**mergerfs** is a union filesystem geared towards simplifying storage and management of files across numerous commodity storage devices. It is similar to **mhddfs**, **unionfs**, and **aufs**.
mergerfs logically merges multiple paths together. Think a union of sets. The file/s or directory/s acted on or presented through mergerfs are based on the policy chosen for that particular action. Read more about policies below.
```
A + B = C
/disk1 /disk2 /merged
| | |
+-- /dir1 +-- /dir1 +-- /dir1
| | | | | |
| +-- file1 | +-- file2 | +-- file1
| | +-- file3 | +-- file2
+-- /dir2 | | +-- file3
| | +-- /dir3 |
| +-- file4 | +-- /dir2
| +-- file5 | |
+-- file6 | +-- file4
|
+-- /dir3
| |
| +-- file5
|
+-- file6
```
mergerfs does **not** support the copy-on-write (CoW) behavior found in **aufs** and **overlayfs**. You can **not** mount a read-only filesystem and write to it. However, mergerfs will ignore read-only drives when creating new files so you can mix rw and ro drives.
* **defaults**: a shortcut for FUSE's **atomic_o_trunc**, **auto_cache**, **big_writes**, **default_permissions**, **splice_move**, **splice_read**, and **splice_write**. These options seem to provide the best performance.
* **direct_io**: causes FUSE to bypass caching which can increase write speeds at the detriment of reads. Note that not enabling `direct_io` will cause double caching of files and therefore less memory for caching generally (enable **dropcacheonclose** to help with this problem). However, `mmap` does not work when `direct_io` is enabled.
* **minfreespace=value**: the minimum space value used for creation policies. Understands 'K', 'M', and 'G' to represent kilobyte, megabyte, and gigabyte respectively. (default: 4G)
* **moveonenospc=true|false**: when enabled (set to **true**) if a **write** fails with **ENOSPC** or **EDQUOT** a scan of all drives will be done looking for the drive with the most free space which is at least the size of the file plus the amount which failed to write. An attempt to move the file to that drive will occur (keeping all metadata possible) and if successful the original is unlinked and the write retried. (default: false)
* **use_ino**: causes mergerfs to supply file/directory inodes rather than libfuse. While not a default it is generally recommended it be enabled so that hard linked files share the same inode value.
* **hard_remove**: force libfuse to immedately remove files when unlinked. This will keep the `.fuse_hidden` files from showing up but if software uses an opened but unlinked file in certain ways it could result in errors.
* **dropcacheonclose=true|false**: when a file is requested to be closed call `posix_fadvise` on it first to instruct the kernel that we no longer need the data and it can drop its cache. Recommended when **direct_io** is not enabled to limit double caching. (default: false)
* **symlinkify=true|false**: when enabled (set to **true**) and a file is not writable and its mtime or ctime is older than **symlinkify_timeout** files will be reported as symlinks to the original files. Please read more below before using. (default: false)
* **symlinkify_timeout=value**: time to wait, in seconds, to activate the **symlinkify** behavior. (default: 3600)
* **nullrw=true|false**: turns reads and writes into no-ops. The request will succeed but do nothing. Useful for benchmarking mergerfs. (default: false)
* **ignorepponrename=true|false**: ignore path preserving on rename. Typically rename and link act differently depending on the policy of `create` (read below). Enabling this will cause rename and link to always use the non-path preserving behavior. This means files, when renamed or linked, will stay on the same drive. (default: false)
* **xattr=passthrough|noattr|nosys**: Runtime control of xattrs. Default is to passthrough xattr requests. 'noattr' will short circuit as if nothing exists. 'nosys' will respond with ENOSYS as if xattrs are not supported or disabled. (default: passthrough)
* **link_cow=true|false**: When enabled if a regular file is opened which has a link count > 1 it will copy the file to a temporary file and rename over the original. Breaking the link and providing a basic copy-on-write function similar to cow-shell. (default: false)
* **statfs=base|full**: Controls how statfs works. 'base' means it will always use all branches in statfs calculations. 'full' is in effect path preserving and only includes drives where the path exists. (default: base)
* **statfs_ignore=none|ro|nc**: 'ro' will cause statfs calculations to ignore available space for branches mounted or tagged as 'read-only' or 'no create'. 'nc' will ignore available space for branches tagged as 'no create'. (default: none)
* **threads=num**: number of threads to use in multithreaded mode. When set to zero (the default) it will attempt to discover and use the number of logical cores. If the lookup fails it will fall back to using 4. If the thread count is set negative it will look up the number of cores then divide by the absolute value. ie. threads=-2 on an 8 core machine will result in 8 / 2 = 4 threads. There will always be at least 1 thread. NOTE: higher number of threads increases parallelism but usually decreases throughput. (default: number of cores) *NOTE2:* the option is unavailable when built with system libfuse.
