gitea/services/webhook/matrix.go

280 lines
8.9 KiB
Go
Raw Normal View History

// Copyright 2020 The Gitea Authors. All rights reserved.
// SPDX-License-Identifier: MIT
package webhook
import (
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
"bytes"
"context"
"crypto/sha1"
Add Webhook authorization header (#20926) _This is a different approach to #20267, I took the liberty of adapting some parts, see below_ ## Context In some cases, a weebhook endpoint requires some kind of authentication. The usual way is by sending a static `Authorization` header, with a given token. For instance: - Matrix expects a `Bearer <token>` (already implemented, by storing the header cleartext in the metadata - which is buggy on retry #19872) - TeamCity #18667 - Gitea instances #20267 - SourceHut https://man.sr.ht/graphql.md#authentication-strategies (this is my actual personal need :) ## Proposed solution Add a dedicated encrypt column to the webhook table (instead of storing it as meta as proposed in #20267), so that it gets available for all present and future hook types (especially the custom ones #19307). This would also solve the buggy matrix retry #19872. As a first step, I would recommend focusing on the backend logic and improve the frontend at a later stage. For now the UI is a simple `Authorization` field (which could be later customized with `Bearer` and `Basic` switches): ![2022-08-23-142911](https://user-images.githubusercontent.com/3864879/186162483-5b721504-eef5-4932-812e-eb96a68494cc.png) The header name is hard-coded, since I couldn't fine any usecase justifying otherwise. ## Questions - What do you think of this approach? @justusbunsi @Gusted @silverwind - ~~How are the migrations generated? Do I have to manually create a new file, or is there a command for that?~~ - ~~I started adding it to the API: should I complete it or should I drop it? (I don't know how much the API is actually used)~~ ## Done as well: - add a migration for the existing matrix webhooks and remove the `Authorization` logic there _Closes #19872_ Co-authored-by: Lunny Xiao <xiaolunwen@gmail.com> Co-authored-by: Gusted <williamzijl7@hotmail.com> Co-authored-by: delvh <dev.lh@web.de>
2022-11-04 02:23:20 +08:00
"encoding/hex"
"fmt"
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
"net/http"
"net/url"
"regexp"
"strings"
webhook_model "code.gitea.io/gitea/models/webhook"
"code.gitea.io/gitea/modules/git"
"code.gitea.io/gitea/modules/json"
"code.gitea.io/gitea/modules/log"
"code.gitea.io/gitea/modules/setting"
api "code.gitea.io/gitea/modules/structs"
"code.gitea.io/gitea/modules/util"
webhook_module "code.gitea.io/gitea/modules/webhook"
)
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
func newMatrixRequest(ctx context.Context, w *webhook_model.Webhook, t *webhook_model.HookTask) (*http.Request, []byte, error) {
meta := &MatrixMeta{}
if err := json.Unmarshal([]byte(w.Meta), meta); err != nil {
return nil, nil, fmt.Errorf("GetMatrixPayload meta json: %w", err)
}
mc := matrixConvertor{
MsgType: messageTypeText[meta.MessageType],
}
payload, err := newPayload(mc, []byte(t.PayloadContent), t.EventType)
if err != nil {
return nil, nil, err
}
body, err := json.MarshalIndent(payload, "", " ")
if err != nil {
return nil, nil, err
}
txnID, err := getMatrixTxnID(body)
if err != nil {
return nil, nil, err
}
req, err := http.NewRequest(http.MethodPut, w.URL+"/"+txnID, bytes.NewReader(body))
if err != nil {
return nil, nil, err
}
req.Header.Set("Content-Type", "application/json")
return req, body, addDefaultHeaders(req, []byte(w.Secret), t, body) // likely useless, but has always been sent historially
}
const matrixPayloadSizeLimit = 1024 * 64
// MatrixMeta contains the Matrix metadata
type MatrixMeta struct {
HomeserverURL string `json:"homeserver_url"`
Room string `json:"room_id"`
MessageType int `json:"message_type"`
}
var messageTypeText = map[int]string{
1: "m.notice",
2: "m.text",
}
// GetMatrixHook returns Matrix metadata
func GetMatrixHook(w *webhook_model.Webhook) *MatrixMeta {
s := &MatrixMeta{}
if err := json.Unmarshal([]byte(w.Meta), s); err != nil {
log.Error("webhook.GetMatrixHook(%d): %v", w.ID, err)
}
return s
}
