fish-shell/src/complete.cpp
ridiculousfish 3d40292c00 Switch env_var to using maybe_t
This eliminates the "missing" notion of env_var_t. Instead
env_get returns a maybe_t<env_var_t>, which forces callers to
handle the possibility that the variable is missing.
2017-09-01 00:14:42 -07:00

1661 lines
65 KiB
C++

/// Functions related to tab-completion.
///
/// These functions are used for storing and retrieving tab-completion data, as well as for
/// performing tab-completion.
///
#include "config.h" // IWYU pragma: keep
#include <pthread.h>
#include <pwd.h>
#include <stddef.h>
#include <wchar.h>
#include <wctype.h>
#include <algorithm>
#include <cstddef>
#include <functional>
#include <iterator>
#include <list>
#include <memory>
#include <set>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include "autoload.h"
#include "builtin.h"
#include "common.h"
#include "complete.h"
#include "exec.h"
#include "expand.h"
#include "fallback.h" // IWYU pragma: keep
#include "function.h"
#include "iothread.h"
#include "parse_constants.h"
#include "parse_tree.h"
#include "parse_util.h"
#include "parser.h"
#include "path.h"
#include "proc.h"
#include "util.h"
#include "wildcard.h"
#include "wutil.h" // IWYU pragma: keep
// Completion description strings, mostly for different types of files, such as sockets, block
// devices, etc.
//
// There are a few more completion description strings defined in expand.c. Maybe all completion
// description strings should be defined in the same file?
/// Description for ~USER completion.
#define COMPLETE_USER_DESC _(L"Home for %ls")
/// Description for short variables. The value is concatenated to this description.
#define COMPLETE_VAR_DESC_VAL _(L"Variable: %ls")
/// The special cased translation macro for completions. The empty string needs to be special cased,
/// since it can occur, and should not be translated. (Gettext returns the version information as
/// the response).
#ifdef USE_GETTEXT
static const wchar_t *C_(const wcstring &s) {
return s.empty() ? L"" : wgettext(s.c_str()).c_str();
}
#else
static const wcstring &C_(const wcstring &s) { return s; }
#endif
static void complete_load(const wcstring &name, bool reload);
/// Testing apparatus.
const wcstring_list_t *s_override_variable_names = NULL;
void complete_set_variable_names(const wcstring_list_t *names) {
s_override_variable_names = names;
}
static inline wcstring_list_t complete_get_variable_names(void) {
if (s_override_variable_names != NULL) {
return *s_override_variable_names;
}
return env_get_names(0);
}
/// Struct describing a completion option entry.
///
/// If option is empty, the comp field must not be empty and contains a list of arguments to the
/// command.
///
/// The type field determines how the option is to be interpreted: either empty (args_only) or
/// short, single-long ("old") or double-long ("GNU"). An invariant is that the option is empty if
/// and only if the type is args_only.
///
/// If option is non-empty, it specifies a switch for the command. If \c comp is also not empty, it
/// contains a list of non-switch arguments that may only follow directly after the specified
/// switch.
typedef struct complete_entry_opt {
// Text of the option (like 'foo').
wcstring option;
// Type of the option: args-oly, short, single_long, or double_long.
complete_option_type_t type;
// Arguments to the option.
wcstring comp;
// Description of the completion.
wcstring desc;
// Condition under which to use the option.
wcstring condition;
// Must be one of the values SHARED, NO_FILES, NO_COMMON, EXCLUSIVE, and determines how
// completions should be performed on the argument after the switch.
int result_mode;
// Completion flags.
complete_flags_t flags;
const wcstring localized_desc() const { return C_(desc); }
size_t expected_dash_count() const {
switch (this->type) {
case option_type_args_only:
return 0;
case option_type_short:
case option_type_single_long:
return 1;
case option_type_double_long:
return 2;
}
DIE("unreachable");
}
} complete_entry_opt_t;
/// Last value used in the order field of completion_entry_t.
static unsigned int kCompleteOrder = 0;
/// Struct describing a command completion.
typedef std::list<complete_entry_opt_t> option_list_t;
class completion_entry_t {
public:
/// List of all options.
option_list_t options;
public:
/// Command string.
const wcstring cmd;
/// True if command is a path.
const bool cmd_is_path;
/// Order for when this completion was created. This aids in outputting completions sorted by
/// time.
const unsigned int order;
/// Getters for option list.
const option_list_t &get_options() const;
/// Adds or removes an option.
void add_option(const complete_entry_opt_t &opt);
bool remove_option(const wcstring &option, complete_option_type_t type);
completion_entry_t(const wcstring &c, bool type)
: cmd(c), cmd_is_path(type), order(++kCompleteOrder) {}
};
/// Set of all completion entries.
namespace std {
template<>
struct hash<completion_entry_t> {
size_t operator()(const completion_entry_t &c) const {
std::hash<wcstring> hasher;
return hasher((wcstring) c.cmd);
}
};
template <>
struct equal_to<completion_entry_t> {
bool operator()(const completion_entry_t &c1, const completion_entry_t &c2) const {
return c1.cmd == c2.cmd;
}
};
}
typedef std::unordered_set<completion_entry_t> completion_entry_set_t;
static completion_entry_set_t completion_set;
/// Comparison function to sort completions by their order field.
static bool compare_completions_by_order(const completion_entry_t *p1,
const completion_entry_t *p2) {
return p1->order < p2->order;
}
/// The lock that guards the list of completion entries.
static std::mutex completion_lock;
void completion_entry_t::add_option(const complete_entry_opt_t &opt) {
ASSERT_IS_LOCKED(completion_lock);
options.push_front(opt);
}
const option_list_t &completion_entry_t::get_options() const {
ASSERT_IS_LOCKED(completion_lock);
return options;
}
completion_t::~completion_t() {}
/// Clear the COMPLETE_AUTO_SPACE flag, and set COMPLETE_NO_SPACE appropriately depending on the
/// suffix of the string.
static complete_flags_t resolve_auto_space(const wcstring &comp, complete_flags_t flags) {
complete_flags_t new_flags = flags;
if (flags & COMPLETE_AUTO_SPACE) {
new_flags &= ~COMPLETE_AUTO_SPACE;
size_t len = comp.size();
if (len > 0 && (wcschr(L"/=@:", comp.at(len - 1)) != 0)) new_flags |= COMPLETE_NO_SPACE;
}
return new_flags;
}
/// completion_t functions. Note that the constructor resolves flags!
completion_t::completion_t(const wcstring &comp, const wcstring &desc, string_fuzzy_match_t mat,
complete_flags_t flags_val)
: completion(comp), description(desc), match(mat), flags(resolve_auto_space(comp, flags_val)) {}
completion_t::completion_t(const completion_t &him)
: completion(him.completion),
description(him.description),
match(him.match),
flags(him.flags) {}
completion_t &completion_t::operator=(const completion_t &him) {
if (this != &him) {
this->completion = him.completion;
this->description = him.description;
this->match = him.match;
this->flags = him.flags;
}
return *this;
}
bool completion_t::is_naturally_less_than(const completion_t &a, const completion_t &b) {
// For this to work, stable_sort must be used because results aren't interchangeable.
