mirror of
https://github.com/fish-shell/fish-shell.git
synced 2025-01-20 03:52:47 +08:00
a23441109d
Conflicts: complete.cpp fish_tests.cpp highlight.cpp
2317 lines
59 KiB
C++
2317 lines
59 KiB
C++
/** \file common.c
|
|
|
|
Various functions, mostly string utilities, that are used by most
|
|
parts of fish.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
|
|
#include <unistd.h>
|
|
|
|
#ifdef HAVE_STROPTS_H
|
|
#include <stropts.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_SIGINFO_H
|
|
#include <siginfo.h>
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
#include <termios.h>
|
|
#include <wchar.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <dirent.h>
|
|
#include <sys/types.h>
|
|
|
|
#ifdef HAVE_SYS_IOCTL_H
|
|
#include <sys/ioctl.h>
|
|
#endif
|
|
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
#include <wctype.h>
|
|
#include <errno.h>
|
|
#include <limits.h>
|
|
#include <stdarg.h>
|
|
#include <locale.h>
|
|
#include <time.h>
|
|
#include <sys/time.h>
|
|
#include <fcntl.h>
|
|
#include <algorithm>
|
|
|
|
#ifdef HAVE_EXECINFO_H
|
|
#include <execinfo.h>
|
|
#endif
|
|
|
|
|
|
#if HAVE_NCURSES_H
|
|
#include <ncurses.h>
|
|
#else
|
|
#include <curses.h>
|
|
#endif
|
|
|
|
#if HAVE_TERM_H
|
|
#include <term.h>
|
|
#elif HAVE_NCURSES_TERM_H
|
|
#include <ncurses/term.h>
|
|
#endif
|
|
|
|
#include "fallback.h"
|
|
#include "util.h"
|
|
|
|
#include "wutil.h"
|
|
#include "common.h"
|
|
#include "expand.h"
|
|
#include "proc.h"
|
|
#include "wildcard.h"
|
|
#include "parser.h"
|
|
#include "complete.h"
|
|
|
|
#include "util.cpp"
|
|
#include "fallback.cpp"
|
|
|
|
#define NOT_A_WCHAR WEOF
|
|
|
|
struct termios shell_modes;
|
|
|
|
// Note we foolishly assume that pthread_t is just a primitive. But it might be a struct.
|
|
static pthread_t main_thread_id = 0;
|
|
static bool thread_assertions_configured_for_testing = false;
|
|
|
|
wchar_t ellipsis_char;
|
|
wchar_t omitted_newline_char;
|
|
|
|
char *profile=0;
|
|
|
|
const wchar_t *program_name;
|
|
|
|
int debug_level=1;
|
|
|
|
/**
|
|
This struct should be continually updated by signals as the term resizes, and as such always contain the correct current size.
|
|
*/
|
|
static struct winsize termsize;
|
|
|
|
static char *wcs2str_internal(const wchar_t *in, char *out);
|
|
|
|
void show_stackframe()
|
|
{
|
|
ASSERT_IS_NOT_FORKED_CHILD();
|
|
|
|
/* Hack to avoid showing backtraces in the tester */
|
|
if (program_name && ! wcscmp(program_name, L"(ignore)"))
|
|
return;
|
|
|
|
void *trace[32];
|
|
int i, trace_size = 0;
|
|
|
|
trace_size = backtrace(trace, 32);
|
|
char **messages = backtrace_symbols(trace, trace_size);
|
|
|
|
if (messages)
|
|
{
|
|
debug(0, L"Backtrace:");
|
|
for (i=0; i<trace_size; i++)
|
|
{
|
|
fwprintf(stderr, L"%s\n", messages[i]);
|
|
}
|
|
free(messages);
|
|
}
|
|
}
|
|
|
|
int fgetws2(wcstring *s, FILE *f)
|
|
{
|
|
int i=0;
|
|
wint_t c;
|
|
|
|
while (1)
|
|
{
|
|
errno=0;
|
|
|
|
c = getwc(f);
|
|
|
|
if (errno == EILSEQ || errno == EINTR)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
switch (c)
|
|
{
|
|
/* End of line */
|
|
case WEOF:
|
|
case L'\n':
|
|
case L'\0':
|
|
return i;
|
|
/* Ignore carriage returns */
|
|
case L'\r':
|
|
break;
|
|
|
|
default:
|
|
i++;
|
|
s->push_back((wchar_t)c);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Converts the narrow character string \c in into its wide
|
|
equivalent, and return it
|
|
|
|
The string may contain embedded nulls.
|
|
|
|
This function encodes illegal character sequences in a reversible
|
|
way using the private use area.
|
|
*/
|
|
|
|
static wcstring str2wcs_internal(const char *in, const size_t in_len)
|
|
{
|
|
if (in_len == 0)
|
|
return wcstring();
|
|
|
|
assert(in != NULL);
|
|
|
|
wcstring result;
|
|
result.reserve(in_len);
|
|
mbstate_t state = {};
|
|
size_t in_pos = 0;
|
|
while (in_pos < in_len)
|
|
{
|
|
wchar_t wc = 0;
|
|
size_t ret = mbrtowc(&wc, &in[in_pos], in_len-in_pos, &state);
|
|
|
|
/* Determine whether to encode this characters with our crazy scheme */
|
|
bool use_encode_direct = false;
|
|
if (wc >= ENCODE_DIRECT_BASE && wc < ENCODE_DIRECT_BASE+256)
|
|
{
|
|
use_encode_direct = true;
|
|
}
|
|
else if (wc == INTERNAL_SEPARATOR)
|
|
{
|
|
use_encode_direct = true;
|
|
}
|
|
else if (ret == (size_t)(-2))
|
|
{
|
|
/* Incomplete sequence */
|
|
use_encode_direct = true;
|
|
}
|
|
else if (ret == (size_t)(-1))
|
|
{
|
|
/* Invalid data */
|
|
use_encode_direct = true;
|
|
}
|
|
else if (ret > in_len - in_pos)
|
|
{
|
|
/* Other error codes? Terrifying, should never happen */
|
|
use_encode_direct = true;
|
|
}
|
|
|
|
if (use_encode_direct)
|
|
{
|
|
wc = ENCODE_DIRECT_BASE + (unsigned char)in[in_pos];
|
|
result.push_back(wc);
|
|
in_pos++;
|
|
bzero(&state, sizeof state);
|
|
}
|
|
else if (ret == 0)
|
|
{
|
|
/* Embedded null byte! */
|
|
result.push_back(L'\0');
|
|
in_pos++;
|
|
bzero(&state, sizeof state);
|
|
}
|
|
else
|
|
{
|
|
/* Normal case */
|
|
result.push_back(wc);
|
|
in_pos += ret;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
wcstring str2wcstring(const char *in, size_t len)
|
|
{
|
|
return str2wcs_internal(in, len);
|
|
}
|
|
|
|
wcstring str2wcstring(const char *in)
|
|
{
|
|
return str2wcs_internal(in, strlen(in));
|
|
}
|
|
|
|
wcstring str2wcstring(const std::string &in)
|
|
{
|
|
/* Handles embedded nulls! */
|
|
return str2wcs_internal(in.data(), in.size());
|
|
}
|
|
|
|
char *wcs2str(const wchar_t *in)
|
|
{
|
|
if (! in)
|
|
return NULL;
|
|
char *out;
|
|
size_t desired_size = MAX_UTF8_BYTES*wcslen(in)+1;
|
|
char local_buff[512];
|
|
if (desired_size <= sizeof local_buff / sizeof *local_buff)
|
|
{
|
|
// convert into local buff, then use strdup() so we don't waste malloc'd space
|
|
char *result = wcs2str_internal(in, local_buff);
|
|
if (result)
|
|
{
|
|
// It converted into the local buffer, so copy it
|
|
result = strdup(result);
|
|
if (! result)
|
|
{
|
|
DIE_MEM();
|
|
}
|
|
}
|
|
return result;
|
|
|
|
}
|
|
else
|
|
{
|
|
// here we fall into the bad case of allocating a buffer probably much larger than necessary
|
|
out = (char *)malloc(MAX_UTF8_BYTES*wcslen(in)+1);
|
|
if (!out)
|
|
{
|
|
DIE_MEM();
|
|
}
|
|
return wcs2str_internal(in, out);
|
|
}
|
|
|
|
return wcs2str_internal(in, out);
|
|
}
|
|
|
|
char *wcs2str(const wcstring &in)
|
|
{
|
|
return wcs2str(in.c_str());
|
|
}
|
|
|
|
/* This function is distinguished from wcs2str_internal in that it allows embedded null bytes */
|
|
std::string wcs2string(const wcstring &input)
|
|
{
|
|
std::string result;
|
|
result.reserve(input.size());
|
|
|
|
mbstate_t state;
|
|
memset(&state, 0, sizeof(state));
|
|
|
|
char converted[MB_LEN_MAX + 1];
|
|
|
|
for (size_t i=0; i < input.size(); i++)
|
|
{
|
|
wchar_t wc = input[i];
|
|
if (wc == INTERNAL_SEPARATOR)
|
|
{
|
|
}
|
|
else if ((wc >= ENCODE_DIRECT_BASE) &&
|
|
(wc < ENCODE_DIRECT_BASE+256))
|
|
{
|
|
result.push_back(wc - ENCODE_DIRECT_BASE);
|
|
}
|
|
else
|
|
{
|
|
bzero(converted, sizeof converted);
|
|
size_t len = wcrtomb(converted, wc, &state);
|
|
if (len == (size_t)(-1))
|
|
{
|
|
debug(1, L"Wide character %d has no narrow representation", wc);
|
|
memset(&state, 0, sizeof(state));
|
|
}
|
|
else
|
|
{
|
|
result.append(converted, len);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
Converts the wide character string \c in into it's narrow
|
|
equivalent, stored in \c out. \c out must have enough space to fit
|
|
the entire string.