* **fsname=name**: sets the name of the filesystem as seen in **mount**, **df**, etc. Defaults to a list of the source paths concatenated together with the longest common prefix removed.
* **func.<func>=<policy>**: sets the specific FUSE function's policy. See below for the list of value types. Example: **func.getattr=newest**
* **category.<category>=<policy>**: Sets policy of all FUSE functions in the provided category. Example: **category.create=mfs**
**NOTE:** Options are evaluated in the order listed so if the options are **func.rmdir=rand,category.action=ff** the **action** category setting will override the **rmdir** setting.
The 'branches' (formerly 'srcmounts') argument is a colon (':') delimited list of paths to be pooled together. It does not matter if the paths are on the same or different drives nor does it matter the filesystem. Used and available space will not be duplicated for paths on the same device and any features which aren't supported by the underlying filesystem (such as file attributes or extended attributes) will return the appropriate errors.
To make it easier to include multiple branches mergerfs supports [globbing](http://linux.die.net/man/7/glob). **The globbing tokens MUST be escaped when using via the shell else the shell itself will apply the glob itself.**
Each branch can have a suffix of `=RW` (read / write), `=RO` (read-only), or `=NC` (no create). These suffixes work with globs as well and will apply to each path found. `RW` is the default behavior and those paths will be eligible for all policy categories. `RO` will exclude those paths from `create` and `action` policies (just as a filesystem being mounted `ro` would). `NC` will exclude those paths from `create` policies (you can't create but you can change / delete).
**NOTE:** the globbing is done at mount or xattr update time (see below). If a new directory is added matching the glob after the fact it will not be automatically included.
Due to the levels of indirection introduced by mergerfs and the underlying technology FUSE there can be varying levels of performance degredation. This feature will turn non-directories which are not writable into symlinks to the original file found by the `readlink` policy after the mtime and ctime are older than the timeout.
**WARNING:** The current implementation has a known issue in which if the file is open and being used when the file is converted to a symlink then the application which has that file open will receive an error when using it. This is unlikely to occur in practice but is something to keep in mind.
**WARNING:** Some backup solutions, such as CrashPlan, do not backup the target of a symlink. If using this feature it will be necessary to point any backup software to the original drives or configure the software to follow symlinks if such an option is available. Alternatively create two mounts. One for backup and one for general consumption.
Due to how FUSE works there is an overhead to all requests made to a FUSE filesystem. Meaning that even a simple passthrough will have some slowdown. However, generally the overhead is minimal in comparison to the cost of the underlying I/O. By disabling the underlying I/O we can test the theoretical performance boundries.
By enabling `nullrw` mergerfs will work as it always does **except** that all reads and writes will be no-ops. A write will succeed (the size of the write will be returned as if it were successful) but mergerfs does nothing with the data it was given. Similarly a read will return the size requested but won't touch the buffer.
It's important to test with different `obs` (output block size) values since the relative overhead is greater with smaller values. As you can see above the size of a read or write can massively impact theoretical performance. If an application performs much worse through mergerfs it could very well be that it doesn't optimally size its read and write requests. In such cases contact the mergerfs author so it can be investigated.
Runtime extended attribute support can be managed via the `xattr` option. By default it will passthrough any xattr calls. Given xattr support is rarely used and can have significant performance implications mergerfs allows it to be disabled at runtime.
`noattr` will cause mergerfs to short circuit all xattr calls and return ENOATTR where appropriate. mergerfs still gets all the requests but they will not be forwarded on to the underlying filesystems. The runtime control will still function in this mode.
`nosys` will cause mergerfs to return ENOSYS for any xattr call. The difference with `noattr` is that the kernel will cache this fact and itself short circuit future calls. This will be more efficient than `noattr` but will cause mergerfs' runtime control via the hidden file to stop working.
The POSIX filesystem API is made up of a number of functions. **creat**, **stat**, **chown**, etc. In mergerfs most of the core functions are grouped into 3 categories: **action**, **create**, and **search**. These functions and categories can be assigned a policy which dictates what file or directory is chosen when performing that behavior. Any policy can be assigned to a function or category though some may not be very useful in practice. For instance: **rand** (random) may be useful for file creation (create) but could lead to very odd behavior if used for `chmod` if there were more than one copy of the file.
Some functions, listed in the category `N/A` below, can not be assigned the normal policies. All functions which work on file handles use the handle which was acquired by `open` or `create`. `readdir` has no real need for a policy given the purpose is merely to return a list of entries in a directory. `statfs`'s behavior can be modified via other options.