if (a.flags & b.flags & COMPLETE_DONT_SORT) {
// Both completions are from a source with the --keep-order flag.
return false;
}
return wcsfilecmp(a.completion.c_str(), b.completion.c_str()) < 0;
}
void completion_t::prepend_token_prefix(const wcstring &prefix) {
if (this->flags & COMPLETE_REPLACES_TOKEN) {
this->completion.insert(0, prefix);
}
}
static bool compare_completions_by_match_type(const completion_t &a, const completion_t &b) {
return a.match.type < b.match.type;
}
template <class Iterator, class HashFunction>
static Iterator unique_unsorted(Iterator begin, Iterator end, HashFunction hash) {
typedef typename std::iterator_traits<Iterator>::value_type T;
std::unordered_set<size_t> temp;
return std::remove_if(begin, end, [&](const T &val) { return !temp.insert(hash(val)).second; });
}
void completions_sort_and_prioritize(std::vector<completion_t> *comps) {
// Find the best match type.
fuzzy_match_type_t best_type = fuzzy_match_none;
for (size_t i = 0; i < comps->size(); i++) {
best_type = std::min(best_type, comps->at(i).match.type);
}
// If the best type is an exact match, reduce it to prefix match. Otherwise a tab completion
// will only show one match if it matches a file exactly. (see issue #959).
if (best_type == fuzzy_match_exact) {
best_type = fuzzy_match_prefix;
}
// Throw out completions whose match types are less suitable than the best.
size_t i = comps->size();
while (i--) {
if (comps->at(i).match.type > best_type) {
comps->erase(comps->begin() + i);
}
}
// Sort, provided COMPLETION_DONT_SORT isn't set
stable_sort(comps->begin(), comps->end(), completion_t::is_naturally_less_than);
// Deduplicate both sorted and unsorted results
comps->erase(
unique_unsorted(comps->begin(), comps->end(),
[](const completion_t &c) { return std::hash<wcstring>{}(c.completion); }),
comps->end());
// Sort the remainder by match type. They're already sorted alphabetically.
stable_sort(comps->begin(), comps->end(), compare_completions_by_match_type);
}
/// Class representing an attempt to compute completions.
class completer_t {
const completion_request_flags_t flags;
const wcstring initial_cmd;
std::vector<completion_t> completions;
/// Table of completions conditions that have already been tested and the corresponding test
/// results.
typedef std::unordered_map<wcstring, bool> condition_cache_t;
condition_cache_t condition_cache;
enum complete_type_t { COMPLETE_DEFAULT, COMPLETE_AUTOSUGGEST };
complete_type_t type() const {
return flags & COMPLETION_REQUEST_AUTOSUGGESTION ? COMPLETE_AUTOSUGGEST : COMPLETE_DEFAULT;
}
bool wants_descriptions() const {
return static_cast<bool>(flags & COMPLETION_REQUEST_DESCRIPTIONS);
}
bool fuzzy() const { return static_cast<bool>(flags & COMPLETION_REQUEST_FUZZY_MATCH); }
fuzzy_match_type_t max_fuzzy_match_type() const {
// If we are doing fuzzy matching, request all types; if not request only prefix matching.
if (flags & COMPLETION_REQUEST_FUZZY_MATCH) return fuzzy_match_none;
return fuzzy_match_prefix_case_insensitive;
}
public:
completer_t(const wcstring &c, completion_request_flags_t f) : flags(f), initial_cmd(c) {}
bool empty() const { return completions.empty(); }
const std::vector<completion_t> &get_completions(void) { return completions; }
bool try_complete_variable(const wcstring &str);
bool try_complete_user(const wcstring &str);
bool complete_param(const wcstring &cmd_orig, const wcstring &popt, const wcstring &str,
bool use_switches);
void complete_param_expand(const wcstring &str, bool do_file,
bool handle_as_special_cd = false);
void complete_cmd(const wcstring &str, bool use_function, bool use_builtin, bool use_command,
bool use_implicit_cd);
void complete_from_args(const wcstring &str, const wcstring &args, const wcstring &desc,
complete_flags_t flags);
void complete_cmd_desc(const wcstring &str);
bool complete_variable(const wcstring &str, size_t start_offset);
bool condition_test(const wcstring &condition);
void complete_strings(const wcstring &wc_escaped, const wchar_t *desc,
wcstring (*desc_func)(const wcstring &),
std::vector<completion_t> &possible_comp, complete_flags_t flags);
expand_flags_t expand_flags() const {
// Never do command substitution in autosuggestions. Sadly, we also can't yet do job
// expansion because it's not thread safe.
expand_flags_t result = 0;
if (this->type() == COMPLETE_AUTOSUGGEST) result |= EXPAND_SKIP_CMDSUBST;
// Allow fuzzy matching.
if (this->fuzzy()) result |= EXPAND_FUZZY_MATCH;
return result;
}
};
// Callback when an autoloaded completion is removed.
static void autoloaded_completion_removed(const wcstring &cmd) {
complete_remove_all(cmd, false /* not a path */);
}
// Autoloader for completions
static autoload_t completion_autoloader(L"fish_complete_path", autoloaded_completion_removed);
/// Create a new completion entry.
void append_completion(std::vector<completion_t> *completions, const wcstring &comp,
const wcstring &desc, complete_flags_t flags, string_fuzzy_match_t match) {
// If we just constructed the completion and used push_back, we would get two string copies. Try
// to avoid that by making a stubby completion in the vector first, and then copying our string
// in. Note that completion_t's constructor will munge 'flags' so it's important that we pass
// those to the constructor.
//
// Nasty hack for #1241 - since the constructor needs the completion string to resolve
// AUTO_SPACE, and we aren't providing it with the completion, we have to do the resolution
// ourselves. We should get this resolving out of the constructor.
assert(completions != NULL);
const wcstring empty;
completions->push_back(completion_t(empty, empty, match, resolve_auto_space(comp, flags)));
completion_t *last = &completions->back();
last->completion = comp;
last->description = desc;
}
/// Test if the specified script returns zero. The result is cached, so that if multiple completions
/// use the same condition, it needs only be evaluated once. condition_cache_clear must be called
/// after a completion run to make sure that there are no stale completions.
bool completer_t::condition_test(const wcstring &condition) {
if (condition.empty()) {
// fwprintf( stderr, L"No condition specified\n" );
return 1;
}
if (this->type() == COMPLETE_AUTOSUGGEST) {
// Autosuggestion can't support conditions.
return 0;
}
ASSERT_IS_MAIN_THREAD();
bool test_res;
condition_cache_t::iterator cached_entry = condition_cache.find(condition);
if (cached_entry == condition_cache.end()) {
// Compute new value and reinsert it.
test_res = (0 == exec_subshell(condition, false /* don't apply exit status */));
condition_cache[condition] = test_res;
} else {
// Use the old value.
test_res = cached_entry->second;
}
return test_res;
}
/// Locate the specified entry. Create it if it doesn't exist. Must be called while locked.