Add Webhook authorization header (#20926) _This is a different approach to #20267, I took the liberty of adapting some parts, see below_ ## Context In some cases, a weebhook endpoint requires some kind of authentication. The usual way is by sending a static `Authorization` header, with a given token. For instance: - Matrix expects a `Bearer <token>` (already implemented, by storing the header cleartext in the metadata - which is buggy on retry #19872) - TeamCity #18667 - Gitea instances #20267 - SourceHut https://man.sr.ht/graphql.md#authentication-strategies (this is my actual personal need :) ## Proposed solution Add a dedicated encrypt column to the webhook table (instead of storing it as meta as proposed in #20267), so that it gets available for all present and future hook types (especially the custom ones #19307). This would also solve the buggy matrix retry #19872. As a first step, I would recommend focusing on the backend logic and improve the frontend at a later stage. For now the UI is a simple `Authorization` field (which could be later customized with `Bearer` and `Basic` switches): ![2022-08-23-142911](https://user-images.githubusercontent.com/3864879/186162483-5b721504-eef5-4932-812e-eb96a68494cc.png) The header name is hard-coded, since I couldn't fine any usecase justifying otherwise. ## Questions - What do you think of this approach? @justusbunsi @Gusted @silverwind - ~~How are the migrations generated? Do I have to manually create a new file, or is there a command for that?~~ - ~~I started adding it to the API: should I complete it or should I drop it? (I don't know how much the API is actually used)~~ ## Done as well: - add a migration for the existing matrix webhooks and remove the `Authorization` logic there _Closes #19872_ Co-authored-by: Lunny Xiao <xiaolunwen@gmail.com> Co-authored-by: Gusted <williamzijl7@hotmail.com> Co-authored-by: delvh <dev.lh@web.de>
2022-11-04 02:23:20 +08:00
// MatrixPayload contains payload for a Matrix room
type MatrixPayload struct {
Body string `json:"body"`
MsgType string `json:"msgtype"`
Format string `json:"format"`
FormattedBody string `json:"formatted_body"`
Commits []*api.PayloadCommit `json:"io.gitea.commits,omitempty"`
}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
var _ payloadConvertor[MatrixPayload] = matrixConvertor{}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
type matrixConvertor struct {
MsgType string
}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
func (m matrixConvertor) newPayload(text string, commits ...*api.PayloadCommit) (MatrixPayload, error) {
return MatrixPayload{
Body: getMessageBody(text),
MsgType: m.MsgType,
Format: "org.matrix.custom.html",
FormattedBody: text,
Commits: commits,
}, nil
}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
// Create implements payloadConvertor Create method
func (m matrixConvertor) Create(p *api.CreatePayload) (MatrixPayload, error) {
repoLink := htmlLinkFormatter(p.Repo.HTMLURL, p.Repo.FullName)
refLink := MatrixLinkToRef(p.Repo.HTMLURL, p.Ref)
text := fmt.Sprintf("[%s:%s] %s created by %s", repoLink, refLink, p.RefType, p.Sender.UserName)
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
return m.newPayload(text)
}
// Delete composes Matrix payload for delete a branch or tag.
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
func (m matrixConvertor) Delete(p *api.DeletePayload) (MatrixPayload, error) {
Use the type RefName for all the needed places and fix pull mirror sync bugs (#24634) This PR replaces all string refName as a type `git.RefName` to make the code more maintainable. Fix #15367 Replaces #23070 It also fixed a bug that tags are not sync because `git remote --prune origin` will not remove local tags if remote removed. We in fact should use `git fetch --prune --tags origin` but not `git remote update origin` to do the sync. Some answer from ChatGPT as ref. > If the git fetch --prune --tags command is not working as expected, there could be a few reasons why. Here are a few things to check: > >Make sure that you have the latest version of Git installed on your system. You can check the version by running git --version in your terminal. If you have an outdated version, try updating Git and see if that resolves the issue. > >Check that your Git repository is properly configured to track the remote repository's tags. You can check this by running git config --get-all remote.origin.fetch and verifying that it includes +refs/tags/*:refs/tags/*. If it does not, you can add it by running git config --add remote.origin.fetch "+refs/tags/*:refs/tags/*". > >Verify that the tags you are trying to prune actually exist on the remote repository. You can do this by running git ls-remote --tags origin to list all the tags on the remote repository. > >Check if any local tags have been created that match the names of tags on the remote repository. If so, these local tags may be preventing the git fetch --prune --tags command from working properly. You can delete local tags using the git tag -d command. --------- Co-authored-by: delvh <dev.lh@web.de>
2023-05-26 09:04:48 +08:00
refName := git.RefName(p.Ref).ShortName()
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
repoLink := htmlLinkFormatter(p.Repo.HTMLURL, p.Repo.FullName)
text := fmt.Sprintf("[%s:%s] %s deleted by %s", repoLink, refName, p.RefType, p.Sender.UserName)
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
return m.newPayload(text)
}
// Fork composes Matrix payload for forked by a repository.
