fish-shell/src/ast.h
Johannes Altmanninger b947e360db Allow newlines after && and ||
We do the same for pipes (#1285). This matches POSIX sh behavior.
2020-08-06 21:24:26 +02:00

1065 lines
34 KiB
C++

// Programmatic representation of fish grammar.
#ifndef FISH_AST_H
#define FISH_AST_H
#include <array>
#include <tuple>
#include <type_traits>
#include "flog.h"
#include "parse_constants.h"
#include "tokenizer.h"
namespace ast {
/**
* This defines the fish abstract syntax tree.
* The fish ast is a tree data structure. The nodes of the tree
* are divided into three types:
*
* - leaf nodes refer to a range of source, and have no child nodes.
* - branch nodes have ONLY child nodes, and no other fields.
* - list nodes contain a list of some other node type (branch or leaf).
*
* Most clients will be interested in visiting the nodes of an ast.
* See node_visitation_t below.
*/
struct node_t;
// Our node categories.
// Note these are not stored directly in a node; they are provided in the Category static constexpr
// variable in each node.
enum class category_t : uint8_t {
branch,
leaf,
list,
};
// Declare our type enum.
// For each member of our ast, this creates an enum value.
// For example this creates `type_t::job_list`.
enum class type_t : uint8_t {
#define ELEM(T) T,
#include "ast_node_types.inc"
};
// Helper to return a string description of a type.
const wchar_t *ast_type_to_string(type_t type);
// Forward declare all AST structs.
#define ELEM(T) struct T##_t;
#include "ast_node_types.inc"
/*
* A FieldVisitor is something which can visit the fields of an ast node.
* This is used during ast construction.
*
* To trigger field visitation, use the accept() function:
* MyFieldVisitor v;
* node->accept(v);
*
* Example FieldVisitor:
*
* struct MyFieldVisitor {
*
* /// will_visit (did_visit) is called before (after) a node's fields are visited.
* void will_visit_fields_of(node_t &node);
* void did_visit_fields_of(node_t &node);
*
* /// These are invoked with the concrete type of each node,
* /// so they may be overloaded to distinguish node types.
* /// Example:
* void will_visit_fields_of(job_t &job);
*
* /// The visitor needs to be prepared for the following four field types.
* /// Naturally the vistor may overload visit_field to carve this
* /// arbitrarily finely.
*
* /// A field may be a "direct embedding" of a node.
* /// That is, an ast node may have another node as a member.
* template <typename Node>
* void visit_node_field(Node &node);
* /// A field may be a list_t of (pointers to) some other node type.
* template <type_t List, typename Node>
* void visit_list_field(list_t<List, Node> &list);
*
* /// A field may be a unique_ptr to another node.
* /// Every such pointer must be non-null after construction.
* template <typename Node>
* void visit_pointer_field(std::unique_ptr<Node> &ptr);
*
* /// A field may be optional, meaning it may or may not exist.
* template <typename Node>
* void visit_optional_field(optional_t<NodeT> &opt);
*
* /// A field may be a union pointer, meaning it points to one of
* /// a fixed set of node types. A union pointer is never null
* /// after construction.
* template <typename... Nodes>
* void visit_union_field(union_ptr_t<Nodes...> &union_ptr);
* };
*/
// Our node base type is not virtual, so we must not invoke its destructor directly.
// If you want to delete a node and don't know its concrete type, use this deleter type.
struct node_deleter_t {
void operator()(node_t *node);
};
using node_unique_ptr_t = std::unique_ptr<node_t, node_deleter_t>;
// A union pointer field is a pointer to one of a fixed set of node types.