static completion_entry_t &complete_get_exact_entry(const wcstring &cmd, bool cmd_is_path) {
ASSERT_IS_LOCKED(completion_lock);
auto ins = completion_set.emplace(completion_entry_t(cmd, cmd_is_path));
// NOTE SET_ELEMENTS_ARE_IMMUTABLE: Exposing mutable access here is only okay as long as callers
// do not change any field that matters to ordering - affecting order without telling std::set
// invalidates its internal state.
return const_cast<completion_entry_t &>(*ins.first);
}
void complete_add(const wchar_t *cmd, bool cmd_is_path, const wcstring &option,
complete_option_type_t option_type, int result_mode, const wchar_t *condition,
const wchar_t *comp, const wchar_t *desc, complete_flags_t flags) {
CHECK(cmd, );
// option should be empty iff the option type is arguments only.
assert(option.empty() == (option_type == option_type_args_only));
// Lock the lock that allows us to edit the completion entry list.
scoped_lock lock(completion_lock);
completion_entry_t &c = complete_get_exact_entry(cmd, cmd_is_path);
// Create our new option.
complete_entry_opt_t opt;
opt.option = option;
opt.type = option_type;
opt.result_mode = result_mode;
if (comp) opt.comp = comp;
if (condition) opt.condition = condition;
if (desc) opt.desc = desc;
opt.flags = flags;
c.add_option(opt);
}
/// Remove all completion options in the specified entry that match the specified short / long
/// option strings. Returns true if it is now empty and should be deleted, false if it's not empty.
/// Must be called while locked.
bool completion_entry_t::remove_option(const wcstring &option, complete_option_type_t type) {
ASSERT_IS_LOCKED(completion_lock);
option_list_t::iterator iter = this->options.begin();
while (iter != this->options.end()) {
if (iter->option == option && iter->type == type) {
iter = this->options.erase(iter);
} else {
// Just go to the next one.
++iter;
}
}
return this->options.empty();
}
void complete_remove(const wcstring &cmd, bool cmd_is_path, const wcstring &option,
complete_option_type_t type) {
scoped_lock lock(completion_lock);
completion_entry_t tmp_entry(cmd, cmd_is_path);
completion_entry_set_t::iterator iter = completion_set.find(tmp_entry);
if (iter != completion_set.end()) {
// const_cast: See SET_ELEMENTS_ARE_IMMUTABLE.
completion_entry_t &entry = const_cast<completion_entry_t &>(*iter);
bool delete_it = entry.remove_option(option, type);
if (delete_it) {
completion_set.erase(iter);
}
}
}
void complete_remove_all(const wcstring &cmd, bool cmd_is_path) {
scoped_lock lock(completion_lock);
completion_entry_t tmp_entry(cmd, cmd_is_path);
completion_set.erase(tmp_entry);
}
/// Find the full path and commandname from a command string 'str'.
static void parse_cmd_string(const wcstring &str, wcstring &path, wcstring &cmd) {
if (!path_get_path(str, &path)) {
/// Use the empty string as the 'path' for commands that can not be found.
path = L"";
}
// Make sure the path is not included in the command.
size_t last_slash = str.find_last_of(L'/');
if (last_slash != wcstring::npos) {
cmd = str.substr(last_slash + 1);
} else {
cmd = str;
}
}
/// Copy any strings in possible_comp which have the specified prefix to the
/// completer's completion array. The prefix may contain wildcards. The output
/// will consist of completion_t structs.
///
/// There are three ways to specify descriptions for each completion. Firstly,
/// if a description has already been added to the completion, it is _not_
/// replaced. Secondly, if the desc_func function is specified, use it to
/// determine a dynamic completion. Thirdly, if none of the above are available,
/// the desc string is used as a description.
///
/// @param wc_escaped
/// the prefix, possibly containing wildcards. The wildcard should not have
/// been unescaped, i.e. '*' should be used for any string, not the
/// ANY_STRING character.
/// @param desc
/// the default description, used for completions with no embedded
/// description. The description _may_ contain a COMPLETE_SEP character, if
/// not, one will be prefixed to it
/// @param desc_func
/// the function that generates a description for those completions witout an
/// embedded description
/// @param possible_comp
/// the list of possible completions to iterate over
/// @param flags
/// The flags
void completer_t::complete_strings(const wcstring &wc_escaped, const wchar_t *desc,
wcstring (*desc_func)(const wcstring &),
std::vector<completion_t> &possible_comp,
complete_flags_t flags) {
wcstring tmp = wc_escaped;
if (!expand_one(tmp, EXPAND_SKIP_CMDSUBST | EXPAND_SKIP_WILDCARDS | this->expand_flags(), NULL))
return;
const wcstring wc = parse_util_unescape_wildcards(tmp);
for (size_t i = 0; i < possible_comp.size(); i++) {
wcstring temp = possible_comp.at(i).completion;
const wchar_t *next_str = temp.empty() ? NULL : temp.c_str();
if (next_str) {
wildcard_complete(next_str, wc.c_str(), desc, desc_func, &this->completions,
this->expand_flags(), flags);
}
}
}
/// If command to complete is short enough, substitute the description with the whatis information
/// for the executable.
void completer_t::complete_cmd_desc(const wcstring &str) {
ASSERT_IS_MAIN_THREAD();
const wchar_t *cmd_start;
int skip;
const wchar_t *const cmd = str.c_str();
cmd_start = wcsrchr(cmd, L'/');
if (cmd_start)
cmd_start++;
else
cmd_start = cmd;
// Using apropos with a single-character search term produces far to many results - require at
// least two characters if we don't know the location of the whatis-database.
if (wcslen(cmd_start) < 2) return;
if (wildcard_has(cmd_start, 0)) {
return;
}
skip = 1;
for (size_t i = 0; i < this->completions.size(); i++) {
const completion_t &c = this->completions.at(i);
if (c.completion.empty() || (c.completion[c.completion.size() - 1] != L'/')) {
skip = 0;
break;
}
}
if (skip) {
return;
}
wcstring lookup_cmd(L"__fish_describe_command ");
lookup_cmd.append(escape_string(cmd_start, 1));
std::unordered_map<wcstring, wcstring> lookup;
// First locate a list of possible descriptions using a single call to apropos or a direct
// search if we know the location of the whatis database. This can take some time on slower
// systems with a large set of manuals, but it should be ok since apropos is only called once.
wcstring_list_t list;
if (exec_subshell(lookup_cmd, list, false /* don't apply exit status */) != -1) {
// Then discard anything that is not a possible completion and put the result into a
// hashtable with the completion as key and the description as value.
//
// Should be reasonably fast, since no memory allocations are needed.
for (size_t i = 0; i < list.size(); i++) {
const wcstring &elstr = list.at(i);
const wcstring fullkey(elstr, wcslen(cmd_start));
size_t tab_idx = fullkey.find(L'\t');
if (tab_idx == wcstring::npos) continue;
const wcstring key(fullkey, 0, tab_idx);
wcstring val(fullkey, tab_idx + 1);
// And once again I make sure the first character is uppercased because I like it that
// way, and I get to decide these things.
if (!val.empty()) val[0] = towupper(val[0]);
lookup[key] = val;
}
// Then do a lookup on every completion and if a match is found, change to the new
// description.