|
|
|
|
This function decodes illegal character sequences in a reversible
|
|
way using the private use area.
|
|
*/
|
|
static char *wcs2str_internal(const wchar_t *in, char *out)
|
|
{
|
|
size_t res=0;
|
|
size_t in_pos=0;
|
|
size_t out_pos = 0;
|
|
mbstate_t state;
|
|
|
|
CHECK(in, 0);
|
|
CHECK(out, 0);
|
|
|
|
memset(&state, 0, sizeof(state));
|
|
|
|
while (in[in_pos])
|
|
{
|
|
if (in[in_pos] == INTERNAL_SEPARATOR)
|
|
{
|
|
}
|
|
else if ((in[in_pos] >= ENCODE_DIRECT_BASE) &&
|
|
(in[in_pos] < ENCODE_DIRECT_BASE+256))
|
|
{
|
|
out[out_pos++] = in[in_pos]- ENCODE_DIRECT_BASE;
|
|
}
|
|
else
|
|
{
|
|
res = wcrtomb(&out[out_pos], in[in_pos], &state);
|
|
|
|
if (res == (size_t)(-1))
|
|
{
|
|
debug(1, L"Wide character %d has no narrow representation", in[in_pos]);
|
|
memset(&state, 0, sizeof(state));
|
|
}
|
|
else
|
|
{
|
|
out_pos += res;
|
|
}
|
|
}
|
|
in_pos++;
|
|
}
|
|
out[out_pos] = 0;
|
|
|
|
return out;
|
|
}
|
|
|
|
char **wcsv2strv(const wchar_t * const *in)
|
|
{
|
|
size_t i, count = 0;
|
|
|
|
while (in[count] != 0)
|
|
count++;
|
|
char **res = (char **)malloc(sizeof(char *)*(count+1));
|
|
if (res == 0)
|
|
{
|
|
DIE_MEM();
|
|
}
|
|
|
|
for (i=0; i<count; i++)
|
|
{
|
|
res[i]=wcs2str(in[i]);
|
|
}
|
|
res[count]=0;
|
|
return res;
|
|
|
|
}
|
|
|
|
wcstring format_string(const wchar_t *format, ...)
|
|
{
|
|
va_list va;
|
|
va_start(va, format);
|
|
wcstring result = vformat_string(format, va);
|
|
va_end(va);
|
|
return result;
|
|
}
|
|
|
|
wcstring vformat_string(const wchar_t *format, va_list va_orig)
|
|
{
|
|
const int saved_err = errno;
|
|
/*
|
|
As far as I know, there is no way to check if a
|
|
vswprintf-call failed because of a badly formated string
|
|
option or because the supplied destination string was to
|
|
small. In GLIBC, errno seems to be set to EINVAL either way.
|
|
|
|
Because of this, on failiure we try to
|
|
increase the buffer size until the free space is
|
|
larger than max_size, at which point it will
|
|
conclude that the error was probably due to a badly
|
|
formated string option, and return an error. Make
|
|
sure to null terminate string before that, though.
|
|
*/
|
|
const size_t max_size = (128*1024*1024);
|
|
wchar_t static_buff[256];
|
|
size_t size = 0;
|
|
wchar_t *buff = NULL;
|
|
int status = -1;
|
|
while (status < 0)
|
|
{
|
|
/* Reallocate if necessary */
|
|
if (size == 0)
|
|
{
|
|
buff = static_buff;
|
|
size = sizeof static_buff;
|
|
}
|
|
else
|
|
{
|
|
size *= 2;
|
|
if (size >= max_size)
|
|
{
|
|
buff[0] = '\0';
|
|
break;
|
|
}
|
|
buff = (wchar_t *)realloc((buff == static_buff ? NULL : buff), size);
|
|
if (buff == NULL)
|
|
{
|
|
DIE_MEM();
|
|
}
|
|
}
|
|
|
|
/* Try printing */
|
|
va_list va;
|
|
va_copy(va, va_orig);
|
|
status = vswprintf(buff, size / sizeof(wchar_t), format, va);
|
|
va_end(va);
|
|
}
|
|
|
|
wcstring result = wcstring(buff);
|
|
|
|
if (buff != static_buff)
|
|
free(buff);
|
|
|
|
errno = saved_err;
|
|
return result;
|
|
}
|
|
|
|
void append_formatv(wcstring &str, const wchar_t *format, va_list ap)
|
|
{
|
|
/* Preserve errno across this call since it likes to stomp on it */
|
|
int err = errno;
|
|
str.append(vformat_string(format, ap));
|
|
errno = err;
|
|
|
|
}
|
|
|
|
void append_format(wcstring &str, const wchar_t *format, ...)
|
|
{
|
|
va_list va;
|
|
va_start(va, format);
|
|
append_formatv(str, format, va);
|
|
va_end(va);
|
|
}
|
|
|
|
wchar_t *wcsvarname(const wchar_t *str)
|
|
{
|
|
while (*str)
|
|
{
|
|
if ((!iswalnum(*str)) && (*str != L'_'))
|
|
{
|
|
return (wchar_t *)str;
|
|
}
|
|
str++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const wchar_t *wcsfuncname(const wchar_t *str)
|
|
{
|
|
return wcschr(str, L'/');
|
|
}
|
|
|
|
|
|
bool wcsvarchr(wchar_t chr)
|
|
{
|
|
return iswalnum(chr) || chr == L'_';
|
|
}
|
|
|
|
|
|
/**
|
|
The glibc version of wcswidth seems to hang on some strings. fish uses this replacement.
|
|
*/
|
|
int my_wcswidth(const wchar_t *c)
|
|
{
|
|
return fish_wcswidth(c, wcslen(c));
|
|
}
|
|
|
|
wchar_t *quote_end(const wchar_t *pos)
|
|
{
|
|
wchar_t c = *pos;
|
|
|
|
while (1)
|
|
{
|
|
pos++;
|
|
|
|
if (!*pos)
|
|
return 0;
|
|
|
|
if (*pos == L'\\')
|
|
{
|
|
pos++;
|
|
if (!*pos)
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
if (*pos == c)
|
|
{
|
|
return (wchar_t *)pos;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
wcstring wsetlocale(int category, const wchar_t *locale)
|
|
{
|
|
|
|
char *lang = locale ? wcs2str(locale) : NULL;
|
|
char *res = setlocale(category, lang);
|
|
free(lang);
|
|
|
|
/*
|
|
Use ellipsis if on known unicode system, otherwise use $
|
|
*/
|
|
char *ctype = setlocale(LC_CTYPE, NULL);
|
|
bool unicode = (strstr(ctype, ".UTF") || strstr(ctype, ".utf"));
|
|
|
|
ellipsis_char = unicode ? L'\x2026' : L'$';
|
|
|
|
// U+23CE is the "return" character
|
|
omitted_newline_char = unicode ? L'\x23CE' : L'~';
|
|
|
|
if (!res)
|
|
return wcstring();
|
|
else
|
|
return format_string(L"%s", res);
|
|
}
|
|
|
|
bool contains_internal(const wchar_t *a, ...)