// It is never null after construction.
template <typename... Nodes>
struct union_ptr_t {
node_unique_ptr_t contents{};
/// \return a pointer to the node contents.
const node_t *get() const {
assert(contents && "Null pointer");
return contents.get();
}
/// \return whether we have non-null contents.
explicit operator bool() const { return contents != nullptr; }
const node_t *operator->() const { return get(); }
union_ptr_t() = default;
// Allow setting a typed unique pointer.
template <typename Node>
inline void operator=(std::unique_ptr<Node> n);
// Construct from a typed unique pointer.
template <typename Node>
inline union_ptr_t(std::unique_ptr<Node> n);
};
// A pointer to something, or nullptr if not present.
template <typename AstNode>
struct optional_t {
std::unique_ptr<AstNode> contents{};
explicit operator bool() const { return contents != nullptr; }
AstNode *operator->() const {
assert(contents && "Null pointer");
return contents.get();
}
const AstNode &operator*() const {
assert(contents && "Null pointer");
return *contents;
}
bool has_value() const { return contents != nullptr; }
};
namespace template_goo {
// void if B is true, SFINAE'd away otherwise.
template <bool B>
using only_if_t = typename std::enable_if<B>::type;
template <typename FieldVisitor, typename Field>
only_if_t<Field::Category != category_t::list> visit_1_field(FieldVisitor &v, Field &field) {
v.visit_node_field(field);
}
template <typename FieldVisitor, typename Field>
only_if_t<Field::Category == category_t::list> visit_1_field(FieldVisitor &v, Field &field) {
v.visit_list_field(field);
}
template <typename FieldVisitor, typename Field>
void visit_1_field(FieldVisitor &v, Field *&field) {
v.visit_pointer_field(field);
}
template <typename FieldVisitor, typename Field>
void visit_1_field(FieldVisitor &v, optional_t<Field> &field) {
v.visit_optional_field(field);
}
template <typename FieldVisitor, typename... Nodes>
void visit_1_field(FieldVisitor &v, union_ptr_t<Nodes...> &field) {
v.visit_union_field(field);
}
// Call the field visit methods on visitor \p v passing field \p field.
template <typename FieldVisitor, typename Field>
void accept_field_visitor(FieldVisitor &v, bool /*reverse*/, Field &field) {
visit_1_field(v, field);
}
// Call visit_field on visitor \p v, for the field \p field and also \p rest.
template <typename FieldVisitor, typename Field, typename... Rest>
void accept_field_visitor(FieldVisitor &v, bool reverse, Field &field, Rest &... rest) {
if (!reverse) visit_1_field(v, field);
accept_field_visitor<FieldVisitor, Rest...>(v, reverse, rest...);
if (reverse) visit_1_field(v, field);
}
} // namespace template_goo
#define FIELDS(...) \
template <typename FieldVisitor> \
void accept(FieldVisitor &visitor, bool reversed = false) { \
visitor.will_visit_fields_of(*this); \
template_goo::accept_field_visitor(visitor, reversed, __VA_ARGS__); \
visitor.did_visit_fields_of(*this); \
}
/// node_t is the base node of all AST nodes.
/// It is not a template: it is possible to work concretely with this type.
struct node_t {
/// The parent node, or null if this is root.
const node_t *parent{nullptr};
/// The type of this node.
const type_t type;
/// The category of this node.
const category_t category;
constexpr explicit node_t(type_t t, category_t c) : type(t), category(c) {}
/// Disallow copying, etc.
node_t(const node_t &) = delete;
node_t(node_t &&) = delete;
void operator=(const node_t &) = delete;
void operator=(node_t &&) = delete;
/// Cast to a concrete node type, aborting on failure.
/// Example usage:
/// if (node->type == type_t::job_list) node->as<job_list_t>()->...
template <typename To>
To *as() {
assert(this->type == To::AstType && "Invalid type conversion");
return static_cast<To *>(this);
}
template <typename To>
const To *as() const {
assert(this->type == To::AstType && "Invalid type conversion");
return static_cast<const To *>(this);
}
/// Try casting to a concrete node type, except returns nullptr on failure.
/// Example ussage:
/// if (const auto *job_list = node->try_as<job_list_t>()) job_list->...
template <typename To>
To *try_as() {
if (this->type == To::AstType) return as<To>();
return nullptr;
}
template <typename To>
const To *try_as() const {
if (this->type == To::AstType) return as<To>();
return nullptr;
}
/// Base accept() function which trampolines to overriding implementations for each node type.