//
// This needs to do a reallocation for every description added, but there shouldn't be that
// many completions, so it should be ok.
for (size_t i = 0; i < this->completions.size(); i++) {
completion_t &completion = this->completions.at(i);
const wcstring &el = completion.completion;
if (el.empty()) continue;
auto new_desc_iter = lookup.find(el);
if (new_desc_iter != lookup.end()) completion.description = new_desc_iter->second;
}
}
}
/// Returns a description for the specified function, or an empty string if none.
static wcstring complete_function_desc(const wcstring &fn) {
wcstring result;
bool has_description = function_get_desc(fn, &result);
if (!has_description) {
function_get_definition(fn, &result);
}
return result;
}
/// Complete the specified command name. Search for executables in the path, executables defined
/// using an absolute path, functions, builtins and directories for implicit cd commands.
///
/// \param str_cmd the command string to find completions for
void completer_t::complete_cmd(const wcstring &str_cmd, bool use_function, bool use_builtin,
bool use_command, bool use_implicit_cd) {
if (str_cmd.empty()) return;
std::vector<completion_t> possible_comp;
if (use_command) {
expand_error_t result = expand_string(str_cmd, &this->completions,
EXPAND_SPECIAL_FOR_COMMAND | EXPAND_FOR_COMPLETIONS |
EXECUTABLES_ONLY | this->expand_flags(),
NULL);
if (result != EXPAND_ERROR && this->wants_descriptions()) {
this->complete_cmd_desc(str_cmd);
}
}
if (use_implicit_cd) {
// We don't really care if this succeeds or fails. If it succeeds this->completions will be
// updated with choices for the user.
expand_error_t ignore =
expand_string(str_cmd, &this->completions,
EXPAND_FOR_COMPLETIONS | DIRECTORIES_ONLY | this->expand_flags(), NULL);
UNUSED(ignore);
}
if (str_cmd.find(L'/') == wcstring::npos && str_cmd.at(0) != L'~') {
if (use_function) {
wcstring_list_t names = function_get_names(str_cmd.at(0) == L'_');
for (size_t i = 0; i < names.size(); i++) {
append_completion(&possible_comp, names.at(i));
}
this->complete_strings(str_cmd, 0, &complete_function_desc, possible_comp, 0);
}
possible_comp.clear();
if (use_builtin) {
builtin_get_names(&possible_comp);
this->complete_strings(str_cmd, 0, &builtin_get_desc, possible_comp, 0);
}
}
}
/// Evaluate the argument list (as supplied by complete -a) and insert any
/// return matching completions. Matching is done using @c
/// copy_strings_with_prefix, meaning the completion may contain wildcards.
/// Logically, this is not always the right thing to do, but I have yet to come
/// up with a case where this matters.
///
/// @param str
/// The string to complete.
/// @param args
/// The list of option arguments to be evaluated.
/// @param desc
/// Description of the completion
/// @param flags
/// The list into which the results will be inserted
///
void completer_t::complete_from_args(const wcstring &str, const wcstring &args,
const wcstring &desc, complete_flags_t flags) {
bool is_autosuggest = (this->type() == COMPLETE_AUTOSUGGEST);
// If type is COMPLETE_AUTOSUGGEST, it means we're on a background thread, so don't call
// proc_push_interactive.
if (!is_autosuggest) {
proc_push_interactive(0);
}
expand_flags_t eflags = 0;
if (is_autosuggest) {
eflags |= EXPAND_NO_DESCRIPTIONS | EXPAND_SKIP_CMDSUBST;
}
std::vector<completion_t> possible_comp;
parser_t::expand_argument_list(args, eflags, &possible_comp);
if (!is_autosuggest) {
proc_pop_interactive();
}
this->complete_strings(escape_string(str, ESCAPE_ALL), desc.c_str(), 0, possible_comp, flags);
}
static size_t leading_dash_count(const wchar_t *str) {
size_t cursor = 0;
while (str[cursor] == L'-') {
cursor++;
}
return cursor;
}
/// Match a parameter.
static bool param_match(const complete_entry_opt_t *e, const wchar_t *optstr) {
bool result = false;
if (e->type != option_type_args_only) {
size_t dashes = leading_dash_count(optstr);
result = (dashes == e->expected_dash_count() && e->option == &optstr[dashes]);
}
return result;
}
/// Test if a string is an option with an argument, like --color=auto or -I/usr/include.
static const wchar_t *param_match2(const complete_entry_opt_t *e, const wchar_t *optstr) {
// We may get a complete_entry_opt_t with no options if it's just arguments.
if (e->option.empty()) {
return NULL;
}
// Verify leading dashes.
size_t cursor = leading_dash_count(optstr);
if (cursor != e->expected_dash_count()) {
return NULL;
}
// Verify options match.
if (!string_prefixes_string(e->option, &optstr[cursor])) {
return NULL;
}
cursor += e->option.length();
// Short options are like -DNDEBUG. Long options are like --color=auto. So check for an equal
// sign for long options.
if (e->type != option_type_short) {
if (optstr[cursor] != L'=') {
return NULL;
}
cursor += 1;
}
return &optstr[cursor];
}
/// Tests whether a short option is a viable completion. arg_str will be like '-xzv', nextopt will
/// be a character like 'f' options will be the list of all options, used to validate the argument.
static bool short_ok(const wcstring &arg, const complete_entry_opt_t *entry,
const option_list_t &options) {
// Ensure it's a short option.
if (entry->type != option_type_short || entry->option.empty()) {
return false;
}
const wchar_t nextopt = entry->option.at(0);
// Empty strings are always 'OK'.
if (arg.empty()) {
return true;
}
// The argument must start with exactly one dash.
if (leading_dash_count(arg.c_str()) != 1) {
return false;
}
// Short option must not be already present.
if (arg.find(nextopt) != wcstring::npos) {
return false;
}
// Verify that all characters in our combined short option list are present as short options in
// the options list. If we get a short option that can't be combined (NO_COMMON), then we stop.
bool result = true;
for (size_t i = 1; i < arg.size(); i++) {
wchar_t arg_char = arg.at(i);
const complete_entry_opt_t *match = NULL;
for (option_list_t::const_iterator iter = options.begin(); iter != options.end(); ++iter) {
if (iter->type == option_type_short && iter->option.at(0) == arg_char) {
match = &*iter;
break;
}
}
if (match == NULL || (match->result_mode & NO_COMMON)) {
result = false;
break;
}
}
return result;
}
/// Load command-specific completions for the specified command.
static void complete_load(const wcstring &name, bool reload) {
// We have to load this as a function, since it may define a --wraps or signature.
// See issue #2466.
function_load(name);
completion_autoloader.load(name, reload);
}
/// complete_param: Given a command, find completions for the argument str of command cmd_orig with
/// previous option popt.