|
|
{
|
|
const wchar_t *arg;
|
|
va_list va;
|
|
bool res = false;
|
|
|
|
CHECK(a, 0);
|
|
|
|
va_start(va, a);
|
|
while ((arg=va_arg(va, const wchar_t *))!= 0)
|
|
{
|
|
if (wcscmp(a,arg) == 0)
|
|
{
|
|
res = true;
|
|
break;
|
|
}
|
|
|
|
}
|
|
va_end(va);
|
|
return res;
|
|
}
|
|
|
|
/* wcstring variant of contains_internal. The first parameter is a wcstring, the rest are const wchar_t* */
|
|
__sentinel bool contains_internal(const wcstring &needle, ...)
|
|
{
|
|
const wchar_t *arg;
|
|
va_list va;
|
|
int res = 0;
|
|
|
|
va_start(va, needle);
|
|
while ((arg=va_arg(va, const wchar_t *))!= 0)
|
|
{
|
|
if (needle == arg)
|
|
{
|
|
res=1;
|
|
break;
|
|
}
|
|
|
|
}
|
|
va_end(va);
|
|
return res;
|
|
}
|
|
|
|
long read_blocked(int fd, void *buf, size_t count)
|
|
{
|
|
ssize_t res;
|
|
sigset_t chldset, oldset;
|
|
|
|
sigemptyset(&chldset);
|
|
sigaddset(&chldset, SIGCHLD);
|
|
VOMIT_ON_FAILURE(pthread_sigmask(SIG_BLOCK, &chldset, &oldset));
|
|
res = read(fd, buf, count);
|
|
VOMIT_ON_FAILURE(pthread_sigmask(SIG_SETMASK, &oldset, NULL));
|
|
return res;
|
|
}
|
|
|
|
ssize_t write_loop(int fd, const char *buff, size_t count)
|
|
{
|
|
size_t out_cum=0;
|
|
while (out_cum < count)
|
|
{
|
|
ssize_t out = write(fd, &buff[out_cum], count - out_cum);
|
|
if (out < 0)
|
|
{
|
|
if (errno != EAGAIN && errno != EINTR)
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
out_cum += (size_t)out;
|
|
}
|
|
}
|
|
return (ssize_t)out_cum;
|
|
}
|
|
|
|
ssize_t read_loop(int fd, void *buff, size_t count)
|
|
{
|
|
ssize_t result;
|
|
do
|
|
{
|
|
result = read(fd, buff, count);
|
|
}
|
|
while (result < 0 && (errno == EAGAIN || errno == EINTR));
|
|
return result;
|
|
}
|
|
|
|
static bool should_debug(int level)
|
|
{
|
|
if (level > debug_level)
|
|
return false;
|
|
|
|
/* Hack to not print error messages in the tests */
|
|
if (program_name && ! wcscmp(program_name, L"(ignore)"))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void debug_shared(const wcstring &msg)
|
|
{
|
|
const wcstring sb = wcstring(program_name) + L": " + msg;
|
|
wcstring sb2;
|
|
write_screen(sb, sb2);
|
|
fwprintf(stderr, L"%ls", sb2.c_str());
|
|
}
|
|
|
|
void debug(int level, const wchar_t *msg, ...)
|
|
{
|
|
if (! should_debug(level))
|
|
return;
|
|
int errno_old = errno;
|
|
va_list va;
|
|
va_start(va, msg);
|
|
wcstring local_msg = vformat_string(msg, va);
|
|
va_end(va);
|
|
debug_shared(local_msg);
|
|
errno = errno_old;
|
|
}
|
|
|
|
void debug(int level, const char *msg, ...)
|
|
{
|
|
if (! should_debug(level))
|
|
return;
|
|
int errno_old = errno;
|
|
char local_msg[512];
|
|
va_list va;
|
|
va_start(va, msg);
|
|
vsnprintf(local_msg, sizeof local_msg, msg, va);
|
|
va_end(va);
|
|
debug_shared(str2wcstring(local_msg));
|
|
errno = errno_old;
|
|
}
|
|
|
|
|
|
void debug_safe(int level, const char *msg, const char *param1, const char *param2, const char *param3, const char *param4, const char *param5, const char *param6, const char *param7, const char *param8, const char *param9, const char *param10, const char *param11, const char *param12)
|
|
{
|
|
const char * const params[] = {param1, param2, param3, param4, param5, param6, param7, param8, param9, param10, param11, param12};
|
|
if (! msg)
|
|
return;
|
|
|
|
/* Can't call printf, that may allocate memory Just call write() over and over. */
|
|
if (level > debug_level)
|
|
return;
|
|
int errno_old = errno;
|
|
|
|
size_t param_idx = 0;
|
|
const char *cursor = msg;
|
|
while (*cursor != '\0')
|
|
{
|
|
const char *end = strchr(cursor, '%');
|
|
if (end == NULL)
|
|
end = cursor + strlen(cursor);
|
|
|
|
write(STDERR_FILENO, cursor, end - cursor);
|
|
|
|
if (end[0] == '%' && end[1] == 's')
|
|
{
|
|
/* Handle a format string */
|
|
assert(param_idx < sizeof params / sizeof *params);
|
|
const char *format = params[param_idx++];
|
|
if (! format)
|
|
format = "(null)";
|
|
write(STDERR_FILENO, format, strlen(format));
|
|
cursor = end + 2;
|
|
}
|
|
else if (end[0] == '\0')
|
|
{
|
|
/* Must be at the end of the string */
|
|
cursor = end;
|
|
}
|
|
else
|
|
{
|
|
/* Some other format specifier, just skip it */
|
|
cursor = end + 1;
|
|
}
|
|
}
|
|
|
|
// We always append a newline
|
|
write(STDERR_FILENO, "\n", 1);
|
|
|
|
errno = errno_old;
|
|
}
|
|
|
|
void format_long_safe(char buff[128], long val)
|
|
{
|
|
if (val == 0)
|
|
{
|
|
strcpy(buff, "0");
|
|
}
|
|
else
|
|
{
|
|
/* Generate the string in reverse */
|
|
size_t idx = 0;
|
|
bool negative = (val < 0);
|
|
|
|
/* Note that we can't just negate val if it's negative, because it may be the most negative value. We do rely on round-towards-zero division though. */
|
|
|
|
while (val != 0)
|
|
{
|
|
long rem = val % 10;
|
|
buff[idx++] = '0' + (rem < 0 ? -rem : rem);
|
|
val /= 10;
|
|
}
|
|
if (negative)
|
|
buff[idx++] = '-';
|
|
buff[idx] = 0;
|
|
|
|
size_t left = 0, right = idx - 1;
|
|
while (left < right)
|
|
{
|
|
char tmp = buff[left];
|
|
buff[left++] = buff[right];
|
|
buff[right--] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
void format_long_safe(wchar_t buff[128], long val)
|
|
{
|
|
if (val == 0)
|
|
{
|
|
wcscpy(buff, L"0");
|
|
}
|
|
else
|
|
{
|
|
/* Generate the string in reverse */
|
|
size_t idx = 0;
|
|
bool negative = (val < 0);
|
|
|
|
while (val > 0)
|
|
{
|
|
long rem = val % 10;
|
|
/* Here we're assuming that wide character digits are contiguous - is that a correct assumption? */
|
|
buff[idx++] = L'0' + (wchar_t)(rem < 0 ? -rem : rem);
|
|
val /= 10;
|
|
}
|
|
if (negative)
|
|
buff[idx++] = L'-';
|
|
buff[idx] = 0;
|
|
|
|
size_t left = 0, right = idx - 1;
|
|
while (left < right)
|
|
{
|
|
wchar_t tmp = buff[left];
|
|
buff[left++] = buff[right];
|
|
buff[right--] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
void write_screen(const wcstring &msg, wcstring &buff)
|
|
{
|
|
const wchar_t *start, *pos;
|
|
int line_width = 0;
|
|
int tok_width = 0;
|
|
int screen_width = common_get_width();
|
|
|
|
if (screen_width)
|
|
{
|
|
start = pos = msg.c_str();
|
|
while (1)
|
|
{
|
|
int overflow = 0;
|
|
|
|
tok_width=0;
|
|
|
|
/*
|
|
Tokenize on whitespace, and also calculate the width of the token
|
|
*/
|
|
while (*pos && (!wcschr(L" \n\r\t", *pos)))
|
|
{
|
|
|
|
/*
|
|
Check is token is wider than one line.
|
|
If so we mark it as an overflow and break the token.
|
|
*/
|
|
if ((tok_width + fish_wcwidth(*pos)) > (screen_width-1))
|
|
{
|
|
overflow = 1;
|
|
break;
|
|
}
|
|
|
|
tok_width += fish_wcwidth(*pos);
|
|
pos++;
|
|
}
|
|
|
|
/*
|
|
If token is zero character long, we don't do anything
|
|
*/
|
|
if (pos == start)
|
|
{
|
|
start = pos = pos+1;
|
|
}
|
|
else if (overflow)
|
|
{
|
|
/*
|
|
In case of overflow, we print a newline, except if we already are at position 0
|
|
*/
|
|
wchar_t *token = wcsndup(start, pos-start);
|
|
if (line_width != 0)
|
|
buff.push_back(L'\n');
|
|
buff.append(format_string(L"%ls-\n", token));
|
|
free(token);
|
|
line_width=0;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
Print the token
|
|
*/
|
|
wchar_t *token = wcsndup(start, pos-start);
|
|
if ((line_width + (line_width!=0?1:0) + tok_width) > screen_width)
|
|
{
|
|
buff.push_back(L'\n');
|
|
line_width=0;
|
|
}
|
|
buff.append(format_string(L"%ls%ls", line_width?L" ":L"", token));
|
|
free(token);
|
|
line_width += (line_width!=0?1:0) + tok_width;
|
|
}
|
|
|
|
/*
|
|
Break on end of string
|
|
*/
|
|
if (!*pos)
|
|
{
|
|
break;
|
|
}
|
|
|
|
start=pos;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
buff.append(msg);
|
|
}
|
|
buff.push_back(L'\n');
|
|
}
|
|
|
|
/**
|
|
Perform string escaping of a strinng by only quoting it. Assumes
|
|
the string has already been checked for characters that can not be
|
|
escaped this way.