When using policies which are based on a branch's available space the base path provided is used. Not the full path to the file in question. Meaning that sub mounts won't be considered in the space calculations. The reason is that it doesn't really work for non-path preserving policies and can lead to non-obvious behaviors.
Policies basically search branches and create a list of files / paths for functions to work on. The policy is responsible for filtering and sorting. The policy type defines the sorting but filtering is mostly uniform as described below.
* All **action** policies will filter out branches which are mounted **read-only** or tagged as **RO (read-only)**.
* All **create** policies will filter out branches which are mounted **read-only**, tagged **RO (read-only)** or **NC (no create)**, or has available space less than `minfreespace`.
| all | Search category: same as **epall**. Action category: same as **epall**. Create category: for **mkdir**, **mknod**, and **symlink** it will apply to all branches. **create** works like **ff**. |
| epall (existing path, all) | Search category: same as **epff** (but more expensive because it doesn't stop after finding a valid branch). Action category: apply to all found. Create category: for **mkdir**, **mknod**, and **symlink** it will apply to all found. **create** works like **epff** (but more expensive because it doesn't stop after finding a valid branch). |
| epff (existing path, first found) | Given the order of the branches, as defined at mount time or configured at runtime, act on the first one found where the relative path exists. |
| eplfs (existing path, least free space) | Of all the branches on which the relative path exists choose the drive with the least free space. |
| eplus (existing path, least used space) | Of all the branches on which the relative path exists choose the drive with the least used space. |
| epmfs (existing path, most free space) | Of all the branches on which the relative path exists choose the drive with the most free space. |
| eprand (existing path, random) | Calls **epall** and then randomizes. |
| ff (first found) | Search category: same as **epff**. Action category: same as **epff**. Create category: Given the order of the drives, as defined at mount time or configured at runtime, act on the first one found. |
| lfs (least free space) | Search category: same as **eplfs**. Action category: same as **eplfs**. Create category: Pick the drive with the least available free space. |
| lus (least used space) | Search category: same as **eplus**. Action category: same as **eplus**. Create category: Pick the drive with the least used space. |
| mfs (most free space) | Search category: same as **epmfs**. Action category: same as **epmfs**. Create category: Pick the drive with the most available free space. |
| newest | Pick the file / directory with the largest mtime. |
**NOTE:** If you're receiving errors from software when files are moved / renamed / linked then you should consider changing the create policy to one which is **not** path preserving, enabling `ignorepponrename`, or contacting the author of the offending software and requesting that `EXDEV` be properly handled.
`rename` and `link` are tricky functions in a union filesystem. `rename` only works within a single filesystem or device. If a rename can't be done atomically due to the source and destination paths existing on different mount points it will return **-1** with **errno = EXDEV** (cross device). So if a `rename`'s source and target are on different drives within the pool it creates an issue.
Originally mergerfs would return EXDEV whenever a rename was requested which was cross directory in any way. This made the code simple and was technically complient with POSIX requirements. However, many applications fail to handle EXDEV at all and treat it as a normal error or otherwise handle it poorly. Such apps include: gvfsd-fuse v1.20.3 and prior, Finder / CIFS/SMB client in Apple OSX 10.9+, NZBGet, Samba's recycling bin feature.
[readdir](http://linux.die.net/man/3/readdir) is different from all other filesystem functions. While it could have it's own set of policies to tweak its behavior at this time it provides a simple union of files and directories found. Remember that any action or information queried about these files and directories come from the respective function. For instance: an **ls** is a **readdir** and for each file/directory returned **getattr** is called. Meaning the policy of **getattr** is responsible for choosing the file/directory which is the source of the metadata you see in an **ls**.
[statvfs](http://linux.die.net/man/2/statvfs) normalizes the source drives based on the fragment size and sums the number of adjusted blocks and inodes. This means you will see the combined space of all sources. Total, used, and free. The sources however are dedupped based on the drive so multiple sources on the same drive will not result in double counting it's space. Filesystems mounted further down the tree of the branch will not be included when checking the mount's stats.
There is a pseudo file available at the mount point which allows for the runtime modification of certain **mergerfs** options. The file will not show up in **readdir** but can be **stat**'ed and manipulated via [{list,get,set}xattrs](http://linux.die.net/man/2/listxattr) calls.
Any changes made at runtime are **not** persisted. If you wish for values to persist they must be included as options wherever you configure the mounting of mergerfs (/etc/fstab).