/// This may be used when you don't know what the type of a particular node is.
template <typename FieldVisitor>
void base_accept(FieldVisitor &v, bool reverse = false);
/// \return a helpful string description of this node.
wcstring describe() const;
/// \return the source range for this node, or none if unsourced.
/// This may return none if the parse was incomplete or had an error.
maybe_t<source_range_t> try_source_range() const;
/// \return the source range for this node, or an empty range {0, 0} if unsourced.
source_range_t source_range() const {
if (auto r = try_source_range()) return *r;
return source_range_t{0, 0};
}
/// \return the source code for this node, or none if unsourced.
maybe_t<wcstring> try_source(const wcstring &orig) const {
if (auto r = try_source_range()) return orig.substr(r->start, r->length);
return none();
}
/// \return the source code for this node, or an empty string if unsourced.
wcstring source(const wcstring &orig) const {
wcstring res{};
if (auto s = try_source(orig)) res = s.acquire();
return res;
}
/// \return the source code for this node, or an empty string if unsourced.
/// This uses \p storage to reduce allocations.
const wcstring &source(const wcstring &orig, wcstring *storage) const {
if (auto r = try_source_range()) {
storage->assign(orig, r->start, r->length);
} else {
storage->clear();
}
return *storage;
}
protected:
// We are NOT a virtual class - we have no vtable or virtual methods and our destructor is not
// virtual, so as to keep the size down. Only typed nodes should invoke the destructor.
// Use node_deleter_t to delete an untyped node.
~node_t() = default;
};
// Base class for all "branch" nodes: nodes with at least one ast child.
template <type_t Type>
struct branch_t : public node_t {
static constexpr type_t AstType = Type;
static constexpr category_t Category = category_t::branch;
branch_t() : node_t(Type, Category) {}
};
// Base class for all "leaf" nodes: nodes with no ast children.
// It declares an empty visit method to avoid requiring the CHILDREN macro.
template <type_t Type>
struct leaf_t : public node_t {
static constexpr type_t AstType = Type;
static constexpr category_t Category = category_t::leaf;
// Whether this node is "unsourced." This happens if for whatever reason we are unable to parse
// the node, either because we had a parse error and recovered, or because we accepted
// incomplete and the token stream was exhausted.
bool unsourced{false};
// The source range.
source_range_t range{0, 0};
// Convenience helper to return whether we are not unsourced.
bool has_source() const { return !unsourced; }
template <typename FieldVisitor>
void accept(FieldVisitor &visitor, bool /* reverse */ = false) {
visitor.will_visit_fields_of(*this);
visitor.did_visit_fields_of(*this);
}
leaf_t() : node_t(Type, Category) {}
};
// A simple fixed-size array, possibly empty.
template <type_t ListType, typename ContentsNode>
struct list_t : public node_t {
static constexpr type_t AstType = ListType;
static constexpr category_t Category = category_t::list;
// A list wraps a "contents pointer" which is just a unique_ptr that converts to a reference.
// This enables more natural iteration:
// for (const argument_t &arg : argument_list) ...
struct contents_ptr_t {
std::unique_ptr<ContentsNode> ptr{};
void operator=(std::unique_ptr<ContentsNode> p) { ptr = std::move(p); }
const ContentsNode *get() const {
assert(ptr && "Null pointer");
return ptr.get();
}
/* implicit */ operator const ContentsNode &() const { return *get(); }
};
// We use a new[]-allocated array to store our contents pointers, to reduce size.
// This would be a nice use case for std::dynarray.
uint32_t length{0};
const contents_ptr_t *contents{};
/// \return a node at a given index, or nullptr if out of range.
const ContentsNode *at(size_t idx, bool reverse = false) const {
if (idx >= count()) return nullptr;
return contents[reverse ? count() - idx - 1 : idx].get();
}
/// \return our count.
size_t count() const { return length; }
/// \return whether we are empty.
bool empty() const { return length == 0; }
/// Iteration support.
using iterator = const contents_ptr_t *;
iterator begin() const { return contents; }
iterator end() const { return contents + length; }
// list types pretend their child nodes are direct embeddings.