|
|
*/
|
|
static wchar_t *escape_simple(const wchar_t *in)
|
|
{
|
|
wchar_t *out;
|
|
size_t len = wcslen(in);
|
|
out = (wchar_t *)malloc(sizeof(wchar_t)*(len+3));
|
|
if (!out)
|
|
DIE_MEM();
|
|
|
|
out[0] = L'\'';
|
|
wcscpy(&out[1], in);
|
|
out[len+1]=L'\'';
|
|
out[len+2]=0;
|
|
return out;
|
|
}
|
|
|
|
wchar_t *escape(const wchar_t *in_orig, escape_flags_t flags)
|
|
{
|
|
const wchar_t *in = in_orig;
|
|
|
|
bool escape_all = !!(flags & ESCAPE_ALL);
|
|
bool no_quoted = !!(flags & ESCAPE_NO_QUOTED);
|
|
bool no_tilde = !!(flags & ESCAPE_NO_TILDE);
|
|
|
|
wchar_t *out;
|
|
wchar_t *pos;
|
|
|
|
int need_escape=0;
|
|
int need_complex_escape=0;
|
|
|
|
if (!in)
|
|
{
|
|
debug(0, L"%s called with null input", __func__);
|
|
FATAL_EXIT();
|
|
}
|
|
|
|
if (!no_quoted && (wcslen(in) == 0))
|
|
{
|
|
out = wcsdup(L"''");
|
|
if (!out)
|
|
DIE_MEM();
|
|
return out;
|
|
}
|
|
|
|
|
|
out = (wchar_t *)malloc(sizeof(wchar_t)*(wcslen(in)*4 + 1));
|
|
pos = out;
|
|
|
|
if (!out)
|
|
DIE_MEM();
|
|
|
|
while (*in != 0)
|
|
{
|
|
|
|
if ((*in >= ENCODE_DIRECT_BASE) &&
|
|
(*in < ENCODE_DIRECT_BASE+256))
|
|
{
|
|
int val = *in - ENCODE_DIRECT_BASE;
|
|
int tmp;
|
|
|
|
*(pos++) = L'\\';
|
|
*(pos++) = L'X';
|
|
|
|
tmp = val/16;
|
|
*pos++ = tmp > 9? L'a'+(tmp-10):L'0'+tmp;
|
|
|
|
tmp = val%16;
|
|
*pos++ = tmp > 9? L'a'+(tmp-10):L'0'+tmp;
|
|
need_escape=need_complex_escape=1;
|
|
|
|
}
|
|
else
|
|
{
|
|
wchar_t c = *in;
|
|
switch (c)
|
|
{
|
|
case L'\t':
|
|
*(pos++) = L'\\';
|
|
*(pos++) = L't';
|
|
need_escape=need_complex_escape=1;
|
|
break;
|
|
|
|
case L'\n':
|
|
*(pos++) = L'\\';
|
|
*(pos++) = L'n';
|
|
need_escape=need_complex_escape=1;
|
|
break;
|
|
|
|
case L'\b':
|
|
*(pos++) = L'\\';
|
|
*(pos++) = L'b';
|
|
need_escape=need_complex_escape=1;
|
|
break;
|
|
|
|
case L'\r':
|
|
*(pos++) = L'\\';
|
|
*(pos++) = L'r';
|
|
need_escape=need_complex_escape=1;
|
|
break;
|
|
|
|
case L'\x1b':
|
|
*(pos++) = L'\\';
|
|
*(pos++) = L'e';
|
|
need_escape=need_complex_escape=1;
|
|
break;
|
|
|
|
|
|
case L'\\':
|
|
case L'\'':
|
|
{
|
|
need_escape=need_complex_escape=1;
|
|
if (escape_all)
|
|
*pos++ = L'\\';
|
|
*pos++ = *in;
|
|
break;
|
|
}
|
|
|
|
case L'&':
|
|
case L'$':
|
|
case L' ':
|
|
case L'#':
|
|
case L'^':
|
|
case L'<':
|
|
case L'>':
|
|
case L'(':
|
|
case L')':
|
|
case L'[':
|
|
case L']':
|
|
case L'{':
|
|
case L'}':
|
|
case L'?':
|
|
case L'*':
|
|
case L'|':
|
|
case L';':
|
|
case L'"':
|
|
case L'%':
|
|
case L'~':
|
|
{
|
|
if (! no_tilde || c != L'~')
|
|
{
|
|
need_escape=1;
|
|
if (escape_all)
|
|
*pos++ = L'\\';
|
|
}
|
|
*pos++ = *in;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
{
|
|
if (*in < 32)
|
|
{
|
|
if (*in <27 && *in > 0)
|
|
{
|
|
*(pos++) = L'\\';
|
|
*(pos++) = L'c';
|
|
*(pos++) = L'a' + *in -1;
|
|
|
|
need_escape=need_complex_escape=1;
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
int tmp = (*in)%16;
|
|
*pos++ = L'\\';
|
|
*pos++ = L'x';
|
|
*pos++ = ((*in>15)? L'1' : L'0');
|
|
*pos++ = tmp > 9? L'a'+(tmp-10):L'0'+tmp;
|
|
need_escape=need_complex_escape=1;
|
|
}
|
|
else
|
|
{
|
|
*pos++ = *in;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
in++;
|
|
}
|
|
*pos = 0;
|
|
|
|
/*
|
|
Use quoted escaping if possible, since most people find it
|
|
easier to read.