While they won't show up when using [listxattr](http://linux.die.net/man/2/listxattr) **mergerfs** offers a number of special xattrs to query information about the files served. To access the values you will need to issue a [getxattr](http://linux.die.net/man/2/getxattr) for one of the following:
The kernel performs caching of data pages on all files not opened with `O_DIRECT`. Due to mergerfs using FUSE and therefore being a userland process the kernel can double cache the content being read through mergerfs. Once from the underlying filesystem and once for mergerfs. Using `direct_io` and/or `dropcacheonclose` help minimize the double caching. `direct_io` will instruct the kernel to bypass the page cache for files opened through mergerfs. `dropcacheonclose` will cause mergerfs to instruct the kernel to flush a file's page cache for which it had opened when closed. If most data is read once its probably best to enable both (read above for details and limitations).
If a cache is desired for mergerfs do not enable `direct_io` and instead possibly use `auto_cache` or `kernel_cache`. By default FUSE will invalidate cached pages when a file is opened. By using `auto_cache` it will instead use `getattr` to check if a file has changed when the file is opened and if so will flush the cache. `ac_attr_timeout` is the timeout for keeping said cache. Alternatively `kernel_cache` will keep the cache across opens unless invalidated through other means. You should only uses these if you do not plan to write/modify the same files through mergerfs and the underlying filesystem at the same time. It could lead to corruption. Then again doing so without caching can also cause issues.
It's a difficult balance between memory usage, cache bloat & duplication, and performance. Ideally mergerfs would be able to disable caching for the files it reads/writes but allow page caching for itself. That would limit the FUSE overhead. However, there isn't good way to achieve this.
#### entry & attribute caching
Given the relatively high cost of FUSE due to the kernel <-> userspace round trips there are kernel side caches for file entries and attributes. The entry cache limits the `lookup` calls to mergerfs which ask if a file exists. The attribute cache limits the need to make `getattr` calls to mergerfs which provide file attributes (mode, size, type, etc.). As with the page cache these should not be used if the underlying filesystems are being manipulated at the same time as it could lead to odd behavior or data corruption. The options for setting these are `entry_timeout` and `negative_timeout` for the entry cache and `attr_timeout` for the attributes cache. `negative_timeout` refers to the timeout for negative responses to lookups (non-existant files).
#### writeback caching
writeback caching is a technique for improving write speeds by batching writes at a faster device and then bulk writing to the slower device. With FUSE the kernel will wait for a number of writes to be made and then send it to the filesystem as one request. mergerfs currently uses a slightly modified and vendored libfuse 2.9.7 which does not support writeback caching. However, a prototype port to libfuse 3.x has been made and the writeback cache appears to work as expected (though performance improvements greatly depend on the way the client app writes data). Once the port is complete and thoroughly tested writeback caching will be available.
#### tiered caching
Some storage technologies support what some call "tiered" caching. The placing of usually smaller, faster storage as a transparent cache to larger, slower storage. NVMe, SSD, Optane in front of traditional HDDs for instance.
MergerFS does not natively support any sort of tiered caching. Most users have no use for such a feature and its inclusion would complicate the code. However, there are a few situations where a cache drive could help with a typical mergerfs setup.
1. Fast network, slow drives, many readers: You've a 10+Gbps network with many readers and your regular drives can't keep up.
2. Fast network, slow drives, small'ish bursty writes: You have a 10+Gbps network and wish to transfer amounts of data less than your cache drive but wish to do so quickly.
With #1 its arguable if you should be using mergerfs at all. RAID would probably be the better solution. If you're going to use mergerfs there are other tactics that may help: spreading the data across drives (see the mergerfs.dup tool) and setting `func.open=rand`, using `symlinkify`, or using dm-cache or a similar technology to add tiered cache to the underlying device.
With #2 one could use dm-cache as well but there is another solution which requires only mergerfs and a cronjob.
3. The best `create` policies to use for the 'cache' pool would probably be `ff`, `epff`, `lfs`, or `eplfs`. The latter two under the assumption that the cache drive(s) are far smaller than the backing drives. If using path preserving policies remember that you'll need to manually create the core directories of those paths you wish to be cached. Be sure the permissions are in sync. Use `mergerfs.fsck` to check / correct them. You could also tag the slow drives as `=NC` though that'd mean if the cache drives fill you'd get "out of space" errors.
4. Enable `moveonenospc` and set `minfreespace` appropriately. Perhaps setting `minfreespace` to the size of the largest cache drive.
Move files from cache to backing pool based only on the last time the file was accessed. Replace `-atime` with `-amin` if you want minutes rather than days. May want to use the `fadvise` / `--drop-cache` version of rsync or run rsync with the tool "nocache".
* https://github.com/trapexit/backup-and-recovery-howtos : A set of guides / howtos on creating a data storage system, backing it up, maintaining it, and recovering from failure.
* If you don't see some directories and files you expect in a merged point or policies seem to skip drives be sure the user has permission to all the underlying directories. Use `mergerfs.fsck` to audit the drive for out of sync permissions.