///
/// Examples in format (cmd, popt, str):
///
/// echo hello world <tab> -> ("echo", "world", "")
/// echo hello world<tab> -> ("echo", "hello", "world")
///
/// Insert results into comp_out. Return true to perform file completion, false to disable it.
bool completer_t::complete_param(const wcstring &scmd_orig, const wcstring &spopt,
const wcstring &sstr, bool use_switches) {
const wchar_t *const cmd_orig = scmd_orig.c_str();
const wchar_t *const popt = spopt.c_str();
const wchar_t *const str = sstr.c_str();
bool use_common = 1, use_files = 1;
wcstring cmd, path;
parse_cmd_string(cmd_orig, path, cmd);
if (this->type() == COMPLETE_DEFAULT) {
ASSERT_IS_MAIN_THREAD();
complete_load(cmd, true);
} else if (this->type() == COMPLETE_AUTOSUGGEST &&
!completion_autoloader.has_tried_loading(cmd)) {
// Load this command (on the main thread)
iothread_perform_on_main([&]() { complete_load(cmd, false); });
}
// Make a list of lists of all options that we care about.
std::vector<option_list_t> all_options;
{
scoped_lock lock(completion_lock);
for (completion_entry_set_t::const_iterator iter = completion_set.begin();
iter != completion_set.end(); ++iter) {
const completion_entry_t &i = *iter;
const wcstring &match = i.cmd_is_path ? path : cmd;
if (wildcard_match(match, i.cmd)) {
// Copy all of their options into our list.
all_options.push_back(i.get_options()); // Oof, this is a lot of copying
}
}
}
// Now release the lock and test each option that we captured above. We have to do this outside
// the lock because callouts (like the condition) may add or remove completions. See issue 2.
for (std::vector<option_list_t>::const_iterator iter = all_options.begin();
iter != all_options.end(); ++iter) {
const option_list_t &options = *iter;
use_common = 1;
if (use_switches) {
if (str[0] == L'-') {
// Check if we are entering a combined option and argument (like --color=auto or
// -I/usr/include).
for (option_list_t::const_iterator oiter = options.begin(); oiter != options.end();
++oiter) {
const complete_entry_opt_t *o = &*oiter;
const wchar_t *arg = param_match2(o, str);
if (arg != NULL && this->condition_test(o->condition)) {
if (o->result_mode & NO_COMMON) use_common = false;
if (o->result_mode & NO_FILES) use_files = false;
complete_from_args(arg, o->comp, o->localized_desc(), o->flags);
}
}
} else if (popt[0] == L'-') {
// Set to true if we found a matching old-style switch.
// Here we are testing the previous argument,
// to see how we should complete the current argument
bool old_style_match = false;
// If we are using old style long options, check for them first.
for (option_list_t::const_iterator oiter = options.begin(); oiter != options.end();
++oiter) {
const complete_entry_opt_t *o = &*oiter;
if (o->type == option_type_single_long && param_match(o, popt) &&
this->condition_test(o->condition)) {
old_style_match = true;
if (o->result_mode & NO_COMMON) use_common = false;
if (o->result_mode & NO_FILES) use_files = false;
complete_from_args(str, o->comp, o->localized_desc(), o->flags);
}
}
// No old style option matched, or we are not using old style options. We check if
// any short (or gnu style options do.
if (!old_style_match) {
for (option_list_t::const_iterator oiter = options.begin();
oiter != options.end(); ++oiter) {
const complete_entry_opt_t *o = &*oiter;
// Gnu-style options with _optional_ arguments must be specified as a single
// token, so that it can be differed from a regular argument.
// Here we are testing the previous argument for a GNU-style match,
// to see how we should complete the current argument
if (o->type == option_type_double_long && !(o->result_mode & NO_COMMON))
continue;
if (param_match(o, popt) && this->condition_test(o->condition)) {
if (o->result_mode & NO_COMMON) use_common = false;
if (o->result_mode & NO_FILES) use_files = false;
complete_from_args(str, o->comp, o->localized_desc(), o->flags);
}
}
}
}
}
if (!use_common) {
continue;
}
// Now we try to complete an option itself
for (option_list_t::const_iterator oiter = options.begin(); oiter != options.end();
++oiter) {
const complete_entry_opt_t *o = &*oiter;
// If this entry is for the base command, check if any of the arguments match.
if (!this->condition_test(o->condition)) continue;
if (o->option.empty()) {
use_files = use_files && ((o->result_mode & NO_FILES) == 0);
complete_from_args(str, o->comp, o->localized_desc(), o->flags);
}
if (wcslen(str) == 0 || !use_switches) {
continue;
}
// Check if the short style option matches.
if (short_ok(str, o, options)) {
// It's a match.
const wcstring desc = o->localized_desc();
append_completion(&this->completions, o->option, desc, 0);
}
// Check if the long style option matches.
if (o->type != option_type_single_long && o->type != option_type_double_long) {
continue;
}
int match = 0, match_no_case = 0;
wcstring whole_opt(o->expected_dash_count(), L'-');
whole_opt.append(o->option);
match = string_prefixes_string(str, whole_opt);
if (!match) {
match_no_case = wcsncasecmp(str, whole_opt.c_str(), wcslen(str)) == 0;
}
if (!match && !match_no_case) {
continue;
}
int has_arg = 0; // does this switch have any known arguments
int req_arg = 0; // does this switch _require_ an argument
size_t offset = 0;
complete_flags_t flags = 0;
if (match) {
offset = wcslen(str);
} else {
flags = COMPLETE_REPLACES_TOKEN;
}
has_arg = !o->comp.empty();
req_arg = (o->result_mode & NO_COMMON);
if (o->type == option_type_double_long && (has_arg && !req_arg)) {
// Optional arguments to a switch can only be handled using the '=', so we add it as
// a completion. By default we avoid using '=' and instead rely on '--switch
// switch-arg', since it is more commonly supported by homebrew getopt-like
// functions.
wcstring completion = format_string(L"%ls=", whole_opt.c_str() + offset);
append_completion(&this->completions, completion, C_(o->desc), flags);
}
append_completion(&this->completions, whole_opt.c_str() + offset, C_(o->desc), flags);
}
}
return use_files;
}
/// Perform generic (not command-specific) expansions on the specified string.
void completer_t::complete_param_expand(const wcstring &str, bool do_file,
bool handle_as_special_cd) {
expand_flags_t flags = EXPAND_SKIP_CMDSUBST | EXPAND_FOR_COMPLETIONS | this->expand_flags();
if (!do_file) flags |= EXPAND_SKIP_WILDCARDS;
if (handle_as_special_cd && do_file) {
flags |= DIRECTORIES_ONLY | EXPAND_SPECIAL_FOR_CD | EXPAND_NO_DESCRIPTIONS;
}
// Squelch file descriptions per issue #254.
if (this->type() == COMPLETE_AUTOSUGGEST || do_file) flags |= EXPAND_NO_DESCRIPTIONS;
// We have the following cases:
//
// --foo=bar => expand just bar
// -foo=bar => expand just bar
// foo=bar => expand the whole thing, and also just bar
//
// We also support colon separator (#2178). If there's more than one, prefer the last one.