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
func (m matrixConvertor) Fork(p *api.ForkPayload) (MatrixPayload, error) {
baseLink := htmlLinkFormatter(p.Forkee.HTMLURL, p.Forkee.FullName)
forkLink := htmlLinkFormatter(p.Repo.HTMLURL, p.Repo.FullName)
text := fmt.Sprintf("%s is forked to %s", baseLink, forkLink)
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
return m.newPayload(text)
}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
// Issue implements payloadConvertor Issue method
func (m matrixConvertor) Issue(p *api.IssuePayload) (MatrixPayload, error) {
text, _, _, _ := getIssuesPayloadInfo(p, htmlLinkFormatter, true)
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
return m.newPayload(text)
}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
// IssueComment implements payloadConvertor IssueComment method
func (m matrixConvertor) IssueComment(p *api.IssueCommentPayload) (MatrixPayload, error) {
text, _, _ := getIssueCommentPayloadInfo(p, htmlLinkFormatter, true)
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
return m.newPayload(text)
}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
// Wiki implements payloadConvertor Wiki method
func (m matrixConvertor) Wiki(p *api.WikiPayload) (MatrixPayload, error) {
text, _, _ := getWikiPayloadInfo(p, htmlLinkFormatter, true)
Webhook for Wiki changes (#20219) Add support for triggering webhook notifications on wiki changes. This PR contains frontend and backend for webhook notifications on wiki actions (create a new page, rename a page, edit a page and delete a page). The frontend got a new checkbox under the Custom Event -> Repository Events section. There is only one checkbox for create/edit/rename/delete actions, because it makes no sense to separate it and others like releases or packages follow the same schema. ![image](https://user-images.githubusercontent.com/121972/177018803-26851196-831f-4fde-9a4c-9e639b0e0d6b.png) The actions itself are separated, so that different notifications will be executed (with the "action" field). All the webhook receivers implement the new interface method (Wiki) and the corresponding tests. When implementing this, I encounter a little bug on editing a wiki page. Creating and editing a wiki page is technically the same action and will be handled by the ```updateWikiPage``` function. But the function need to know if it is a new wiki page or just a change. This distinction is done by the ```action``` parameter, but this will not be sent by the frontend (on form submit). This PR will fix this by adding the ```action``` parameter with the values ```_new``` or ```_edit```, which will be used by the ```updateWikiPage``` function. I've done integration tests with matrix and gitea (http). ![image](https://user-images.githubusercontent.com/121972/177018795-eb5cdc01-9ba3-483e-a6b7-ed0e313a71fb.png) Fix #16457 Signed-off-by: Aaron Fischer <mail@aaron-fischer.net>
2022-09-05 03:54:23 +08:00
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
return m.newPayload(text)
Webhook for Wiki changes (#20219) Add support for triggering webhook notifications on wiki changes. This PR contains frontend and backend for webhook notifications on wiki actions (create a new page, rename a page, edit a page and delete a page). The frontend got a new checkbox under the Custom Event -> Repository Events section. There is only one checkbox for create/edit/rename/delete actions, because it makes no sense to separate it and others like releases or packages follow the same schema. ![image](https://user-images.githubusercontent.com/121972/177018803-26851196-831f-4fde-9a4c-9e639b0e0d6b.png) The actions itself are separated, so that different notifications will be executed (with the "action" field). All the webhook receivers implement the new interface method (Wiki) and the corresponding tests. When implementing this, I encounter a little bug on editing a wiki page. Creating and editing a wiki page is technically the same action and will be handled by the ```updateWikiPage``` function. But the function need to know if it is a new wiki page or just a change. This distinction is done by the ```action``` parameter, but this will not be sent by the frontend (on form submit). This PR will fix this by adding the ```action``` parameter with the values ```_new``` or ```_edit```, which will be used by the ```updateWikiPage``` function. I've done integration tests with matrix and gitea (http). ![image](https://user-images.githubusercontent.com/121972/177018795-eb5cdc01-9ba3-483e-a6b7-ed0e313a71fb.png) Fix #16457 Signed-off-by: Aaron Fischer <mail@aaron-fischer.net>