* Do **not** use `direct_io` if you expect applications (such as rtorrent) to [mmap](http://linux.die.net/man/2/mmap) files. It is not currently supported in FUSE w/ `direct_io` enabled. Enabling `dropcacheonclose` is recommended when `direct_io` is disabled.
* Since POSIX gives you only error or success on calls its difficult to determine the proper behavior when applying the behavior to multiple targets. **mergerfs** will return an error only if all attempts of an action fail. Any success will lead to a success returned. This means however that some odd situations may arise.
* [Kodi](http://kodi.tv), [Plex](http://plex.tv), [Subsonic](http://subsonic.org), etc. can use directory [mtime](http://linux.die.net/man/2/stat) to more efficiently determine whether to scan for new content rather than simply performing a full scan. If using the default **getattr** policy of **ff** its possible those programs will miss an update on account of it returning the first directory found's **stat** info and its a later directory on another mount which had the **mtime** recently updated. To fix this you will want to set **func.getattr=newest**. Remember though that this is just **stat**. If the file is later **open**'ed or **unlink**'ed and the policy is different for those then a completely different file or directory could be acted on.
* Some policies mixed with some functions may result in strange behaviors. Not that some of these behaviors and race conditions couldn't happen outside **mergerfs** but that they are far more likely to occur on account of the attempt to merge together multiple sources of data which could be out of sync due to the different policies.
* For consistency its generally best to set **category** wide policies rather than individual **func**'s. This will help limit the confusion of tools such as [rsync](http://linux.die.net/man/1/rsync). However, the flexibility is there if needed.
Remember that the default policy for `getattr` is `ff`. The information for the first directory found will be returned. If it wasn't the directory which had been updated then it will appear outdated.
The reason this is the default is because any other policy would be far more expensive and for many applications it is unnecessary. To always return the directory with the most recent mtime or a faked value based on all found would require a scan of all drives. That alone is far more expensive than `ff` but would also possibly spin up sleeping drives.
If you always want the directory information from the one with the most recent mtime then use the `newest` policy for `getattr`.
ls: cannot access '/mnt/pool/foo': No such file or directory
```
`mv`, when working across devices, is copying the source to target and then removing the source. Since the source **is** the target in this case, depending on the unlink policy, it will remove the just copied file and other files across the branches.
If you want to move files to one drive just copy them there and use mergerfs.dedup to clean up the old paths or manually remove them from the branches directly.
Use the `direct_io` option as described above. Due to what mergerfs is doing there ends up being two caches of a file under normal usage. One from the underlying filesystem and one from mergerfs. Enabling `direct_io` removes the mergerfs cache. This saves on memory but means the kernel needs to communicate with mergerfs more often and can therefore result in slower speeds.
Since enabling `direct_io` disables `mmap` this is not an ideal situation however write speeds should be increased.
Be sure to turn off `direct_io`. rtorrent and some other applications use [mmap](http://linux.die.net/man/2/mmap) to read and write to files and offer no failback to traditional methods. FUSE does not currently support mmap while using `direct_io`. There may be a performance penalty on writes with `direct_io` off as well as the problem of double caching but it's the only way to get such applications to work. If the performance loss is too high for other apps you can mount mergerfs twice. Once with `direct_io` enabled and one without it. Be sure to set `dropcacheonclose=true` if not using `direct_io`.
It does. If you're trying to put Plex's config / metadata on mergerfs you have to leave `direct_io` off because Plex is using sqlite which apparently needs mmap. mmap doesn't work with `direct_io`. To fix this place the data elsewhere or disable `direct_io` (with `dropcacheonclose=true`).
There [is a bug](https://lkml.org/lkml/2016/3/16/260) in caching which affects overall performance of mmap through FUSE in Linux 4.x kernels. It is fixed in [4.4.10 and 4.5.4](https://lkml.org/lkml/2016/5/11/59).
The problem is that many applications do not properly handle `EXDEV` errors which `rename` and `link` may return even though they are perfectly valid situations which do not indicate actual drive or OS errors. The error will only be returned by mergerfs if using a path preserving policy as described in the policy section above. If you do not care about path preservation simply change the mergerfs policy to the non-path preserving version. For example: `-o category.create=mfs`
Ideally the offending software would be fixed and it is recommended that if you run into this problem you contact the software's author and request proper handling of `EXDEV` errors.
Workaround: Copy the file/directory and then remove the original rather than move.