// This isn't used during AST construction because we need to construct the list.
// It is used by node_visitation_t.
template <typename FieldVisitor>
void accept(FieldVisitor &visitor, bool reverse = false) {
visitor.will_visit_fields_of(*this);
for (size_t i = 0; i < count(); i++) visitor.visit_node_field(*this->at(i, reverse));
visitor.did_visit_fields_of(*this);
}
list_t() : node_t(ListType, Category) {}
~list_t() { delete[] contents; }
// Disallow moving as we own a raw pointer.
list_t(list_t &&) = delete;
void operator=(list_t &&) = delete;
};
// Fully define all list types, as they are very uniform.
// This is where types like job_list_t come from.
#define ELEM(T)
#define ELEMLIST(ListT, ContentsT) \
struct ListT##_t final : public list_t<type_t::ListT, ContentsT##_t> {};
#include "ast_node_types.inc"
struct keyword_base_t : public leaf_t<type_t::keyword_base> {
// The keyword which was parsed.
parse_keyword_t kw;
};
// A keyword node is a node which contains a keyword, which must be one of the provided values.
template <parse_keyword_t... KWs>
struct keyword_t final : public keyword_base_t {
static bool allows_keyword(parse_keyword_t);
};
struct token_base_t : public leaf_t<type_t::token_base> {
// The token type which was parsed.
parse_token_type_t type{parse_token_type_t::invalid};
};
// A token node is a node which contains a token, which must be one of the provided values.
template <parse_token_type_t... Toks>
struct token_t final : public token_base_t {
/// \return whether a token type is allowed in this token_t, i.e. is a member of our Toks list.
static bool allows_token(parse_token_type_t);
};
// Zero or more newlines.
struct maybe_newlines_t final : public leaf_t<type_t::maybe_newlines> {};
// A single newline or semicolon, terminating statements.
// Note this is not a separate type, it is just a convenience typedef.
using semi_nl_t = token_t<parse_token_type_t::end>;
// Convenience typedef for string nodes.
using string_t = token_t<parse_token_type_t::string>;
// An argument is just a node whose source range determines its contents.
// This is a separate type because it is sometimes useful to find all arguments.
struct argument_t final : public leaf_t<type_t::argument> {};
// A redirection has an operator like > or 2>, and a target like /dev/null or &1.
// Note that pipes are not redirections.
struct redirection_t final : public branch_t<type_t::redirection> {
token_t<parse_token_type_t::redirection> oper;
string_t target;
FIELDS(oper, target)
};
// A variable_assignment_t contains a source range like FOO=bar.
struct variable_assignment_t final : public leaf_t<type_t::variable_assignment> {};
// An argument or redirection holds either an argument or redirection.
struct argument_or_redirection_t final : public branch_t<type_t::argument_or_redirection> {
using contents_ptr_t = union_ptr_t<argument_t, redirection_t>;
contents_ptr_t contents{};
/// \return whether this represents an argument.
bool is_argument() const { return contents->type == type_t::argument; }
/// \return whether this represents a redirection
bool is_redirection() const { return contents->type == type_t::redirection; }
/// \return this as an argument, assuming it wraps one.
const argument_t &argument() const {
assert(is_argument() && "Is not an argument");
return *this->contents.contents->as<argument_t>();
}
/// \return this as an argument, assuming it wraps one.
const redirection_t &redirection() const {
assert(is_redirection() && "Is not a redirection");
return *this->contents.contents->as<redirection_t>();
}
FIELDS(contents);
};
// A statement is a normal command, or an if / while / etc
struct statement_t final : public branch_t<type_t::statement> {
using contents_ptr_t = union_ptr_t<not_statement_t, block_statement_t, if_statement_t,
switch_statement_t, decorated_statement_t>;
contents_ptr_t contents{};
FIELDS(contents)
};
// A job is a non-empty list of statements, separated by pipes. (Non-empty is useful for cases
// like if statements, where we require a command).