2022-09-05 03:54:23 +08:00
}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
// Release implements payloadConvertor Release method
func (m matrixConvertor) Release(p *api.ReleasePayload) (MatrixPayload, error) {
text, _ := getReleasePayloadInfo(p, htmlLinkFormatter, true)
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
return m.newPayload(text)
}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
// Push implements payloadConvertor Push method
func (m matrixConvertor) Push(p *api.PushPayload) (MatrixPayload, error) {
var commitDesc string
if p.TotalCommits == 1 {
commitDesc = "1 commit"
} else {
commitDesc = fmt.Sprintf("%d commits", p.TotalCommits)
}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
repoLink := htmlLinkFormatter(p.Repo.HTMLURL, p.Repo.FullName)
branchLink := MatrixLinkToRef(p.Repo.HTMLURL, p.Ref)
text := fmt.Sprintf("[%s] %s pushed %s to %s:<br>", repoLink, p.Pusher.UserName, commitDesc, branchLink)
// for each commit, generate a new line text
for i, commit := range p.Commits {
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
text += fmt.Sprintf("%s: %s - %s", htmlLinkFormatter(commit.URL, commit.ID[:7]), commit.Message, commit.Author.Name)
// add linebreak to each commit but the last
if i < len(p.Commits)-1 {
text += "<br>"
}
}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
return m.newPayload(text, p.Commits...)
}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
// PullRequest implements payloadConvertor PullRequest method
func (m matrixConvertor) PullRequest(p *api.PullRequestPayload) (MatrixPayload, error) {
text, _, _, _ := getPullRequestPayloadInfo(p, htmlLinkFormatter, true)
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
return m.newPayload(text)
}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
// Review implements payloadConvertor Review method
func (m matrixConvertor) Review(p *api.PullRequestPayload, event webhook_module.HookEventType) (MatrixPayload, error) {
senderLink := htmlLinkFormatter(setting.AppURL+url.PathEscape(p.Sender.UserName), p.Sender.UserName)
title := fmt.Sprintf("#%d %s", p.Index, p.PullRequest.Title)
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
titleLink := htmlLinkFormatter(p.PullRequest.HTMLURL, title)
repoLink := htmlLinkFormatter(p.Repository.HTMLURL, p.Repository.FullName)
var text string
switch p.Action {
case api.HookIssueReviewed:
action, err := parseHookPullRequestEventType(event)
if err != nil {
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
return MatrixPayload{}, err
}
text = fmt.Sprintf("[%s] Pull request review %s: %s by %s", repoLink, action, titleLink, senderLink)
}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
return m.newPayload(text)
}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
// Repository implements payloadConvertor Repository method
func (m matrixConvertor) Repository(p *api.RepositoryPayload) (MatrixPayload, error) {
senderLink := htmlLinkFormatter(setting.AppURL+p.Sender.UserName, p.Sender.UserName)
repoLink := htmlLinkFormatter(p.Repository.HTMLURL, p.Repository.FullName)
var text string
switch p.Action {
case api.HookRepoCreated:
text = fmt.Sprintf("[%s] Repository created by %s", repoLink, senderLink)
case api.HookRepoDeleted:
text = fmt.Sprintf("[%s] Repository deleted by %s", repoLink, senderLink)
}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
return m.newPayload(text)
}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
func (m matrixConvertor) Package(p *api.PackagePayload) (MatrixPayload, error) {
senderLink := htmlLinkFormatter(setting.AppURL+p.Sender.UserName, p.Sender.UserName)
packageLink := htmlLinkFormatter(p.Package.HTMLURL, p.Package.Name)
var text string
switch p.Action {
case api.HookPackageCreated:
text = fmt.Sprintf("[%s] Package published by %s", packageLink, senderLink)
case api.HookPackageDeleted:
text = fmt.Sprintf("[%s] Package deleted by %s", packageLink, senderLink)
}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
return m.newPayload(text)
}
var urlRegex = regexp.MustCompile(`<a [^>]*?href="([^">]*?)">(.*?)</a>`)
func getMessageBody(htmlText string) string {