|
|
*/
|
|
if (!no_quoted && need_escape && !need_complex_escape && escape_all)
|
|
{
|
|
free(out);
|
|
out = escape_simple(in_orig);
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
wcstring escape_string(const wcstring &in, escape_flags_t flags)
|
|
{
|
|
wchar_t *tmp = escape(in.c_str(), flags);
|
|
wcstring result(tmp);
|
|
free(tmp);
|
|
return result;
|
|
}
|
|
|
|
/* Helper to return the last character in a string, or NOT_A_WCHAR */
|
|
static wint_t string_last_char(const wcstring &str)
|
|
{
|
|
size_t len = str.size();
|
|
return len == 0 ? NOT_A_WCHAR : str.at(len - 1);
|
|
}
|
|
|
|
/* Given a null terminated string starting with a backslash, read the escape as if it is unquoted, appending to result. Return the number of characters consumed, or 0 on error */
|
|
static size_t read_unquoted_escape(const wchar_t *input, wcstring *result, bool allow_incomplete, bool unescape_special)
|
|
{
|
|
if (input[0] != L'\\')
|
|
{
|
|
// not an escape
|
|
return 0;
|
|
}
|
|
|
|
/* Here's the character we'll ultimately append. Note that L'\0' is a valid thing to append. */
|
|
wchar_t result_char = NOT_A_WCHAR;
|
|
|
|
bool errored = false;
|
|
size_t in_pos = 1; //in_pos always tracks the next character to read (and therefore the number of characters read so far)
|
|
const wchar_t c = input[in_pos++];
|
|
switch (c)
|
|
{
|
|
|
|
/* A null character after a backslash is an error */
|
|
case L'\0':
|
|
{
|
|
/* Adjust in_pos to only include the backslash */
|
|
assert(in_pos > 0);
|
|
in_pos--;
|
|
|
|
/* It's an error, unless we're allowing incomplete escapes */
|
|
if (! allow_incomplete)
|
|
errored = true;
|
|
break;
|
|
}
|
|
|
|
/* Numeric escape sequences. No prefix means octal escape, otherwise hexadecimal. */
|
|
case L'0':
|
|
case L'1':
|
|
case L'2':
|
|
case L'3':
|
|
case L'4':
|
|
case L'5':
|
|
case L'6':
|
|
case L'7':
|
|
case L'u':
|
|
case L'U':
|
|
case L'x':
|
|
case L'X':
|
|
{
|
|
long long res=0;
|
|
size_t chars=2;
|
|
int base=16;
|
|
|
|
bool byte_literal = false;
|
|
wchar_t max_val = ASCII_MAX;
|
|
|
|
switch (c)
|
|
{
|
|
case L'u':
|
|
{
|
|
chars=4;
|
|
max_val = UCS2_MAX;
|
|
break;
|
|
}
|
|
|
|
case L'U':
|
|
{
|
|
chars=8;
|
|
max_val = WCHAR_MAX;
|
|
|
|
// Don't exceed the largest Unicode code point - see #1107
|
|
if (0x10FFFF < max_val)
|
|
max_val = (wchar_t)0x10FFFF;
|
|
|
|
break;
|
|
}
|
|
|
|
case L'x':
|
|
{
|
|
chars = 2;
|
|
max_val = ASCII_MAX;
|
|
break;
|
|
}
|
|
|
|
case L'X':
|
|
{
|
|
byte_literal = true;
|
|
max_val = BYTE_MAX;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
{
|
|
base=8;
|
|
chars=3;
|
|
// note that in_pos currently is just after the first post-backslash character; we want to start our escape from there
|
|
assert(in_pos > 0);
|
|
in_pos--;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (size_t i=0; i<chars; i++)
|
|
{
|
|
long d = convert_digit(input[in_pos],base);
|
|
if (d < 0)
|
|
{
|
|
break;
|
|
}
|
|
|
|
res=(res*base)+d;
|
|
in_pos++;
|
|
}
|
|
|
|
if (res <= max_val)
|
|
{
|
|
result_char = (wchar_t)((byte_literal ? ENCODE_DIRECT_BASE : 0)+res);
|
|
}
|
|
else
|
|
{
|
|
errored = true;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
/* \a means bell (alert) */
|
|
case L'a':
|
|
{
|
|
result_char = L'\a';
|
|
break;
|
|
}
|
|
|
|
/* \b means backspace */
|
|
case L'b':
|
|
{
|
|
result_char = L'\b';
|
|
break;
|
|
}
|
|
|
|
/* \cX means control sequence X */
|
|
case L'c':
|
|
{
|
|
const wchar_t sequence_char = input[in_pos++];
|
|
if (sequence_char >= L'a' && sequence_char <= (L'a'+32))
|
|
{
|
|
result_char = sequence_char-L'a'+1;
|
|
}
|
|
else if (sequence_char >= L'A' && sequence_char <= (L'A'+32))
|
|
{
|
|
result_char = sequence_char-L'A'+1;
|
|
}
|
|
else
|
|
{
|
|
errored = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* \x1b means escape */
|
|
case L'e':
|
|
{
|
|
result_char = L'\x1b';
|
|
break;
|
|
}
|
|
|
|
/*
|
|
\f means form feed
|
|
*/
|
|
case L'f':
|
|
{
|
|
result_char = L'\f';
|
|
break;
|
|
}
|
|
|
|
/*
|
|
\n means newline
|
|
*/
|
|
case L'n':
|
|
{
|
|
result_char = L'\n';
|
|
break;
|
|
}
|
|
|
|
/*
|
|
\r means carriage return
|
|
*/
|
|
case L'r':
|
|
{
|
|
result_char = L'\r';
|
|
break;
|
|
}
|
|
|
|
/*
|
|
\t means tab
|
|
*/
|
|
case L't':
|
|
{
|
|
result_char = L'\t';
|
|
break;
|
|
}
|
|
|
|
/*
|
|
\v means vertical tab
|
|
*/
|
|
case L'v':
|
|
{
|
|
result_char = L'\v';
|
|
break;
|
|
}
|
|
|
|
/* If a backslash is followed by an actual newline, swallow them both */
|
|
case L'\n':
|
|
{
|
|
result_char = NOT_A_WCHAR;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
{
|
|
if (unescape_special)
|
|
result->push_back(INTERNAL_SEPARATOR);
|
|
result_char = c;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (! errored && result_char != NOT_A_WCHAR)
|
|
{
|
|
result->push_back(result_char);
|
|
}
|
|
return errored ? 0 : in_pos;
|
|
}
|
|
|
|
/* Returns the unescaped version of input_str into output_str (by reference). Returns true if successful. If false, the contents of output_str are undefined (!) */
|
|
static bool unescape_string_internal(const wchar_t * const input, const size_t input_len, wcstring *output_str, unescape_flags_t flags)
|
|
{
|
|
/* Set up result string, which we'll swap with the output on success */
|
|
wcstring result;
|
|
result.reserve(input_len);
|
|
|
|
const bool unescape_special = !!(flags & UNESCAPE_SPECIAL);
|
|
const bool allow_incomplete = !!(flags & UNESCAPE_INCOMPLETE);
|
|
|
|
int bracket_count = 0;
|
|
|
|
bool errored = false;
|
|
enum
|
|
{
|
|
mode_unquoted,
|
|
mode_single_quotes,
|
|
mode_double_quotes
|
|
} mode = mode_unquoted;
|
|
|
|
for (size_t input_position = 0; input_position < input_len && ! errored; input_position++)
|
|
{
|
|
const wchar_t c = input[input_position];
|
|
/* Here's the character we'll append to result, or NOT_A_WCHAR to suppress it */
|
|
wchar_t to_append = c;
|
|
if (mode == mode_unquoted)
|
|
{
|
|
|
|
switch (c)
|
|
{
|
|
case L'\\':
|
|
{
|
|
/* Backslashes (escapes) are complicated and may result in errors, or appending INTERNAL_SEPARATORs, so we have to handle them specially */
|
|
size_t escape_chars = read_unquoted_escape(input + input_position, &result, allow_incomplete, unescape_special);
|
|
if (escape_chars == 0)
|
|
{
|
|
/* A 0 return indicates an error */
|
|
errored = true;
|
|
}
|
|
else
|
|
{
|
|
/* Skip over the characters we read, minus one because the outer loop will increment it */
|
|
assert(escape_chars > 0);
|
|
input_position += escape_chars - 1;
|
|
}
|
|
/* We've already appended, don't append anything else */
|
|
to_append = NOT_A_WCHAR;
|
|
break;
|
|
}
|
|
|
|
case L'~':
|
|
{
|
|
if (unescape_special && (input_position == 0))
|
|
{
|
|
to_append = HOME_DIRECTORY;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case L'%':
|
|
{
|
|
if (unescape_special && (input_position == 0))
|
|
{
|
|
to_append = PROCESS_EXPAND;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case L'*':
|
|
{
|
|
if (unescape_special)
|
|
{
|
|
/* In general, this is ANY_STRING. But as a hack, if the last appended char is ANY_STRING, delete the last char and store ANY_STRING_RECURSIVE to reflect the fact that ** is the recursive wildcard. */
|
|
if (string_last_char(result) == ANY_STRING)
|
|
{
|
|
assert(result.size() > 0);
|
|
result.resize(result.size() - 1);
|
|
to_append = ANY_STRING_RECURSIVE;
|
|
}
|
|
else
|
|
{
|
|
to_append = ANY_STRING;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case L'?':
|
|
{
|
|
if (unescape_special)
|
|
{
|
|
to_append = ANY_CHAR;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case L'$':
|
|
{
|
|
if (unescape_special)
|
|
{
|
|
to_append = VARIABLE_EXPAND;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case L'{':
|
|
{
|
|
if (unescape_special)
|
|
{
|
|
bracket_count++;
|
|
to_append = BRACKET_BEGIN;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case L'}':
|
|
{
|
|
if (unescape_special)
|
|
{
|
|
bracket_count--;
|
|
to_append = BRACKET_END;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case L',':
|
|
{
|
|
/* If the last character was a separator, then treat this as a literal comma */
|
|
if (unescape_special && bracket_count > 0 && string_last_char(result) != BRACKET_SEP)
|
|
{
|
|
to_append = BRACKET_SEP;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case L'\'':
|
|
{
|
|
mode = mode_single_quotes;
|
|
to_append = unescape_special ? INTERNAL_SEPARATOR : NOT_A_WCHAR;
|
|
break;
|
|
}
|
|
|
|
case L'\"':
|
|
{
|
|
mode = mode_double_quotes;
|
|
to_append = unescape_special ? INTERNAL_SEPARATOR : NOT_A_WCHAR;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else if (mode == mode_single_quotes)
|
|
{
|
|
if (c == L'\\')
|
|
{
|
|
/* A backslash may or may not escape something in single quotes */
|
|
switch (input[input_position + 1])
|
|
{
|
|
case '\\':
|
|
case L'\'':
|
|
{
|
|
to_append = input[input_position + 1];
|
|
input_position += 1; /* Skip over the backslash */
|
|
break;
|
|
}
|
|
|
|
case L'\0':
|
|
{
|
|
if (!allow_incomplete)
|
|
{
|
|
errored = true;
|
|
}
|
|
else
|
|
{
|
|
// PCA this line had the following cryptic comment:
|
|
// 'We may ever escape a NULL character, but still appending a \ in case I am wrong.'