This isn't an issue with Samba but some SMB clients. GVFS-fuse v1.20.3 and prior (found in Ubuntu 14.04 among others) failed to handle certain error codes correctly. Particularly **STATUS_NOT_SAME_DEVICE** which comes from the **EXDEV** which is returned by **rename** when the call is crossing mount points. When a program gets an **EXDEV** it needs to explicitly take an alternate action to accomplish it's goal. In the case of **mv** or similar it tries **rename** and on **EXDEV** falls back to a manual copying of data between the two locations and unlinking the source. In these older versions of GVFS-fuse if it received **EXDEV** it would translate that into **EIO**. This would cause **mv** or most any application attempting to move files around on that SMB share to fail with a IO error.
[GVFS-fuse v1.22.0](https://bugzilla.gnome.org/show_bug.cgi?id=734568) and above fixed this issue but a large number of systems use the older release. On Ubuntu the version can be checked by issuing `apt-cache showpkg gvfs-fuse`. Most distros released in 2015 seem to have the updated release and will work fine but older systems may not. Upgrading gvfs-fuse or the distro in general will address the problem.
In Apple's MacOSX 10.9 they replaced Samba (client and server) with their own product. It appears their new client does not handle **EXDEV** either and responds similar to older release of gvfs on Linux.
This is the same issue as with Samba. `rename` returns `EXDEV` (in our case that will really only happen with path preserving policies like `epmfs`) and the software doesn't handle the situtation well. This is unfortunately a common failure of software which moves files around. The standard indicates that an implementation `MAY` choose to support non-user home directory trashing of files (which is a `MUST`). The implementation `MAY` also support "top directory trashes" which many probably do.
To create a `$topdir/.Trash` directory as defined in the standard use the [mergerfs-tools](https://github.com/trapexit/mergerfs-tools) tool `mergerfs.mktrash`.
Due to the overhead of [getgroups/setgroups](http://linux.die.net/man/2/setgroups) mergerfs utilizes a cache. This cache is opportunistic and per thread. Each thread will query the supplemental groups for a user when that particular thread needs to change credentials and will keep that data for the lifetime of the thread. This means that if a user is added to a group it may not be picked up without the restart of mergerfs. However, since the high level FUSE API's (at least the standard version) thread pool dynamically grows and shrinks it's possible that over time a thread will be killed and later a new thread with no cache will start and query the new data.
The gid cache uses fixed storage to simplify the design and be compatible with older systems which may not have C++11 compilers. There is enough storage for 256 users' supplemental groups. Each user is allowed upto 32 supplemental groups. Linux >= 2.6.3 allows upto 65535 groups per user but most other *nixs allow far less. NFS allowing only 16. The system does handle overflow gracefully. If the user has more than 32 supplemental groups only the first 32 will be used. If more than 256 users are using the system when an uncached user is found it will evict an existing user's cache at random. So long as there aren't more than 256 active users this should be fine. If either value is too low for your needs you will have to modify `gidcache.hpp` to increase the values. Note that doing so will increase the memory needed by each thread.
**NOTE:** as of mergerfs 2.22.0 it includes the most recent version of libfuse (or requires libfuse-2.9.7) so any crash should be reported. For older releases continue reading...
If suddenly the mergerfs mount point disappears and `Transport endpoint is not connected` is returned when attempting to perform actions within the mount directory **and** the version of libfuse (use `mergerfs -v` to find the version) is older than `2.9.4` its likely due to a bug in libfuse. Affected versions of libfuse can be found in Debian Wheezy, Ubuntu Precise and others.
In order to fix this please install newer versions of libfuse. If using a Debian based distro (Debian,Ubuntu,Mint) you can likely just install newer versions of [libfuse](https://packages.debian.org/unstable/libfuse2) and [fuse](https://packages.debian.org/unstable/fuse) from the repo of a newer release.
There seems to be an issue with Linux version `4.9.0` and above in which an invalid message appears to be transmitted to libfuse (used by mergerfs) causing it to exit. No messages will be printed in any logs as its not a proper crash. Debugging of the issue is still ongoing and can be followed via the [fuse-devel thread](https://sourceforge.net/p/fuse/mailman/message/35662577).
There is a bug in the kernel. A work around appears to be turning off `splice`. Add `no_splice_write,no_splice_move,no_splice_read` to mergerfs' options. Should be placed after `defaults` if it is used since it will turn them on. This however is not guaranteed to work.
#### rm: fts_read failed: No such file or directory
Not *really* a bug. The FUSE library will move files when asked to delete them as a way to deal with certain edge cases and then later delete that file when its clear the file is no longer needed. This however can lead to two issues. One is that these hidden files are noticed by `rm -rf` or `find` when scanning directories and they may try to remove them and they might have disappeared already. There is nothing *wrong* about this happening but it can be annoying. The second issue is that a directory might not be able to removed on account of the hidden file being still there.
Using the **hard_remove** option will make it so these temporary files are not used and files are deleted immedately. That has a side effect however. Files which are unlinked and then they are still used (in certain forms) will result in an error.