size_t sep_index = str.find_last_of(L"=:");
bool complete_from_separator = (sep_index != wcstring::npos);
bool complete_from_start = !complete_from_separator || !string_prefixes_string(L"-", str);
if (complete_from_separator) {
const wcstring sep_string = wcstring(str, sep_index + 1);
std::vector<completion_t> local_completions;
if (expand_string(sep_string, &local_completions, flags, NULL) == EXPAND_ERROR) {
debug(3, L"Error while expanding string '%ls'", sep_string.c_str());
}
// Any COMPLETE_REPLACES_TOKEN will also stomp the separator. We need to "repair" them by
// inserting our separator and prefix.
const wcstring prefix_with_sep = wcstring(str, 0, sep_index + 1);
for (size_t i = 0; i < local_completions.size(); i++) {
local_completions.at(i).prepend_token_prefix(prefix_with_sep);
}
this->completions.insert(this->completions.end(), local_completions.begin(),
local_completions.end());
}
if (complete_from_start) {
// Don't do fuzzy matching for files if the string begins with a dash (issue #568). We could
// consider relaxing this if there was a preceding double-dash argument.
if (string_prefixes_string(L"-", str)) flags &= ~EXPAND_FUZZY_MATCH;
if (expand_string(str, &this->completions, flags, NULL) == EXPAND_ERROR) {
debug(3, L"Error while expanding string '%ls'", str.c_str());
}
}
}
/// Complete the specified string as an environment variable.
bool completer_t::complete_variable(const wcstring &str, size_t start_offset) {
const wchar_t *const whole_var = str.c_str();
const wchar_t *var = &whole_var[start_offset];
size_t varlen = wcslen(var);
bool res = false;
const wcstring_list_t names = complete_get_variable_names();
for (size_t i = 0; i < names.size(); i++) {
const wcstring &env_name = names.at(i);
string_fuzzy_match_t match =
string_fuzzy_match_string(var, env_name, this->max_fuzzy_match_type());
if (match.type == fuzzy_match_none) {
continue; // no match
}
wcstring comp;
int flags = 0;
if (!match_type_requires_full_replacement(match.type)) {
// Take only the suffix.
comp.append(env_name.c_str() + varlen);
} else {
comp.append(whole_var, start_offset);
comp.append(env_name);
flags = COMPLETE_REPLACES_TOKEN | COMPLETE_DONT_ESCAPE;
}
wcstring desc;
if (this->wants_descriptions()) {
// Can't use this->vars here, it could be any variable.
auto var = env_get(env_name);
if (!var) continue;
wcstring value = expand_escape_variable(*var);
if (this->type() != COMPLETE_AUTOSUGGEST) {
desc = format_string(COMPLETE_VAR_DESC_VAL, value.c_str());
}
}
append_completion(&this->completions, comp, desc, flags, match);
res = true;
}
return res;
}
bool completer_t::try_complete_variable(const wcstring &str) {
enum { e_unquoted, e_single_quoted, e_double_quoted } mode = e_unquoted;
const size_t len = str.size();
// Get the position of the dollar heading a (possibly empty) run of valid variable characters.
// npos means none.
size_t variable_start = wcstring::npos;
for (size_t in_pos = 0; in_pos < len; in_pos++) {
wchar_t c = str.at(in_pos);
if (!valid_var_name_char(c)) {
// This character cannot be in a variable, reset the dollar.
variable_start = -1;
}
switch (c) {
case L'\\': {
in_pos++;
break;
}
case L'$': {
if (mode == e_unquoted || mode == e_double_quoted) {
variable_start = in_pos;
}
break;
}
case L'\'': {
if (mode == e_single_quoted) {
mode = e_unquoted;
} else if (mode == e_unquoted) {
mode = e_single_quoted;
}
break;
}
case L'"': {
if (mode == e_double_quoted) {
mode = e_unquoted;
} else if (mode == e_unquoted) {
mode = e_double_quoted;
}
break;
}
default: {
break; // all other chars ignored here
}
}
}
// Now complete if we have a variable start. Note the variable text may be empty; in that case
// don't generate an autosuggestion, but do allow tab completion.
bool allow_empty = !(this->flags & COMPLETION_REQUEST_AUTOSUGGESTION);
bool text_is_empty = (variable_start == len);
bool result = false;
if (variable_start != wcstring::npos && (allow_empty || !text_is_empty)) {
result = this->complete_variable(str, variable_start + 1);
}
return result;
}
/// Try to complete the specified string as a username. This is used by ~USER type expansion.
///
/// \return false if unable to complete, true otherwise
bool completer_t::try_complete_user(const wcstring &str) {
#ifndef HAVE_GETPWENT
// The getpwent() function does not exist on Android. A Linux user on Android isn't
// really a user - each installed app gets an UID assigned. Listing all UID:s is not
// possible without root access, and doing a ~USER type expansion does not make sense
// since every app is sandboxed and can't access eachother.
return false;
#else
const wchar_t *cmd = str.c_str();
const wchar_t *first_char = cmd;
if (*first_char != L'~' || wcschr(first_char, L'/')) return false;
const wchar_t *user_name = first_char + 1;
const wchar_t *name_end = wcschr(user_name, L'~');
if (name_end) return false;
double start_time = timef();
bool result = false;
size_t name_len = wcslen(user_name);
// We don't bother with the thread-safe `getpwent_r()` variant because it isn't needed. This is
// only run in a completion context and thus will only be called from a single thread and there
// is no place else in fish where we call `getpwent()`.
struct passwd *pw;
setpwent();
// cppcheck-suppress getpwentCalled
while ((pw = getpwent()) != NULL) {
const wcstring pw_name_str = str2wcstring(pw->pw_name);
const wchar_t *pw_name = pw_name_str.c_str();
if (wcsncmp(user_name, pw_name, name_len) == 0) {
wcstring desc = format_string(COMPLETE_USER_DESC, pw_name);
append_completion(&this->completions, &pw_name[name_len], desc, COMPLETE_NO_SPACE);
result = true;
} else if (wcsncasecmp(user_name, pw_name, name_len) == 0) {
wcstring name = format_string(L"~%ls", pw_name);
wcstring desc = format_string(COMPLETE_USER_DESC, pw_name);
append_completion(&this->completions, name, desc,
COMPLETE_REPLACES_TOKEN | COMPLETE_DONT_ESCAPE | COMPLETE_NO_SPACE);
result = true;
}
// If we've spent too much time (more than 200 ms) doing this give up.
if (timef() - start_time > 0.2) break;
}
endpwent();
return result;
#endif
}
void complete(const wcstring &cmd_with_subcmds, std::vector<completion_t> *out_comps,
completion_request_flags_t flags) {
// Determine the innermost subcommand.
const wchar_t *cmdsubst_begin, *cmdsubst_end;
parse_util_cmdsubst_extent(cmd_with_subcmds.c_str(), cmd_with_subcmds.size(), &cmdsubst_begin,
&cmdsubst_end);
assert(cmdsubst_begin != NULL && cmdsubst_end != NULL && cmdsubst_end >= cmdsubst_begin);
const wcstring cmd = wcstring(cmdsubst_begin, cmdsubst_end - cmdsubst_begin);
// Make our completer.
completer_t completer(cmd, flags);
wcstring current_command;
const size_t pos = cmd.size();
bool done = false;
bool use_command = 1;
bool use_function = 1;
bool use_builtin = 1;
bool use_implicit_cd = 1;
// debug( 1, L"Complete '%ls'", cmd.c_str() );
const wchar_t *cmd_cstr = cmd.c_str();
const wchar_t *tok_begin = NULL, *prev_begin = NULL, *prev_end = NULL;
parse_util_token_extent(cmd_cstr, cmd.size(), &tok_begin, NULL, &prev_begin, &prev_end);
// If we are completing a variable name or a tilde expansion user name, we do that and return.