struct job_t final : public branch_t<type_t::job> {
// Maybe the time keyword.
optional_t<keyword_t<parse_keyword_t::kw_time>> time;
// A (possibly empty) list of variable assignments.
variable_assignment_list_t variables;
// The statement.
statement_t statement;
// Piped remainder.
job_continuation_list_t continuation;
// Maybe backgrounded.
optional_t<token_t<parse_token_type_t::background>> bg;
FIELDS(time, variables, statement, continuation, bg)
};
// A job_conjunction is a job followed by a && or || continuations.
struct job_conjunction_t final : public branch_t<type_t::job_conjunction> {
// The job conjunction decorator.
using decorator_t = keyword_t<parse_keyword_t::kw_and, parse_keyword_t::kw_or>;
optional_t<decorator_t> decorator{};
// The job itself.
job_t job;
// The rest of the job conjunction, with && or ||s.
job_conjunction_continuation_list_t continuations;
// A terminating semicolon or newline.
// This is marked optional because it may not be present, for example the command `echo foo` may
// not have a terminating newline. It will only fail to be present if we ran out of tokens.
optional_t<semi_nl_t> semi_nl;
FIELDS(decorator, job, continuations, semi_nl)
};
struct for_header_t final : public branch_t<type_t::for_header> {
// 'for'
keyword_t<parse_keyword_t::kw_for> kw_for;
// var_name
string_t var_name;
// 'in'
keyword_t<parse_keyword_t::kw_in> kw_in;
// list of arguments
argument_list_t args;
// newline or semicolon
semi_nl_t semi_nl;
FIELDS(kw_for, var_name, kw_in, args, semi_nl)
};
struct while_header_t final : public branch_t<type_t::while_header> {
// 'while'
keyword_t<parse_keyword_t::kw_while> kw_while;
job_conjunction_t condition{};
andor_job_list_t andor_tail{};
FIELDS(kw_while, condition, andor_tail)
};
struct function_header_t final : public branch_t<type_t::function_header> {
// functions require at least one argument.
keyword_t<parse_keyword_t::kw_function> kw_function;
argument_t first_arg;
argument_list_t args;
semi_nl_t semi_nl;
FIELDS(kw_function, first_arg, args, semi_nl)
};
struct begin_header_t final : public branch_t<type_t::begin_header> {
keyword_t<parse_keyword_t::kw_begin> kw_begin;
// Note that 'begin' does NOT require a semi or nl afterwards.
// This is valid: begin echo hi; end
optional_t<semi_nl_t> semi_nl;
FIELDS(kw_begin, semi_nl)
};
struct block_statement_t final : public branch_t<type_t::block_statement> {
// A header like for, while, etc.
using header_ptr_t =
union_ptr_t<for_header_t, while_header_t, function_header_t, begin_header_t>;
header_ptr_t header;
// List of jobs in this block.
job_list_t jobs;
// The 'end' node.
keyword_t<parse_keyword_t::kw_end> end;
// Arguments and redirections associated with the block.
argument_or_redirection_list_t args_or_redirs;
FIELDS(header, jobs, end, args_or_redirs)
};
// Represents an 'if', either as the first part of an if statement or after an 'else'.
struct if_clause_t final : public branch_t<type_t::if_clause> {
// The 'if' keyword.
keyword_t<parse_keyword_t::kw_if> kw_if;
// The 'if' condition.
job_conjunction_t condition{};
// 'and/or' tail.
andor_job_list_t andor_tail{};
// The body to execute if the condition is true.
job_list_t body;
FIELDS(kw_if, condition, andor_tail, body)
};
struct elseif_clause_t final : public branch_t<type_t::elseif_clause> {
// The 'else' keyword.
keyword_t<parse_keyword_t::kw_else> kw_else;
// The 'if' clause following it.