|
|
// Not sure what it means or the importance of this
|
|
input_position += 1; /* Skip over the backslash */
|
|
to_append = L'\\';
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
{
|
|
/* Literal backslash that doesn't escape anything! Leave things alone; we'll append the backslash itself */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else if (c == L'\'')
|
|
{
|
|
to_append = unescape_special ? INTERNAL_SEPARATOR : NOT_A_WCHAR;
|
|
mode = mode_unquoted;
|
|
}
|
|
}
|
|
else if (mode == mode_double_quotes)
|
|
{
|
|
switch (c)
|
|
{
|
|
case L'"':
|
|
{
|
|
mode = mode_unquoted;
|
|
to_append = unescape_special ? INTERNAL_SEPARATOR : NOT_A_WCHAR;
|
|
break;
|
|
}
|
|
|
|
case '\\':
|
|
{
|
|
switch (input[input_position + 1])
|
|
{
|
|
case L'\0':
|
|
{
|
|
if (!allow_incomplete)
|
|
{
|
|
errored = true;
|
|
}
|
|
else
|
|
{
|
|
to_append = L'\0';
|
|
}
|
|
}
|
|
break;
|
|
|
|
case '\\':
|
|
case L'$':
|
|
case '"':
|
|
{
|
|
to_append = input[input_position + 1];
|
|
input_position += 1; /* Skip over the backslash */
|
|
break;
|
|
}
|
|
|
|
case '\n':
|
|
{
|
|
/* Swallow newline */
|
|
to_append = NOT_A_WCHAR;
|
|
input_position += 1; /* Skip over the backslash */
|
|
break;
|
|
}
|
|
|
|
default:
|
|
{
|
|
/* Literal backslash that doesn't escape anything! Leave things alone; we'll append the backslash itself */
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case '$':
|
|
{
|
|
if (unescape_special)
|
|
{
|
|
to_append = VARIABLE_EXPAND_SINGLE;
|
|
}
|
|
break;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
/* Now maybe append the char */
|
|
if (to_append != NOT_A_WCHAR)
|
|
{
|
|
result.push_back(to_append);
|
|
}
|
|
}
|
|
|
|
/* Return the string by reference, and then success */
|
|
if (! errored)
|
|
{
|
|
output_str->swap(result);
|
|
}
|
|
return ! errored;
|
|
}
|
|
|
|
bool unescape_string_in_place(wcstring *str, unescape_flags_t escape_special)
|
|
{
|
|
assert(str != NULL);
|
|
wcstring output;
|
|
bool success = unescape_string_internal(str->c_str(), str->size(), &output, escape_special);
|
|
if (success)
|
|
{
|
|
str->swap(output);
|
|
}
|
|
return success;
|
|
}
|
|
|
|
bool unescape_string(const wchar_t *input, wcstring *output, unescape_flags_t escape_special)
|
|
{
|
|
bool success = unescape_string_internal(input, wcslen(input), output, escape_special);
|
|
if (! success)
|
|
output->clear();
|
|
return success;
|
|
}
|
|
|
|
bool unescape_string(const wcstring &input, wcstring *output, unescape_flags_t escape_special)
|
|
{
|
|
bool success = unescape_string_internal(input.c_str(), input.size(), output, escape_special);
|
|
if (! success)
|
|
output->clear();
|
|
return success;
|
|
}
|
|
|
|
|
|
void common_handle_winch(int signal)
|
|
{
|
|
#ifdef HAVE_WINSIZE
|
|
if (ioctl(1,TIOCGWINSZ,&termsize)!=0)
|
|
{
|
|
return;
|
|
}
|
|
#else
|
|
termsize.ws_col = 80;
|
|
termsize.ws_row = 24;
|
|
#endif
|
|
}
|
|
|
|
int common_get_width()
|
|
{
|
|
return termsize.ws_col;
|
|
}
|
|
|
|
|
|
int common_get_height()
|
|
{
|
|
return termsize.ws_row;
|
|
}
|
|
|
|
void tokenize_variable_array(const wcstring &val, std::vector<wcstring> &out)
|
|
{
|
|
size_t pos = 0, end = val.size();
|
|
while (pos < end)
|
|
{
|
|
size_t next_pos = val.find(ARRAY_SEP, pos);
|
|
if (next_pos == wcstring::npos) break;
|
|
out.push_back(val.substr(pos, next_pos - pos));
|
|
pos = next_pos + 1; //skip the separator
|
|
}
|
|
out.push_back(val.substr(pos, end - pos));
|
|
}
|
|
|
|
bool string_prefixes_string(const wchar_t *proposed_prefix, const wcstring &value)
|
|
{
|
|
size_t prefix_size = wcslen(proposed_prefix);
|
|
return prefix_size <= value.size() && value.compare(0, prefix_size, proposed_prefix) == 0;
|
|
}
|
|
|
|
bool string_prefixes_string(const wcstring &proposed_prefix, const wcstring &value)
|
|
{
|
|
size_t prefix_size = proposed_prefix.size();
|
|
return prefix_size <= value.size() && value.compare(0, prefix_size, proposed_prefix) == 0;
|
|
}
|
|
|
|
bool string_prefixes_string_case_insensitive(const wcstring &proposed_prefix, const wcstring &value)
|
|
{
|
|
size_t prefix_size = proposed_prefix.size();
|
|
return prefix_size <= value.size() && wcsncasecmp(proposed_prefix.c_str(), value.c_str(), prefix_size) == 0;
|
|
}
|
|
|
|
bool string_suffixes_string(const wcstring &proposed_suffix, const wcstring &value)
|
|
{
|
|
size_t suffix_size = proposed_suffix.size();
|
|
return suffix_size <= value.size() && value.compare(value.size() - suffix_size, suffix_size, proposed_suffix) == 0;
|
|
}
|
|
|
|
bool string_suffixes_string(const wchar_t *proposed_suffix, const wcstring &value)
|
|
{
|
|
size_t suffix_size = wcslen(proposed_suffix);
|
|
return suffix_size <= value.size() && value.compare(value.size() - suffix_size, suffix_size, proposed_suffix) == 0;
|
|
}
|
|
|
|
// Returns true if seq, represented as a subsequence, is contained within string
|
|
static bool subsequence_in_string(const wcstring &seq, const wcstring &str)
|
|
{
|
|
/* Impossible if seq is larger than string */
|
|
if (seq.size() > str.size())
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/* Empty strings are considered to be subsequences of everything */
|
|
if (seq.empty())
|
|
{
|
|
return true;
|
|
}
|
|
|
|
size_t str_idx, seq_idx;
|
|
for (seq_idx = str_idx = 0; seq_idx < seq.size() && str_idx < str.size(); seq_idx++)
|
|
{
|
|
wchar_t c = seq.at(seq_idx);
|
|
size_t char_loc = str.find(c, str_idx);
|
|
if (char_loc == wcstring::npos)
|
|
{
|
|
/* Didn't find this character */
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* We found it. Continue the search just after it. */
|
|
str_idx = char_loc + 1;
|
|
}
|
|
}
|
|
|
|
/* We succeeded if we exhausted our sequence */
|
|
assert(seq_idx <= seq.size());
|
|
return seq_idx == seq.size();
|
|
}
|
|
|
|
string_fuzzy_match_t::string_fuzzy_match_t(enum fuzzy_match_type_t t, size_t distance_first, size_t distance_second) :
|
|
type(t),
|
|
match_distance_first(distance_first),
|
|
match_distance_second(distance_second)
|
|
{
|
|
}
|
|
|
|
|
|
string_fuzzy_match_t string_fuzzy_match_string(const wcstring &string, const wcstring &match_against, fuzzy_match_type_t limit_type)
|
|
{
|
|
// Distances are generally the amount of text not matched
|
|
string_fuzzy_match_t result(fuzzy_match_none, 0, 0);
|
|
size_t location;
|
|
if (limit_type >= fuzzy_match_exact && string == match_against)
|
|
{
|
|
result.type = fuzzy_match_exact;
|
|
}
|
|
else if (limit_type >= fuzzy_match_prefix && string_prefixes_string(string, match_against))