// No need for any other completions.
const wcstring current_token = tok_begin;
// Unconditionally complete variables and processes. This is a little weird since we will
// happily complete variables even in e.g. command position, despite the fact that they are
// invalid there. */
if (!done) {
done = completer.try_complete_variable(current_token) ||
completer.try_complete_user(current_token);
}
if (!done) {
parse_node_tree_t tree;
parse_tree_from_string(cmd,
parse_flag_continue_after_error |
parse_flag_accept_incomplete_tokens |
parse_flag_include_comments,
&tree, NULL);
// Find the plain statement to operate on. The cursor may be past it (#1261), so backtrack
// until we know we're no longer in a space. But the space may actually be part of the
// argument (#2477).
size_t position_in_statement = pos;
while (position_in_statement > 0 && cmd.at(position_in_statement - 1) == L' ') {
position_in_statement--;
}
const parse_node_t *plain_statement = tree.find_node_matching_source_location(
symbol_plain_statement, position_in_statement, NULL);
if (plain_statement == NULL) {
// Not part of a plain statement. This could be e.g. a for loop header, case expression,
// etc. Do generic file completions (issue #1309). If we had to backtrack, it means
// there was whitespace; don't do an autosuggestion in that case. Also don't do it if we
// are just after a pipe, semicolon, or & (issue #1631), or in a comment.
//
// Overall this logic is a total mess. A better approach would be to return the
// "possible next token" from the parse tree directly (this data is available as the
// first of the sequence of nodes without source locations at the very end of the parse
// tree).
bool do_file = true;
if (flags & COMPLETION_REQUEST_AUTOSUGGESTION) {
if (position_in_statement < pos) {
do_file = false;
} else if (pos > 0) {
// If the previous character is in one of these types, we don't do file
// suggestions.
parse_token_type_t bad_types[] = {parse_token_type_pipe, parse_token_type_end,
parse_token_type_background,
parse_special_type_comment};
for (size_t i = 0; i < sizeof bad_types / sizeof *bad_types; i++) {
if (tree.find_node_matching_source_location(bad_types[i], pos - 1, NULL)) {
do_file = false;
break;
}
}
}
}
completer.complete_param_expand(current_token, do_file);
} else {
assert(plain_statement->has_source() &&
plain_statement->type == symbol_plain_statement);
// Get the command node.
const parse_node_t *cmd_node =
tree.get_child(*plain_statement, 0, parse_token_type_string);
// Get the actual command string.
if (cmd_node) current_command = cmd_node->get_source(cmd);
// Check the decoration.
switch (tree.decoration_for_plain_statement(*plain_statement)) {
case parse_statement_decoration_none: {
use_command = true;
use_function = true;
use_builtin = true;
use_implicit_cd = true;
break;
}
case parse_statement_decoration_command:
case parse_statement_decoration_exec: {
use_command = true;
use_function = false;
use_builtin = false;
use_implicit_cd = false;
break;
}
case parse_statement_decoration_builtin: {
use_command = false;
use_function = false;
use_builtin = true;
use_implicit_cd = false;
break;
}
}
if (cmd_node && cmd_node->location_in_or_at_end_of_source_range(pos)) {
// Complete command filename.
completer.complete_cmd(current_token, use_function, use_builtin, use_command,
use_implicit_cd);
} else {
// Get all the arguments.
const parse_node_tree_t::parse_node_list_t all_arguments =
tree.find_nodes(*plain_statement, symbol_argument);
// See whether we are in an argument. We may also be in a redirection, or nothing at
// all.
size_t matching_arg_index = -1;
for (size_t i = 0; i < all_arguments.size(); i++) {
const parse_node_t *node = all_arguments.at(i);
if (node->location_in_or_at_end_of_source_range(position_in_statement)) {
matching_arg_index = i;
break;
}
}
bool had_ddash = false;
wcstring current_argument, previous_argument;
if (matching_arg_index != (size_t)(-1)) {
const wcstring matching_arg =
all_arguments.at(matching_arg_index)->get_source(cmd);
// If the cursor is in whitespace, then the "current" argument is empty and the
// previous argument is the matching one. But if the cursor was in or at the end
// of the argument, then the current argument is the matching one, and the
// previous argument is the one before it.
bool cursor_in_whitespace =
!plain_statement->location_in_or_at_end_of_source_range(pos);
if (cursor_in_whitespace) {
current_argument = L"";
previous_argument = matching_arg;
} else {
current_argument = matching_arg;
if (matching_arg_index > 0) {
previous_argument =
all_arguments.at(matching_arg_index - 1)->get_source(cmd);
}
}
// Check to see if we have a preceding double-dash.
for (size_t i = 0; i < matching_arg_index; i++) {
if (all_arguments.at(i)->get_source(cmd) == L"--") {
had_ddash = true;
break;
}
}
}
// If we are not in an argument, we may be in a redirection.
bool in_redirection = false;
if (matching_arg_index == (size_t)(-1)) {
const parse_node_t *redirection = tree.find_node_matching_source_location(
symbol_redirection, position_in_statement, plain_statement);
in_redirection = (redirection != NULL);
}
bool do_file = false, handle_as_special_cd = false;
if (in_redirection) {
do_file = true;
} else {
// Try completing as an argument.
wcstring current_command_unescape, previous_argument_unescape,
current_argument_unescape;
if (unescape_string(current_command, &current_command_unescape,
UNESCAPE_DEFAULT) &&
unescape_string(previous_argument, &previous_argument_unescape,
UNESCAPE_DEFAULT) &&
unescape_string(current_argument, &current_argument_unescape,
UNESCAPE_INCOMPLETE)) {
// Have to walk over the command and its entire wrap chain. If any command
// disables do_file, then they all do.
do_file = true;
const wcstring_list_t wrap_chain =
complete_get_wrap_chain(current_command_unescape);
for (size_t i = 0; i < wrap_chain.size(); i++) {
// Hackish, this. The first command in the chain is always the given
// command. For every command past the first, we need to create a
// transient commandline for builtin_commandline. But not for
// COMPLETION_REQUEST_AUTOSUGGESTION, which may occur on background
// threads.