if_clause_t if_clause;
FIELDS(kw_else, if_clause)
};
struct else_clause_t final : public branch_t<type_t::else_clause> {
// else ; body
keyword_t<parse_keyword_t::kw_else> kw_else;
semi_nl_t semi_nl;
job_list_t body;
FIELDS(kw_else, semi_nl, body)
};
struct if_statement_t final : public branch_t<type_t::if_statement> {
// if part
if_clause_t if_clause;
// else if list
elseif_clause_list_t elseif_clauses;
// else part
optional_t<else_clause_t> else_clause;
// literal end
keyword_t<parse_keyword_t::kw_end> end;
// block args / redirs
argument_or_redirection_list_t args_or_redirs;
FIELDS(if_clause, elseif_clauses, else_clause, end, args_or_redirs)
};
struct case_item_t final : public branch_t<type_t::case_item> {
// case <arguments> ; body
keyword_t<parse_keyword_t::kw_case> kw_case;
argument_list_t arguments;
semi_nl_t semi_nl;
job_list_t body;
FIELDS(kw_case, arguments, semi_nl, body)
};
struct switch_statement_t final : public branch_t<type_t::switch_statement> {
// switch <argument> ; body ; end args_redirs
keyword_t<parse_keyword_t::kw_switch> kw_switch;
argument_t argument;
semi_nl_t semi_nl;
case_item_list_t cases;
keyword_t<parse_keyword_t::kw_end> end;
argument_or_redirection_list_t args_or_redirs;
FIELDS(kw_switch, argument, semi_nl, cases, end, args_or_redirs)
};
// A decorated_statement is a command with a list of arguments_or_redirections, possibly with
// "builtin" or "command" or "exec"
struct decorated_statement_t final : public branch_t<type_t::decorated_statement> {
// An optional decoration (command, builtin, exec, etc).
using pk = parse_keyword_t;
using decorator_t = keyword_t<pk::kw_command, pk::kw_builtin, pk::kw_exec>;
optional_t<decorator_t> opt_decoration;
// Command to run.
string_t command;
// Args and redirs
argument_or_redirection_list_t args_or_redirs;
// Helper to return the decoration.
statement_decoration_t decoration() const;
FIELDS(opt_decoration, command, args_or_redirs)
};
// A not statement like `not true` or `! true`
struct not_statement_t final : public branch_t<type_t::not_statement> {
// Keyword, either not or exclam.
keyword_t<parse_keyword_t::kw_not, parse_keyword_t::kw_exclam> kw;
variable_assignment_list_t variables;
optional_t<keyword_t<parse_keyword_t::kw_time>> time{};
statement_t contents{};
FIELDS(kw, variables, time, contents)
};
struct job_continuation_t final : public branch_t<type_t::job_continuation> {
token_t<parse_token_type_t::pipe> pipe;
maybe_newlines_t newlines;
variable_assignment_list_t variables;
statement_t statement;
FIELDS(pipe, newlines, variables, statement)
};
struct job_conjunction_continuation_t final
: public branch_t<type_t::job_conjunction_continuation> {
// The && or || token.
token_t<parse_token_type_t::andand, parse_token_type_t::oror> conjunction;
maybe_newlines_t newlines;
// The job itself.
job_t job;
FIELDS(conjunction, newlines, job)
};
// An andor_job just wraps a job, but requires that the job have an 'and' or 'or' job_decorator.
// Note this is only used for andor_job_list; jobs that are not part of an andor_job_list are not
// instances of this.
struct andor_job_t final : public branch_t<type_t::andor_job> {
job_conjunction_t job;
FIELDS(job)
};
// A freestanding_argument_list is equivalent to a normal argument list, except it may contain
// TOK_END (newlines, and even semicolons, for historical reasons).