|
|
{
|
|
result.type = fuzzy_match_prefix;
|
|
assert(match_against.size() >= string.size());
|
|
result.match_distance_first = match_against.size() - string.size();
|
|
}
|
|
else if (limit_type >= fuzzy_match_case_insensitive && wcscasecmp(string.c_str(), match_against.c_str()) == 0)
|
|
{
|
|
result.type = fuzzy_match_case_insensitive;
|
|
}
|
|
else if (limit_type >= fuzzy_match_prefix_case_insensitive && string_prefixes_string_case_insensitive(string, match_against))
|
|
{
|
|
result.type = fuzzy_match_prefix_case_insensitive;
|
|
assert(match_against.size() >= string.size());
|
|
result.match_distance_first = match_against.size() - string.size();
|
|
}
|
|
else if (limit_type >= fuzzy_match_substring && (location = match_against.find(string)) != wcstring::npos)
|
|
{
|
|
// string is contained within match against
|
|
result.type = fuzzy_match_substring;
|
|
assert(match_against.size() >= string.size());
|
|
result.match_distance_first = match_against.size() - string.size();
|
|
result.match_distance_second = location; //prefer earlier matches
|
|
}
|
|
else if (limit_type >= fuzzy_match_subsequence_insertions_only && subsequence_in_string(string, match_against))
|
|
{
|
|
result.type = fuzzy_match_subsequence_insertions_only;
|
|
assert(match_against.size() >= string.size());
|
|
result.match_distance_first = match_against.size() - string.size();
|
|
// it would be nice to prefer matches with greater matching runs here
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template<typename T>
|
|
static inline int compare_ints(T a, T b)
|
|
{
|
|
if (a < b) return -1;
|
|
if (a == b) return 0;
|
|
return 1;
|
|
}
|
|
|
|
// Compare types; if the types match, compare distances
|
|
int string_fuzzy_match_t::compare(const string_fuzzy_match_t &rhs) const
|
|
{
|
|
if (this->type != rhs.type)
|
|
{
|
|
return compare_ints(this->type, rhs.type);
|
|
}
|
|
else if (this->match_distance_first != rhs.match_distance_first)
|
|
{
|
|
return compare_ints(this->match_distance_first, rhs.match_distance_first);
|
|
}
|
|
else if (this->match_distance_second != rhs.match_distance_second)
|
|
{
|
|
return compare_ints(this->match_distance_second, rhs.match_distance_second);
|
|
}
|
|
return 0; //equal
|
|
}
|
|
|
|
bool list_contains_string(const wcstring_list_t &list, const wcstring &str)
|
|
{
|
|
return std::find(list.begin(), list.end(), str) != list.end();
|
|
}
|
|
|
|
int create_directory(const wcstring &d)
|
|
{
|
|
int ok = 0;
|
|
struct stat buf;
|
|
int stat_res = 0;
|
|
|
|
while ((stat_res = wstat(d, &buf)) != 0)
|
|
{
|
|
if (errno != EAGAIN)
|
|
break;
|
|
}
|
|
|
|
if (stat_res == 0)
|
|
{
|
|
if (S_ISDIR(buf.st_mode))
|
|
{
|
|
ok = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (errno == ENOENT)
|
|
{
|
|
wcstring dir = wdirname(d);
|
|
if (!create_directory(dir))
|
|
{
|
|
if (!wmkdir(d, 0700))
|
|
{
|
|
ok = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return ok?0:-1;
|
|
}
|
|
|
|
__attribute__((noinline))
|
|
void bugreport()
|
|
{
|
|
debug(1,
|
|
_(L"This is a bug. Break on bugreport to debug."
|
|
L"If you can reproduce it, please send a bug report to %s."),
|
|
PACKAGE_BUGREPORT);
|
|
}
|
|
|
|
wcstring format_size(long long sz)
|
|
{
|
|
wcstring result;
|
|
const wchar_t *sz_name[]=
|
|
{
|
|
L"kB", L"MB", L"GB", L"TB", L"PB", L"EB", L"ZB", L"YB", 0
|
|
};
|
|
|
|
if (sz < 0)
|
|
{
|
|
result.append(L"unknown");
|
|
}
|
|
else if (sz < 1)
|
|
{
|
|
result.append(_(L"empty"));
|
|
}
|
|
else if (sz < 1024)
|
|
{
|
|
result.append(format_string(L"%lldB", sz));
|
|
}
|
|
else
|
|
{
|
|
int i;
|
|
|
|
for (i=0; sz_name[i]; i++)
|
|
{
|
|
if (sz < (1024*1024) || !sz_name[i+1])
|
|
{
|
|
long isz = ((long)sz)/1024;
|
|
if (isz > 9)
|
|
result.append(format_string(L"%d%ls", isz, sz_name[i]));
|
|
else
|
|
result.append(format_string(L"%.1f%ls", (double)sz/1024, sz_name[i]));
|
|
break;
|
|
}
|
|
sz /= 1024;
|
|
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Crappy function to extract the most significant digit of an unsigned long long value */
|
|
static char extract_most_significant_digit(unsigned long long *xp)
|
|
{
|
|
unsigned long long place_value = 1;
|
|
unsigned long long x = *xp;
|
|
while (x >= 10)
|
|
{
|
|
x /= 10;
|
|
place_value *= 10;
|
|
}
|
|
*xp -= (place_value * x);
|
|
return x + '0';
|
|
}
|
|
|
|
void append_ull(char *buff, unsigned long long val, size_t *inout_idx, size_t max_len)
|
|
{
|
|
size_t idx = *inout_idx;
|
|
while (val > 0 && idx < max_len)
|
|
buff[idx++] = extract_most_significant_digit(&val);
|
|
*inout_idx = idx;
|
|
}
|
|
|
|
void append_str(char *buff, const char *str, size_t *inout_idx, size_t max_len)
|
|
{
|
|
size_t idx = *inout_idx;
|
|
while (*str && idx < max_len)
|
|
buff[idx++] = *str++;
|
|
*inout_idx = idx;
|
|
}
|
|
|
|
void format_size_safe(char buff[128], unsigned long long sz)
|
|
{
|
|
const size_t buff_size = 128;
|
|
const size_t max_len = buff_size - 1; //need to leave room for a null terminator
|
|
bzero(buff, buff_size);
|
|
size_t idx = 0;
|
|
const char * const sz_name[]=
|
|
{
|
|
"kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB", NULL
|
|
};
|
|
if (sz < 1)
|
|
{
|
|
strncpy(buff, "empty", buff_size);
|
|
}
|
|
else if (sz < 1024)
|
|
{
|
|
append_ull(buff, sz, &idx, max_len);
|
|
append_str(buff, "B", &idx, max_len);
|
|
}
|
|
else
|
|
{
|
|
for (size_t i=0; sz_name[i]; i++)
|
|
{
|
|
if (sz < (1024*1024) || !sz_name[i+1])
|
|
{
|
|
unsigned long long isz = sz/1024;
|
|
if (isz > 9)
|
|
{
|
|
append_ull(buff, isz, &idx, max_len);
|
|
}
|
|
else
|
|
{
|
|
if (isz == 0)
|
|
{
|
|
append_str(buff, "0", &idx, max_len);
|
|
}
|
|
else
|
|
{
|
|
append_ull(buff, isz, &idx, max_len);
|
|
}
|
|
|
|
// Maybe append a single fraction digit
|
|
unsigned long long remainder = sz % 1024;
|
|
if (remainder > 0)
|
|
{
|
|
char tmp[3] = {'.', extract_most_significant_digit(&remainder), 0};
|
|
append_str(buff, tmp, &idx, max_len);
|
|
}
|
|
}
|
|
append_str(buff, sz_name[i], &idx, max_len);
|
|
break;
|
|
}
|
|
sz /= 1024;
|
|
}
|
|
}
|
|
}
|
|
|
|
double timef()
|
|
{
|
|
int time_res;
|
|
struct timeval tv;
|
|
|
|
time_res = gettimeofday(&tv, 0);
|
|
|
|
if (time_res)
|
|
{
|
|
/*
|
|
Fixme: What on earth is the correct parameter value for NaN?
|
|
The man pages and the standard helpfully state that this
|
|
parameter is implementation defined. Gcc gives a warning if
|
|
a null pointer is used. But not even all mighty Google gives
|
|
a hint to what value should actually be returned.
