fish-shell/util.h
axel 0fa3c15114 Tweaks to some source comments
darcs-hash:20060205131253-ac50b-c3ad91b280a73fc8ec318ca6c285de773ffecfc6.gz
2006-02-05 23:12:53 +10:00

563 lines
12 KiB
C

/** \file util.h
Generic utilities library.
*/
#ifndef FISH_UTIL_H
#define FISH_UTIL_H
#include <wchar.h>
#include <stdarg.h>
#include <unistd.h>
/**
Data structure for an automatically resizing dynamically allocated queue,
*/
typedef struct dyn_queue
{
/** Start of the array */
void **start;
/** End of the array*/
void **stop;
/** Where to insert elements */
void **put_pos;
/** Where to remove elements */
void **get_pos;
}
dyn_queue_t;
/**
Internal struct used by hash_table_t.
*/
typedef struct
{
/** Hash key*/
const void *key;
/** Value */
const void *data;
}
hash_struct_t;
/**
Data structure for the hash table implementaion. A hash table allows for
retrieval and removal of any element in O(1), so long as a proper
hash function is supplied.
The hash table is implemented using a single hash function and
element storage directly in the array. When a collision occurs, the
hashtable iterates until a zero element is found. When the table is
75% full, it will automatically reallocate itself. This
reallocation takes O(n) time. The table is guaranteed to never be
more than 75% full or less than 30% full (Unless the table is
nearly empty). Its size is always a Mersenne number.
*/
typedef struct hash_table
{
/** The array containing the data */
hash_struct_t *arr;
/** Number of elements */
int count;
/** Length of array */
int size;
/** Hash function */
int (*hash_func)( const void *key );
/** Comparison function */
int (*compare_func)( const void *key1, const void *key2 );
}
hash_table_t;
/**
Data structure for an automatically resizing dynamically allocated
priority queue. A priority queue allows quick retrieval of the
smallest element of a set (This implementation uses O(log n) time).
This implementation uses a heap for storing the queue.
*/
typedef struct priority_queue
{
/** Array contining the data */
void **arr;
/** Number of elements*/
int count;
/** Length of array */
int size;
/** Comparison function */
int (*compare)(void *e1, void *e2);
}
priority_queue_t;
/**
Array list struct.
A dynamically growing list that supports stack operations.
*/
typedef struct array_list
{
/** Array containing the data */
const void **arr;
/** Position to append elements at*/
int pos;
/** Length of array */
int size;
}
array_list_t;
/**
Linked list node.
*/
typedef struct _ll_node
{
/** Next node */
struct _ll_node *next, /** Previous node */ *prev;
/** Node data */
void *data;
}
ll_node_t;
/**
Buffer for concatenating arbitrary data.
*/
typedef struct buffer
{
char *buff; /**<data buffer*/
size_t length; /**< Size of buffer */
size_t used; /**< Size of data in buffer */
}
buffer_t;
/**
String buffer struct. An autoallocating buffer used for
concatenating strings. This is really just a buffer_t.
*/
typedef buffer_t string_buffer_t;
/**
Returns the larger of two ints
*/
int maxi( int a, int b );
/**
Returns the smaller of two ints
*/
int mini( int a, int b );
/**
Returns the larger of two floats
*/
float maxf( float a, float b );
/**
Returns the smaller of two floats
*/
float minf( float a, float b );
/*
All the datastuctures below autoresize. The queue, stack and
priority queue are all impemented using an array and are guaranteed
to never be less than 50% full.
*/
/**
Initialize the queue. A queue is a FIFO buffer, i.e. the first
element to be inserted into the buffer is the first element to be
returned.
*/
void q_init( dyn_queue_t *q );
/**
Destroy the queue
*/
void q_destroy( dyn_queue_t *q );
/**
Insert element into queue
*/
int q_put( dyn_queue_t *q, void *e );
/**
Remove and return next element from queue
*/
void *q_get( dyn_queue_t *q);
/**
Return next element from queue without removing it
*/
void *q_peek( dyn_queue_t *q);
/**
Returns 1 if the queue is empty, 0 otherwise
*/
int q_empty( dyn_queue_t *q );
/**
Initialize a hash table. The hash function must never return the value 0.