// In practice the tok_ends are ignored by fish code so we do not bother to store them.
struct freestanding_argument_list_t final : public branch_t<type_t::freestanding_argument_list> {
argument_list_t arguments;
FIELDS(arguments)
};
template <typename FieldVisitor>
void node_t::base_accept(FieldVisitor &v, bool reverse) {
switch (this->type) {
#define ELEM(T) \
case type_t::T: \
this->as<T##_t>()->accept(v, reverse); \
break;
#include "ast_node_types.inc"
}
}
// static
template <parse_token_type_t... Toks>
bool token_t<Toks...>::allows_token(parse_token_type_t type) {
for (parse_token_type_t t : {Toks...}) {
if (type == t) return true;
}
return false;
}
// static
template <parse_keyword_t... KWs>
bool keyword_t<KWs...>::allows_keyword(parse_keyword_t kw) {
for (parse_keyword_t k : {KWs...}) {
if (k == kw) return true;
}
return false;
}
namespace template_goo {
/// \return true if type Type is in the Candidates list.
template <typename Type>
constexpr bool type_in_list() {
return false;
}
template <typename Type, typename Candidate, typename... Rest>
constexpr bool type_in_list() {
return std::is_same<Type, Candidate>::value || type_in_list<Type, Rest...>();
}
} // namespace template_goo
template <typename... Nodes>
template <typename Node>
void union_ptr_t<Nodes...>::operator=(std::unique_ptr<Node> n) {
static_assert(template_goo::type_in_list<Node, Nodes...>(),
"Cannot construct from this node type");
contents.reset(n.release());
}
template <typename... Nodes>
template <typename Node>
union_ptr_t<Nodes...>::union_ptr_t(std::unique_ptr<Node> n) : contents(n.release()) {
static_assert(template_goo::type_in_list<Node, Nodes...>(),
"Cannot construct from this node type");
}
/**
* A node visitor is like a field visitor, but adapted to only visit actual nodes, as const
* references. It calls the visit() function of its visitor with a const reference to each node
* found under a given node.
*
* Example:
* struct MyNodeVisitor {
* template <typename Node>
* void visit(const Node &n) {...}
* };
*/
template <typename NodeVisitor>
class node_visitation_t {
public:
explicit node_visitation_t(NodeVisitor &v, bool reverse = false) : v_(v), reverse_(reverse) {}
// Visit the (direct) child nodes of a given node.
template <typename Node>
void accept_children_of(const Node &n) {
// We play fast and loose with const to avoid having to duplicate our FIELDS macros.
const_cast<Node &>(n).accept(*this, reverse_);
}
// Visit the (direct) child nodes of a given node.
void accept_children_of(const node_t *n) {
const_cast<node_t *>(n)->base_accept(*this, reverse_);
}
// Invoke visit() on our visitor for a given node, resolving that node's type.
void accept(const node_t *n) {
assert(n && "Node should not be null");
switch (n->type) {
#define ELEM(T) \
case type_t::T: \
v_.visit(*(n->as<T##_t>())); \
break;
#include "ast_node_types.inc"
}
}
// Here is our field visit implementations which adapt to the node visiting.
// Direct embeddings.
template <typename Node>
void visit_node_field(const Node &node) {
v_.visit(node);
}
// Pointer embeddings.
template <typename Node>
void visit_pointer_field(const Node *ptr) {
v_.visit(*ptr);
}
// List embeddings.
template <typename List>
void visit_list_field(const List &list) {
v_.visit(list);
}
// Optional pointers get visited if not null.
template <typename Node>
void visit_optional_field(optional_t<Node> &node) {
if (node.contents) v_.visit(*node.contents);
}
// Define our custom implementations of non-node fields.
// Union pointers just dispatch to the generic one.
template <typename... Types>
void visit_union_field(union_ptr_t<Types...> &ptr) {
assert(ptr && "Should not have null ptr");
this->accept(ptr.contents.get());
}
void will_visit_fields_of(node_t &) {}
void did_visit_fields_of(node_t &) {}
node_visitation_t(node_visitation_t &&) = default;
// We cannot be copied.
node_visitation_t(const node_visitation_t &) = delete;
void operator=(const node_visitation_t &) = delete;
void operator=(node_visitation_t &&) = delete;
private:
// Our adapted visitor.
NodeVisitor &v_;
// Whether to iterate in reverse order.
const bool reverse_;
};
// Type-deducing helper.
template <typename NodeVisitor>
node_visitation_t<NodeVisitor> node_visitor(NodeVisitor &nv, bool reverse = false) {
return node_visitation_t<NodeVisitor>(nv, reverse);
}
// A way to visit nodes iteratively.