#### How well does mergerfs scale? Is it "production ready?"
Users have reported running mergerfs on everything from a Raspberry Pi to dual socket Xeon systems with >20 cores. I'm aware of at least a few companies which use mergerfs in production. [Open Media Vault](https://www.openmediavault.org) includes mergerfs is it's sole solution for pooling drives.
MergerFS is **not** a traditional filesystem. MergerFS is **not** RAID. It does **not** manipulate the data that passes through it. It does **not** shard data across drives. It merely shards some **behavior** and aggregates others.
Not in the sense of a filesystem like BTRFS or ZFS nor in the overlayfs or aufs sense. It does offer a [cow-shell](http://manpages.ubuntu.com/manpages/bionic/man1/cow-shell.1.html) like hard link breaking (copy to temp file then rename over original) which can be useful when wanting to save space by hardlinking duplicate files but wish to treat each name as if it were a unique and separate file.
It's almost always a permissions issue. Unlike mhddfs, which runs as root and attempts to access content as such, mergerfs always changes it's credentials to that of the caller. This means that if the user does not have access to a file or directory than neither will mergerfs. However, because mergerfs is creating a union of paths it may be able to read some files and directories on one drive but not another resulting in an incomplete set.
Whenever you run into a split permission issue (seeing some but not all files) try using [mergerfs.fsck](https://github.com/trapexit/mergerfs-tools) tool to check for and fix the mismatch. If you aren't seeing anything at all be sure that the basic permissions are correct. The user and group values are correct and that directories have their executable bit set. A common mistake by users new to Linux is to `chmod -R 644` when they should have `chmod -R u=rwX,go=rX`.
If using a network filesystem such as NFS, SMB, CIFS (Samba) be sure to pay close attention to anything regarding permissioning and users. Root squashing and user translation for instance has bitten a few mergerfs users. Some of these also affect the use of mergerfs from container platforms such as Docker.
Are you using a path preserving policy? The default policy for file creation is `epmfs`. That means only the drives with the path preexisting will be considered when creating a file. If you don't care about where files and directories are created you likely shouldn't be using a path preserving policy and instead something like `mfs`.
This can be especially apparent when filling an empty pool from an external source. If you do want path preservation you'll need to perform the manual act of creating paths on the drives you want the data to land on before transfering your data. Setting `func.mkdir=epall` can simplify managing path perservation for `create`.
A significant number of users use mergerfs on distros with old versions of libfuse which have serious bugs. Requiring updated versions of libfuse on those distros isn't pratical (no package offered, user inexperience, etc.). The only practical way to provide a stable runtime on those systems was to "vendor" the library into the project.
mhddfs is no longer maintained and has some known stability and security issues (see below). MergerFS provides a superset of mhddfs' features and should offer the same or maybe better performance.
While aufs can offer better peak performance mergerfs provides more configurability and is generally easier to use. mergerfs however does not offer the overlay / copy-on-write (CoW) features which aufs and overlayfs have.
UnionFS is more like aufs then mergerfs in that it offers overlay / CoW features. If you're just looking to create a union of drives and want flexibility in file/directory placement then mergerfs offers that whereas unionfs is more for overlaying RW filesystems over RO ones.
With simple JBOD / drive concatenation / stripping / RAID0 a single drive failure will result in full pool failure. mergerfs performs a similar behavior without the possibility of catastrophic failure and the difficulties in recovery. Drives may fail however all other data will continue to be accessable.
When combined with something like [SnapRaid](http://www.snapraid.it) and/or an offsite backup solution you can have the flexibilty of JBOD without the single point of failure.
MergerFS is not intended to be a replacement for ZFS. MergerFS is intended to provide flexible pooling of arbitrary drives (local or remote), of arbitrary sizes, and arbitrary filesystems. For `write once, read many` usecases such as bulk media storage. Where data integrity and backup is managed in other ways. In that situation ZFS can introduce major maintance and cost burdens as described [here](http://louwrentius.com/the-hidden-cost-of-using-zfs-for-your-home-nas.html).
Yes, however its not recommended to use the same file from within the pool and from without at the same time. Especially if using caching of any kind (entry_timeout, attr_timeout, ac_attr_timeout, negative_timeout, auto_cache, kernel_cache).
First make sure you've read the sections above about policies, path preservation, branch filtering, and the options **minfreespace**, **moveonenospc**, **statfs**, and **statfs_ignore**.
mergerfs is simply presenting a union of the content within multiple branches. The reported free space is an aggregate of space available within the pool (behavior modified by **statfs** and **statfs_ignore**). It does not represent a contiguous space. In the same way that read-only filesystems, those with quotas, or reserved space report the full theoretical space available.