|
|
*/
|
|
return nan("");
|
|
}
|
|
|
|
return (double)tv.tv_sec + 0.000001*tv.tv_usec;
|
|
}
|
|
|
|
void exit_without_destructors(int code)
|
|
{
|
|
_exit(code);
|
|
}
|
|
|
|
/* Helper function to convert from a null_terminated_array_t<wchar_t> to a null_terminated_array_t<char_t> */
|
|
void convert_wide_array_to_narrow(const null_terminated_array_t<wchar_t> &wide_arr, null_terminated_array_t<char> *output)
|
|
{
|
|
const wchar_t *const *arr = wide_arr.get();
|
|
if (! arr)
|
|
{
|
|
output->clear();
|
|
return;
|
|
}
|
|
|
|
std::vector<std::string> list;
|
|
for (size_t i=0; arr[i]; i++)
|
|
{
|
|
list.push_back(wcs2string(arr[i]));
|
|
}
|
|
output->set(list);
|
|
}
|
|
|
|
void append_path_component(wcstring &path, const wcstring &component)
|
|
{
|
|
if (path.empty() || component.empty())
|
|
{
|
|
path.append(component);
|
|
}
|
|
else
|
|
{
|
|
size_t path_len = path.size();
|
|
bool path_slash = path.at(path_len-1) == L'/';
|
|
bool comp_slash = component.at(0) == L'/';
|
|
if (! path_slash && ! comp_slash)
|
|
{
|
|
// Need a slash
|
|
path.push_back(L'/');
|
|
}
|
|
else if (path_slash && comp_slash)
|
|
{
|
|
// Too many slashes
|
|
path.erase(path_len - 1, 1);
|
|
}
|
|
path.append(component);
|
|
}
|
|
}
|
|
|
|
extern "C" {
|
|
__attribute__((noinline)) void debug_thread_error(void)
|
|
{
|
|
while (1) sleep(9999999);
|
|
}
|
|
}
|
|
|
|
|
|
void set_main_thread()
|
|
{
|
|
main_thread_id = pthread_self();
|
|
}
|
|
|
|
void configure_thread_assertions_for_testing(void)
|
|
{
|
|
thread_assertions_configured_for_testing = true;
|
|
}
|
|
|
|
/* Notice when we've forked */
|
|
static pid_t initial_pid = 0;
|
|
|
|
/* Be able to restore the term's foreground process group */
|
|
static pid_t initial_foreground_process_group = -1;
|
|
|
|
bool is_forked_child(void)
|
|
{
|
|
/* Just bail if nobody's called setup_fork_guards - e.g. fishd */
|
|
if (! initial_pid) return false;
|
|
|
|
bool is_child_of_fork = (getpid() != initial_pid);
|
|
if (is_child_of_fork)
|
|
{
|
|
printf("Uh-oh: %d\n", getpid());
|
|
while (1) sleep(10000);
|
|
}
|
|
return is_child_of_fork;
|
|
}
|
|
|
|
void setup_fork_guards(void)
|
|
{
|
|
/* Notice when we fork by stashing our pid. This seems simpler than pthread_atfork(). */
|
|
initial_pid = getpid();
|
|
}
|
|
|
|
void save_term_foreground_process_group(void)
|
|
{
|
|
initial_foreground_process_group = tcgetpgrp(STDIN_FILENO);
|
|
}
|
|
|
|
void restore_term_foreground_process_group(void)
|
|
{
|
|
if (initial_foreground_process_group != -1)
|
|
{
|
|
tcsetpgrp(STDIN_FILENO, initial_foreground_process_group);
|
|
}
|
|
}
|
|
|
|
bool is_main_thread()
|
|
{
|
|
assert(main_thread_id != 0);
|
|
return main_thread_id == pthread_self();
|
|
}
|
|
|
|
void assert_is_main_thread(const char *who)
|
|
{
|
|
if (! is_main_thread() && ! thread_assertions_configured_for_testing)
|
|
{
|
|
fprintf(stderr, "Warning: %s called off of main thread. Break on debug_thread_error to debug.\n", who);
|
|
debug_thread_error();
|
|
}
|
|
}
|
|
|
|
void assert_is_not_forked_child(const char *who)
|
|
{
|
|
if (is_forked_child())
|
|
{
|
|
fprintf(stderr, "Warning: %s called in a forked child. Break on debug_thread_error to debug.\n", who);
|
|
debug_thread_error();
|
|
}
|
|
}
|
|
|
|
void assert_is_background_thread(const char *who)
|
|
{
|
|
if (is_main_thread() && ! thread_assertions_configured_for_testing)
|
|
{
|
|
fprintf(stderr, "Warning: %s called on the main thread (may block!). Break on debug_thread_error to debug.\n", who);
|
|
debug_thread_error();
|
|
}
|
|
}
|
|
|
|
void assert_is_locked(void *vmutex, const char *who, const char *caller)
|
|
{
|
|
pthread_mutex_t *mutex = static_cast<pthread_mutex_t*>(vmutex);
|
|
if (0 == pthread_mutex_trylock(mutex))
|
|
{
|
|
fprintf(stderr, "Warning: %s is not locked when it should be in '%s'. Break on debug_thread_error to debug.\n", who, caller);
|
|
debug_thread_error();
|
|
pthread_mutex_unlock(mutex);
|
|
}
|
|
}
|
|
|
|
void scoped_lock::lock(void)
|
|
{
|
|
assert(! locked);
|
|
assert(! is_forked_child());
|
|
VOMIT_ON_FAILURE(pthread_mutex_lock(lock_obj));
|
|
locked = true;
|
|
}
|
|
|
|
void scoped_lock::unlock(void)
|
|
{
|
|
assert(locked);
|
|
assert(! is_forked_child());
|
|
VOMIT_ON_FAILURE(pthread_mutex_unlock(lock_obj));
|
|
locked = false;
|
|
}
|
|
|
|
scoped_lock::scoped_lock(pthread_mutex_t &mutex) : lock_obj(&mutex), locked(false)
|
|
{
|
|
this->lock();
|
|
}
|
|
|
|
scoped_lock::~scoped_lock()
|
|
{
|
|
if (locked) this->unlock();
|
|
}
|
|
|
|
wcstokenizer::wcstokenizer(const wcstring &s, const wcstring &separator) :
|
|
buffer(),
|
|
str(),
|
|
state(),
|
|
sep(separator)
|
|
{
|
|
buffer = wcsdup(s.c_str());
|
|
str = buffer;
|
|
state = NULL;
|
|
}
|
|
|
|
bool wcstokenizer::next(wcstring &result)
|
|
{
|
|
wchar_t *tmp = wcstok(str, sep.c_str(), &state);
|
|
str = NULL;
|
|
if (tmp) result = tmp;
|
|
return tmp != NULL;
|
|
}
|
|
|
|
wcstokenizer::~wcstokenizer()
|
|
{
|
|
free(buffer);
|
|
}
|
|
|
|
|
|
template <typename CharType_t>
|
|
static CharType_t **make_null_terminated_array_helper(const std::vector<std::basic_string<CharType_t> > &argv)
|
|
{
|
|
size_t count = argv.size();
|
|
|
|
/* We allocate everything in one giant block. First compute how much space we need. */
|
|
|
|
/* N + 1 pointers */
|
|
size_t pointers_allocation_len = (count + 1) * sizeof(CharType_t *);
|
|
|
|
/* In the very unlikely event that CharType_t has stricter alignment requirements than does a pointer, round us up to the size of a CharType_t */
|
|
pointers_allocation_len += sizeof(CharType_t) - 1;
|
|
pointers_allocation_len -= pointers_allocation_len % sizeof(CharType_t);
|
|
|
|
/* N null terminated strings */
|
|
size_t strings_allocation_len = 0;
|
|
for (size_t i=0; i < count; i++)
|
|
{
|
|
/* The size of the string, plus a null terminator */
|
|
strings_allocation_len += (argv.at(i).size() + 1) * sizeof(CharType_t);
|
|
}
|
|
|
|
/* Now allocate their sum */
|
|
unsigned char *base = static_cast<unsigned char *>(malloc(pointers_allocation_len + strings_allocation_len));
|
|
if (! base) return NULL;
|
|
|
|
/* Divvy it up into the pointers and strings */
|
|
CharType_t **pointers = reinterpret_cast<CharType_t **>(base);
|
|
CharType_t *strings = reinterpret_cast<CharType_t *>(base + pointers_allocation_len);
|
|
|
|
/* Start copying */
|
|
for (size_t i=0; i < count; i++)
|
|
{
|
|
const std::basic_string<CharType_t> &str = argv.at(i);
|
|
// store the current string pointer into self
|
|
*pointers++ = strings;
|
|
|
|
// copy the string into strings
|
|
strings = std::copy(str.begin(), str.end(), strings);
|
|
// each string needs a null terminator
|
|
*strings++ = (CharType_t)(0);
|
|
}
|
|
// array of pointers needs a null terminator
|
|
*pointers++ = NULL;
|
|
|
|
// Make sure we know what we're doing
|
|
assert((unsigned char *)pointers - base == (std::ptrdiff_t)pointers_allocation_len);
|
|
assert((unsigned char *)strings - (unsigned char *)pointers == (std::ptrdiff_t)strings_allocation_len);
|
|
assert((unsigned char *)strings - base == (std::ptrdiff_t)(pointers_allocation_len + strings_allocation_len));
|
|
|
|
// Return what we did
|
|
return reinterpret_cast<CharType_t**>(base);
|
|
}
|
|
|
|
wchar_t **make_null_terminated_array(const wcstring_list_t &lst)
|
|
{
|
|
return make_null_terminated_array_helper(lst);
|
|
}
|
|
|
|
char **make_null_terminated_array(const std::vector<std::string> &lst)
|
|
{
|
|
return make_null_terminated_array_helper(lst);
|
|
}
|