug_safe( 1, LOCAL_PIPE_ERROR );
perror( "dup2" );
return -1;
}
if( write_pipe )
{
exec_close( io->param1.pipe_fd[0]);
exec_close( io->param1.pipe_fd[1]);
}
else
{
exec_close( io->param1.pipe_fd[0] );
}
break;
}
}
}
return 0;
}
int setup_child_process( job_t *j, process_t *p )
{
bool ok=true;
if( p )
{
ok = (0 == set_child_group( j, p, 1 ));
}
if( ok )
{
ok = (0 == handle_child_io( j->io ));
if( p != 0 && ! ok )
{
exit_without_destructors( 1 );
}
}
/* Set the handling for job control signals back to the default. */
if( ok )
{
signal_reset_handlers();
}
/* Remove all signal blocks */
signal_unblock();
return ok ? 0 : -1;
}
int g_fork_count = 0;
/**
This function is a wrapper around fork. If the fork calls fails
with EAGAIN, it is retried FORK_LAPS times, with a very slight
delay between each lap. If fork fails even then, the process will
exit with an error message.
*/
pid_t execute_fork(bool wait_for_threads_to_die)
{
ASSERT_IS_MAIN_THREAD();
if (wait_for_threads_to_die) {
/* Make sure we have no outstanding threads before we fork. This is a pretty sketchy thing to do here, both because exec.cpp shouldn't have to know about iothreads, and because the completion handlers may do unexpected things. */
iothread_drain_all();
}
pid_t pid;
struct timespec pollint;
int i;
g_fork_count++;
for( i=0; i<FORK_LAPS; i++ )
{
pid = fork();
if( pid >= 0)
{
return pid;
}
if( errno != EAGAIN )
{
break;
}
pollint.tv_sec = 0;
pollint.tv_nsec = FORK_SLEEP_TIME;
/*
Don't sleep on the final lap - sleeping might change the
value of errno, which will break the error reporting below.
*/
if( i != FORK_LAPS-1 )
{
nanosleep( &pollint, NULL );
}
}
debug_safe( 0, FORK_ERROR );
wperror (L"fork");
FATAL_EXIT();
return 0;
}