Due to path preservation, branch tagging, read-only status, and **minfreespace** settings it is perfectly valid that `ENOSPC` / "out of space" / "no space left on device" be returned. It is doing what was asked of it: filtering possible branches due to those settings. Only one error can be returned and if one of the reasons for filtering a branch was **minfreespace** then it will be returned as such. **moveonenospc** is only relevant to writing a file which is too large for the drive its currently on.
It is also possible that the filesystem selected has run out of inodes. Use `df -i` to list the total and available inodes per filesystem.
If you don't care about path preservation then simply change the `create` policy to one which isn't. `mfs` is probably what most are looking for. The reason its not default is because it was originally set to `epmfs` and changing it now would change people's setup. Such a setting change will likely occur in mergerfs 3.
Yes. Some clients (Kodi) have issues in which the contents of the NFS mount will not be presented but users have found that enabling the `use_ino` option often fixes that problem.
While `ino_t` is 64 bits only a few filesystems use more than 32. Similarly, while `dev_t` is also 64 bits it was traditionally 16 bits. Bitwise or'ing them together should work most of the time. While totally unique inodes are preferred the overhead which would be needed does not seem to outweighted by the benefits.
While atypical, yes, inodes can be reused and not refer to the same file. The internal id used to reference a file in FUSE is different from the inode value presented. The former is the `nodeid` and is actually a tuple of (nodeid,generation). That tuple is not user facing. The inode is merely metadata passed through the kernel and found using the `stat` family of calls or `readdir`.
From FUSE docs regarding `use_ino`:
```
Honor the st_ino field in the functions getattr() and
fill_dir(). This value is used to fill in the st_ino field
in the stat(2), lstat(2), fstat(2) functions and the d_ino
field in the readdir(2) function. The filesystem does not
have to guarantee uniqueness, however some applications
rely on this value being unique for the whole filesystem.
Note that this does *not* affect the inode that libfuse
and the kernel use internally (also called the "nodeid").
#### I notice massive slowdowns of writes over NFS
Due to how NFS works and interacts with FUSE when not using `direct_io` its possible that a getxattr for `security.capability` will be issued prior to any write. This will usually result in a massive slowdown for writes. Using `direct_io` will keep this from happening (and generally good to enable unless you need the features it disables) but the `security_capability` option can also help by short circuiting the call and returning `ENOATTR`.
When not using `hard_remove` libfuse will create .fuse_hiddenXXXXXXXX files when an opened file is unlinked. This is to simplify "use after unlink" usecases. There is a possibility these files end up being picked up by software scanning directories and not ignoring hidden files. This is rarely a problem but a solution is in the works.
The files are cleaned up once the file is finally closed. Only if mergerfs crashes or is killed would they be left around. They are safe to remove as they are already unlinked files.
[mhddfs](https://github.com/trapexit/mhddfs) manages running as **root** by calling [getuid()](https://github.com/trapexit/mhddfs/blob/cae96e6251dd91e2bdc24800b4a18a74044f6672/src/main.c#L319) and if it returns **0** then it will [chown](http://linux.die.net/man/1/chown) the file. Not only is that a race condition but it doesn't handle other situations. Rather than attempting to simulate POSIX ACL behavior the proper way to manage this is to use [seteuid](http://linux.die.net/man/2/seteuid) and [setegid](http://linux.die.net/man/2/setegid), in effect becoming the user making the original call, and perform the action as them. This is what mergerfs does and why mergerfs should always run as root.
In Linux setreuid syscalls apply only to the thread. GLIBC hides this away by using realtime signals to inform all threads to change credentials. Taking after **Samba**, mergerfs uses **syscall(SYS_setreuid,...)** to set the callers credentials for that thread only. Jumping back to **root** as necessary should escalated privileges be needed (for instance: to clone paths between drives).
For non-Linux systems mergerfs uses a read-write lock and changes credentials only when necessary. If multiple threads are to be user X then only the first one will need to change the processes credentials. So long as the other threads need to be user X they will take a readlock allowing multiple threads to share the credentials. Once a request comes in to run as user Y that thread will attempt a write lock and change to Y's credentials when it can. If the ability to give writers priority is supported then that flag will be used so threads trying to change credentials don't starve. This isn't the best solution but should work reasonably well assuming there are few users.
Filesystems are very complex and difficult to debug. mergerfs, while being just a proxy of sorts, is also very difficult to debug given the large number of possible settings it can have itself and the massive number of environments it can run in. When reporting on a suspected issue **please, please** include as much of the below information as possible otherwise it will be difficult or impossible to diagnose. Also please make sure to read all of the above documentation as it includes nearly every known system or user issue previously encountered.
This software is free to use and released under a very liberal license. That said if you like this software and would like to support its development donations are welcome.