*/
void hash_init( hash_table_t *h,
int (*hash_func)(const void *key),
int (*compare_func)(const void *key1, const void *key2) );
/**
Initialize a hash table. The hash function must never return the value 0.
*/
void hash_init2( hash_table_t *h,
int (*hash_func)(const void *key),
int (*compare_func)(const void *key1, const void *key2),
size_t capacity);
/**
Destroy the hash table and free associated memory.
*/
void hash_destroy( hash_table_t *h );
/**
Set the key/value pair for the hashtable.
*/
int hash_put( hash_table_t *h,
const void *key,
const void *data );
/**
Returns the data with the associated key, or 0 if no such key is in the hashtable
*/
const void *hash_get( hash_table_t *h,
const void *key );
/**
Returns the hash tables version of the specified key
*/
const void *hash_get_key( hash_table_t *h,
const void *key );
/**
Returns the number of key/data pairs in the table.
*/
int hash_get_count( hash_table_t *h);
/**
Remove the specified key from the hash table if it exists. Do nothing if it does not exist.
\param h The hashtable
\param key The key
\param old_key If not 0, a pointer to the old key will be stored at the specified address
\param old_data If not 0, a pointer to the data will be stored at the specified address
*/
void hash_remove( hash_table_t *h,
const void *key,
const void **old_key,
const void **old_data );
/**
Checks whether the specified key is in the hash table
*/
int hash_contains( hash_table_t *h,
const void *key );
/**
Appends all keys in the table to the specified list
*/
void hash_get_keys( hash_table_t *h,
array_list_t *arr );
/**
Appends all data elements in the table to the specified list
*/
void hash_get_data( hash_table_t *h,
array_list_t *arr );
/**
Call the function func for each key/data pair in the table
*/
void hash_foreach( hash_table_t *h,
void (*func)( const void *, const void * ) );
/**
Same as hash_foreach, but the function func takes an additional
argument, which is provided by the caller in the variable aux
*/
void hash_foreach2( hash_table_t *h, void (*func)( const void *,
const void *,
void *),
void *aux );
/**
Hash function suitable for character strings.
*/
int hash_str_func( const void *data );
/**
Hash comparison function suitable for character strings
*/
int hash_str_cmp( const void *a,
const void *b );
/**
Hash function suitable for wide character strings.
*/
int hash_wcs_func( const void *data );
/**
Hash comparison function suitable for wide character strings
*/
int hash_wcs_cmp( const void *a,
const void *b );
/**
Hash function suitable for direct pointer comparison
*/
int hash_ptr_func( const void *data );
/**
Hash comparison function suitable for direct pointer comparison
*/
int hash_ptr_cmp( const void *a,
const void *b );
/**
Initialize the priority queue
\param q the queue to initialize
\param compare a comparison function that can compare two entries in the queue
*/
void pq_init( priority_queue_t *q,
int (*compare)(void *e1, void *e2) );
/**
Add element to the queue
\param q the queue
\param e the new element
*/
int pq_put( priority_queue_t *q,
void *e );
/**
Removes and returns the last entry in the priority queue
*/
void *pq_get( priority_queue_t *q );
/**
Returns the last entry in the priority queue witout removing it.
*/
void *pq_peek( priority_queue_t *q );
/**
Returns 1 if the priority queue is empty, 0 otherwise.
*/
int pq_empty( priority_queue_t *q );
/**
Returns the number of elements in the priority queue.
*/
int pq_get_count( priority_queue_t *q );
/**
Destroy the priority queue and free memory used by it.
*/
void pq_destroy( priority_queue_t *q );
/**
Allocate heap memory for creating a new list and initialize it
*/
array_list_t *al_new();
/**
Initialize the list.
*/
void al_init( array_list_t *l );
/**
Destroy the list and free memory used by it.