// This is pre-order. Each node is visited before its children.
// Example:
// traversal_t tv(start);
// while (const node_t *node = tv.next()) {...}
class traversal_t {
public:
// Construct starting with a node
traversal_t(const node_t *n) {
assert(n && "Should not have null node");
push(n);
}
// \return the next node, or nullptr if exhausted.
const node_t *next() {
if (stack_.empty()) return nullptr;
const node_t *node = stack_.back();
stack_.pop_back();
// We want to visit in reverse order so the first child ends up on top of the stack.
node_visitor(*this, true /* reverse */).accept_children_of(node);
return node;
}
private:
// Callback for node_visitation_t.
void visit(const node_t &node) { push(&node); }
// Construct an empty visitor, used for iterator support.
traversal_t() = default;
// \return whether we are finished visiting.
bool finished() const { return stack_.empty(); }
// Append a node.
void push(const node_t *n) {
assert(n && "Should not push null node");
stack_.push_back(n);
}
// Stack of nodes.
std::vector<const node_t *> stack_{};
friend class ast_t;
friend class node_visitation_t<traversal_t>;
};
/// The ast type itself.
class ast_t {
public:
using source_range_list_t = std::vector<source_range_t>;
/// Construct an ast by parsing \p src as a job list.
/// The ast attempts to produce \p type as the result.
/// \p type may only be job_list or freestanding_argument_list.
static ast_t parse(const wcstring &src, parse_tree_flags_t flags = parse_flag_none,
parse_error_list_t *out_errors = nullptr);
/// Like parse(), but constructs a freestanding_argument_list.
static ast_t parse_argument_list(const wcstring &src,
parse_tree_flags_t flags = parse_flag_none,
parse_error_list_t *out_errors = nullptr);
/// \return a traversal, allowing iteration over the nodes.
traversal_t walk() const { return traversal_t{top()}; }
/// \return the top node. This has the type requested in the 'parse' method.
const node_t *top() const { return top_.get(); }
/// \return whether any errors were encountered during parsing.
bool errored() const { return any_error_; }
/// \return a textual representation of the tree.
/// Pass the original source as \p orig.
wcstring dump(const wcstring &orig) const;
/// Extra source ranges.
/// These are only generated if the corresponding flags are set.
struct extras_t {
/// Set of comments, sorted by offset.
source_range_list_t comments;
/// Set of semicolons, sorted by offset.
source_range_list_t semis;
/// Set of error ranges, sorted by offset.
source_range_list_t errors;
};
/// Access the set of extraneous source ranges.
const extras_t &extras() const { return extras_; }
/// Iterator support.
class iterator {
public:
using iterator_category = std::input_iterator_tag;
using difference_type = void;
using value_type = node_t;
using pointer = const node_t *;
using reference = const node_t &;
bool operator==(const iterator &rhs) { return current_ == rhs.current_; }
bool operator!=(const iterator &rhs) { return !(*this == rhs); }
iterator &operator++() {
current_ = v_.next();
return *this;
}
const node_t &operator*() const { return *current_; }
private:
explicit iterator(const node_t *start) : v_(start), current_(v_.next()) {}
iterator() = default;
traversal_t v_{};
const node_t *current_{};
friend ast_t;
};
iterator begin() const { return iterator{top()}; }
iterator end() const { return iterator{}; }
ast_t(ast_t &&) = default;
ast_t &operator=(ast_t &&) = default;
ast_t(const ast_t &) = delete;
void operator=(const ast_t &) = delete;
private:
ast_t() = default;
// Shared parsing code that takes the top type.
static ast_t parse_from_top(const wcstring &src, parse_tree_flags_t parse_flags,
parse_error_list_t *out_errors, type_t top);
// The top node.
// Its type depends on what was requested to parse.
node_unique_ptr_t top_{};
/// Whether any errors were encountered during parsing.
bool any_error_{false};
/// Extra fields.
extras_t extras_{};
class populator_t;
friend populator_t;
};
} // namespace ast
#endif // FISH_AST_H