std::unique_ptr<builtin_commandline_scoped_transient_t> transient_cmd;
if (i == 0) {
assert(wrap_chain.at(i) == current_command_unescape);
} else if (!(flags & COMPLETION_REQUEST_AUTOSUGGESTION)) {
wcstring faux_cmdline = cmd;
faux_cmdline.replace(cmd_node->source_start,
cmd_node->source_length, wrap_chain.at(i));
transient_cmd = make_unique<builtin_commandline_scoped_transient_t>(
faux_cmdline);
}
if (!completer.complete_param(wrap_chain.at(i),
previous_argument_unescape,
current_argument_unescape, !had_ddash)) {
do_file = false;
}
}
}
// Hack. If we're cd, handle it specially (issue #1059, others).
handle_as_special_cd = (current_command_unescape == L"cd");
// And if we're autosuggesting, and the token is empty, don't do file
// suggestions.
if ((flags & COMPLETION_REQUEST_AUTOSUGGESTION) &&
current_argument_unescape.empty()) {
do_file = false;
}
}
// This function wants the unescaped string.
completer.complete_param_expand(current_token, do_file, handle_as_special_cd);
}
}
}
*out_comps = completer.get_completions();
}
/// Print the GNU longopt style switch \c opt, and the argument \c argument to the specified
/// stringbuffer, but only if arguemnt is non-null and longer than 0 characters.
static void append_switch(wcstring &out, const wcstring &opt, const wcstring &argument) {
if (argument.empty()) return;
wcstring esc = escape_string(argument, 1);
append_format(out, L" --%ls %ls", opt.c_str(), esc.c_str());
}
wcstring complete_print() {
wcstring out;
scoped_lock locker(completion_lock);
// Get a list of all completions in a vector, then sort it by order.
std::vector<const completion_entry_t *> all_completions;
for (completion_entry_set_t::const_iterator i = completion_set.begin();
i != completion_set.end(); ++i) {
all_completions.push_back(&*i);
}
sort(all_completions.begin(), all_completions.end(), compare_completions_by_order);
for (std::vector<const completion_entry_t *>::const_iterator iter = all_completions.begin();
iter != all_completions.end(); ++iter) {
const completion_entry_t *e = *iter;
const option_list_t &options = e->get_options();
for (option_list_t::const_iterator oiter = options.begin(); oiter != options.end();
++oiter) {
const complete_entry_opt_t *o = &*oiter;
const wchar_t *modestr[] = {L"", L" --no-files", L" --require-parameter",
L" --exclusive"};
append_format(out, L"complete%ls", modestr[o->result_mode]);
append_switch(out, e->cmd_is_path ? L"path" : L"command",
escape_string(e->cmd, ESCAPE_ALL));
switch (o->type) {
case option_type_args_only: {
break;
}
case option_type_short: {
assert(!o->option.empty()); //!OCLINT(multiple unary operator)
append_format(out, L" --short-option '%lc'", o->option.at(0));
break;
}
case option_type_single_long:
case option_type_double_long: {
append_switch(
out, o->type == option_type_single_long ? L"old-option" : L"long-option",
o->option);
break;
}
}
append_switch(out, L"description", C_(o->desc));
append_switch(out, L"arguments", o->comp);
append_switch(out, L"condition", o->condition);
out.append(L"\n");
}
}
// Append wraps. This is a wonky interface where even values are the commands, and odd values
// are the targets that they wrap.
const wcstring_list_t wrap_pairs = complete_get_wrap_pairs();
assert(wrap_pairs.size() % 2 == 0);
for (size_t i = 0; i < wrap_pairs.size();) {
const wcstring &cmd = wrap_pairs.at(i++);
const wcstring &target = wrap_pairs.at(i++);
append_format(out, L"complete --command %ls --wraps %ls\n", cmd.c_str(), target.c_str());
}
return out;
}
/// Completion "wrapper" support. The map goes from wrapping-command to wrapped-command-list.
static std::mutex wrapper_lock;
typedef std::unordered_map<wcstring, wcstring_list_t> wrapper_map_t;
static wrapper_map_t &wrap_map() {
ASSERT_IS_LOCKED(wrapper_lock);
// A pointer is a little more efficient than an object as a static because we can elide the
// thread-safe initialization.
static wrapper_map_t *wrapper_map = NULL;
if (wrapper_map == NULL) {
wrapper_map = new wrapper_map_t();
}
return *wrapper_map;
}
/// Add a new target that wraps a command. Example: __fish_XYZ (function) wraps XYZ (target).
bool complete_add_wrapper(const wcstring &command, const wcstring &new_target) {
if (command.empty() || new_target.empty()) {
return false;
}
scoped_lock locker(wrapper_lock);
wrapper_map_t &wraps = wrap_map();
wcstring_list_t *targets = &wraps[command];
// If it's already present, we do nothing.
if (std::find(targets->begin(), targets->end(), new_target) == targets->end()) {
targets->push_back(new_target);
}
return true;
}
bool complete_remove_wrapper(const wcstring &command, const wcstring &target_to_remove) {
if (command.empty() || target_to_remove.empty()) {
return false;
}
scoped_lock locker(wrapper_lock);
wrapper_map_t &wraps = wrap_map();
bool result = false;
wrapper_map_t::iterator current_targets_iter = wraps.find(command);
if (current_targets_iter != wraps.end()) {
wcstring_list_t *targets = &current_targets_iter->second;
wcstring_list_t::iterator where =
std::find(targets->begin(), targets->end(), target_to_remove);
if (where != targets->end()) {
targets->erase(where);
result = true;
}
}
return result;
}
wcstring_list_t complete_get_wrap_chain(const wcstring &command) {
if (command.empty()) {
return wcstring_list_t();
}
scoped_lock locker(wrapper_lock);
const wrapper_map_t &wraps = wrap_map();
wcstring_list_t result;
std::unordered_set<wcstring> visited; // set of visited commands
wcstring_list_t to_visit(1, command); // stack of remaining-to-visit commands
wcstring target;
while (!to_visit.empty()) {
// Grab the next command to visit, put it in target.
target = std::move(to_visit.back());
to_visit.pop_back();
// Try inserting into visited. If it was already present, we skip it; this is how we avoid
// loops.
if (!visited.insert(target).second) {
continue;
}
// Insert the target in the result. Note this is the command itself, if this is the first
// iteration of the loop.
result.push_back(target);
// Enqueue its children.
wrapper_map_t::const_iterator target_children_iter = wraps.find(target);
if (target_children_iter != wraps.end()) {
const wcstring_list_t &children = target_children_iter->second;
to_visit.insert(to_visit.end(), children.begin(), children.end());
}
}
return result;
}
wcstring_list_t complete_get_wrap_pairs() {
wcstring_list_t result;
scoped_lock locker(wrapper_lock);
const wrapper_map_t &wraps = wrap_map();
for (wrapper_map_t::const_iterator outer = wraps.begin(); outer != wraps.end(); ++outer) {
const wcstring &cmd = outer->first;
const wcstring_list_t &targets = outer->second;
for (size_t i = 0; i < targets.size(); i++) {
result.push_back(cmd);
result.push_back(targets.at(i));
}
}
return result;
}