*/
void al_destroy( array_list_t *l );
/**
Append element to list
\param l The list
\param o The element
\return
\return 1 if succesfull, 0 otherwise
*/
int al_push( array_list_t *l, const void *o );
/**
Append all elements of a list to another
\param a The destination list
\param b The source list
\return 1 if succesfull, 0 otherwise
*/
int al_push_all( array_list_t *a, array_list_t *b );
/**
Sets the element at the specified index
\param l The array_list_t
\param pos The index
\param o The element
*/
int al_set( array_list_t *l, int pos, const void *o );
/**
Returns the element at the specified index
\param l The array_list_t
\param pos The index
\return The element
*/
const void *al_get( array_list_t *l, int pos );
/**
Truncates the list to new_sz items.
*/
void al_truncate( array_list_t *l, int new_sz );
/**
Removes and returns the last entry in the list
*/
const void *al_pop( array_list_t *l );
/**
Returns the number of elements in the list
*/
int al_get_count( array_list_t *l );
/**
Returns the last entry in the list witout removing it.
*/
const void *al_peek( array_list_t *l );
/**
Returns 1 if the list is empty, 0 otherwise
*/
int al_empty( array_list_t *l);
/**
Call the function func for each entry in the list
*/
void al_foreach( array_list_t *l, void (*func)(const void * ));
/**
Same as al_foreach, but the function func takes an additional
argument, which is provided by the caller in the variable aux
*/
void al_foreach2( array_list_t *l, void (*func)(const void *, void *), void *aux);
/**
Compares two wide character strings without case but with
a logical ordering for numbers.
This function tries to order strings in a way which is intuitive to
humans with regards to sorting strings containing numbers.
Most sorting functions would sort the strings 'file1.txt'
'file5.txt' and 'file12.txt' as:
file1.txt
file12.txt
file5.txt
This function regards any sequence of digits as a single entity
when performing comparisons, so the output is instead:
file1.txt
file5.txt
file12.txt
Which most people would find more intuitive.
This won't return the optimum results for numbers in bases higher
than ten, such as hexadecimal, but at least a stable sort order
will result.
*/
int wcsfilecmp( const wchar_t *a, const wchar_t *b );
/*
String buffer functions
*/
/**
Initialize the specified string_buffer
*/
void sb_init( string_buffer_t * );
/**
Allocate memory for storing a stringbuffer and init it
*/
string_buffer_t *sb_new();
/**
Append a string to the buffer
*/
void sb_append( string_buffer_t *, const wchar_t * );
/**
Append a part of a string to the buffer
*/
void sb_append_substring( string_buffer_t *, const wchar_t *, size_t );
/**
Append a character to the buffer
*/
void sb_append_char( string_buffer_t *, wchar_t );
/**
Append a null terminated list of strings to the buffer.
Example:
sb_append2( my_buff, L"foo", L"bar", (void *)0 );
Do not forget to cast the last 0 to (void *), or you might encounter errors on 64-bit platforms!
*/
void sb_append2( string_buffer_t *, ... );
/**
Append formated string data to the buffer. This function internally
relies on \c vswprintf, so any filter options supported by that
function is also supported by this function.
*/
int sb_printf( string_buffer_t *buffer, const wchar_t *format, ... );
/**
Vararg version of sb_printf.
*/
int sb_vprintf( string_buffer_t *buffer, const wchar_t *format, va_list va_orig );
/**
Destroy the buffer and free it's memory
*/
void sb_destroy( string_buffer_t * );
/**
Truncate the buffer. This will not deallocate the memory used, it will only set the contents of the string to L"\0".
*/
void sb_clear( string_buffer_t * );
/*
Buffer functions
*/
/**
Initialize the specified buffer_t
*/
void b_init( buffer_t *b);
/**
Destroy the specified buffer_t
*/
void b_destroy( buffer_t *b );
/**
Add data of the specified length to the specified buffer_t
*/
void b_append( buffer_t *b, const void *d, ssize_t len );
/**
Get the current time in microseconds since Jan 1, 1970
*/
long long get_time();
#endif