htmlText = urlRegex.ReplaceAllString(htmlText, "[$2]($1)")
htmlText = strings.ReplaceAll(htmlText, "<br>", "\n")
return htmlText
}
Add Webhook authorization header (#20926) _This is a different approach to #20267, I took the liberty of adapting some parts, see below_ ## Context In some cases, a weebhook endpoint requires some kind of authentication. The usual way is by sending a static `Authorization` header, with a given token. For instance: - Matrix expects a `Bearer <token>` (already implemented, by storing the header cleartext in the metadata - which is buggy on retry #19872) - TeamCity #18667 - Gitea instances #20267 - SourceHut https://man.sr.ht/graphql.md#authentication-strategies (this is my actual personal need :) ## Proposed solution Add a dedicated encrypt column to the webhook table (instead of storing it as meta as proposed in #20267), so that it gets available for all present and future hook types (especially the custom ones #19307). This would also solve the buggy matrix retry #19872. As a first step, I would recommend focusing on the backend logic and improve the frontend at a later stage. For now the UI is a simple `Authorization` field (which could be later customized with `Bearer` and `Basic` switches): ![2022-08-23-142911](https://user-images.githubusercontent.com/3864879/186162483-5b721504-eef5-4932-812e-eb96a68494cc.png) The header name is hard-coded, since I couldn't fine any usecase justifying otherwise. ## Questions - What do you think of this approach? @justusbunsi @Gusted @silverwind - ~~How are the migrations generated? Do I have to manually create a new file, or is there a command for that?~~ - ~~I started adding it to the API: should I complete it or should I drop it? (I don't know how much the API is actually used)~~ ## Done as well: - add a migration for the existing matrix webhooks and remove the `Authorization` logic there _Closes #19872_ Co-authored-by: Lunny Xiao <xiaolunwen@gmail.com> Co-authored-by: Gusted <williamzijl7@hotmail.com> Co-authored-by: delvh <dev.lh@web.de>
2022-11-04 02:23:20 +08:00
// getMatrixTxnID computes the transaction ID to ensure idempotency
func getMatrixTxnID(payload []byte) (string, error) {
if len(payload) >= matrixPayloadSizeLimit {
Add Webhook authorization header (#20926) _This is a different approach to #20267, I took the liberty of adapting some parts, see below_ ## Context In some cases, a weebhook endpoint requires some kind of authentication. The usual way is by sending a static `Authorization` header, with a given token. For instance: - Matrix expects a `Bearer <token>` (already implemented, by storing the header cleartext in the metadata - which is buggy on retry #19872) - TeamCity #18667 - Gitea instances #20267 - SourceHut https://man.sr.ht/graphql.md#authentication-strategies (this is my actual personal need :) ## Proposed solution Add a dedicated encrypt column to the webhook table (instead of storing it as meta as proposed in #20267), so that it gets available for all present and future hook types (especially the custom ones #19307). This would also solve the buggy matrix retry #19872. As a first step, I would recommend focusing on the backend logic and improve the frontend at a later stage. For now the UI is a simple `Authorization` field (which could be later customized with `Bearer` and `Basic` switches): ![2022-08-23-142911](https://user-images.githubusercontent.com/3864879/186162483-5b721504-eef5-4932-812e-eb96a68494cc.png) The header name is hard-coded, since I couldn't fine any usecase justifying otherwise. ## Questions - What do you think of this approach? @justusbunsi @Gusted @silverwind - ~~How are the migrations generated? Do I have to manually create a new file, or is there a command for that?~~ - ~~I started adding it to the API: should I complete it or should I drop it? (I don't know how much the API is actually used)~~ ## Done as well: - add a migration for the existing matrix webhooks and remove the `Authorization` logic there _Closes #19872_ Co-authored-by: Lunny Xiao <xiaolunwen@gmail.com> Co-authored-by: Gusted <williamzijl7@hotmail.com> Co-authored-by: delvh <dev.lh@web.de>
2022-11-04 02:23:20 +08:00
return "", fmt.Errorf("getMatrixTxnID: payload size %d > %d", len(payload), matrixPayloadSizeLimit)
}
h := sha1.New()
_, err := h.Write(payload)
if err != nil {
return "", err
}
Add Webhook authorization header (#20926) _This is a different approach to #20267, I took the liberty of adapting some parts, see below_ ## Context In some cases, a weebhook endpoint requires some kind of authentication. The usual way is by sending a static `Authorization` header, with a given token. For instance: - Matrix expects a `Bearer <token>` (already implemented, by storing the header cleartext in the metadata - which is buggy on retry #19872) - TeamCity #18667 - Gitea instances #20267 - SourceHut https://man.sr.ht/graphql.md#authentication-strategies (this is my actual personal need :) ## Proposed solution Add a dedicated encrypt column to the webhook table (instead of storing it as meta as proposed in #20267), so that it gets available for all present and future hook types (especially the custom ones #19307). This would also solve the buggy matrix retry #19872. As a first step, I would recommend focusing on the backend logic and improve the frontend at a later stage. For now the UI is a simple `Authorization` field (which could be later customized with `Bearer` and `Basic` switches): ![2022-08-23-142911](https://user-images.githubusercontent.com/3864879/186162483-5b721504-eef5-4932-812e-eb96a68494cc.png) The header name is hard-coded, since I couldn't fine any usecase justifying otherwise. ## Questions - What do you think of this approach? @justusbunsi @Gusted @silverwind - ~~How are the migrations generated? Do I have to manually create a new file, or is there a command for that?~~ - ~~I started adding it to the API: should I complete it or should I drop it? (I don't know how much the API is actually used)~~ ## Done as well: - add a migration for the existing matrix webhooks and remove the `Authorization` logic there _Closes #19872_ Co-authored-by: Lunny Xiao <xiaolunwen@gmail.com> Co-authored-by: Gusted <williamzijl7@hotmail.com> Co-authored-by: delvh <dev.lh@web.de>
2022-11-04 02:23:20 +08:00
return hex.EncodeToString(h.Sum(nil)), nil
}
Store webhook event in database (#29145) Refactor the webhook logic, to have the type-dependent processing happen only in one place. --- ## Current webhook flow 1. An event happens 2. It is pre-processed (depending on the webhook type) and its body is added to a task queue 3. When the task is processed, some more logic (depending on the webhook type as well) is applied to make an HTTP request This means that webhook-type dependant logic is needed in step 2 and 3. This is cumbersome and brittle to maintain. Updated webhook flow with this PR: 1. An event happens 2. It is stored as-is and added to a task queue 3. When the task is processed, the event is processed (depending on the webhook type) to make an HTTP request So the only webhook-type dependent logic happens in one place (step 3) which should be much more robust. ## Consequences of the refactor - the raw event must be stored in the hooktask (until now, the pre-processed body was stored) - to ensure that previous hooktasks are correctly sent, a `payload_version` is added (version 1: the body has already been pre-process / version 2: the body is the raw event) So future webhook additions will only have to deal with creating an http.Request based on the raw event (no need to adjust the code in multiple places, like currently). Moreover since this processing happens when fetching from the task queue, it ensures that the queuing of new events (upon a `git push` for instance) does not get slowed down by a slow webhook. As a concrete example, the PR #19307 for custom webhooks, should be substantially smaller: - no need to change `services/webhook/deliver.go` - minimal change in `services/webhook/webhook.go` (add the new webhook to the map) - no need to change all the individual webhook files (since with this refactor the `*webhook_model.Webhook` is provided as argument)
2024-03-08 06:18:38 +08:00
// MatrixLinkToRef Matrix-formatter link to a repo ref
func MatrixLinkToRef(repoURL, ref string) string {
refName := git.RefName(ref).ShortName()
switch {
case strings.HasPrefix(ref, git.BranchPrefix):
return htmlLinkFormatter(repoURL+"/src/branch/"+util.PathEscapeSegments(refName), refName)
case strings.HasPrefix(ref, git.TagPrefix):
return htmlLinkFormatter(repoURL+"/src/tag/"+util.PathEscapeSegments(refName), refName)
default:
return htmlLinkFormatter(repoURL+"/src/commit/"+util.PathEscapeSegments(refName), refName)
}
}