mergerfs/libfuse/lib/fuse.c
Antonio SJ Musumeci ddf5e53aa4 Misc cleanup
2022-11-27 22:23:38 -06:00

4132 lines
82 KiB
C

/*
FUSE: Filesystem in Userspace
Copyright (C) 2001-2007 Miklos Szeredi <miklos@szeredi.hu>
This program can be distributed under the terms of the GNU LGPLv2.
See the file COPYING.LIB
*/
/* For pthread_rwlock_t */
#define _GNU_SOURCE
#include "crc32b.h"
#include "fuse_node.h"
#include "khash.h"
#include "kvec.h"
#include "lfmp.h"
#include "config.h"
#include "fuse_dirents.h"
#include "fuse_i.h"
#include "fuse_kernel.h"
#include "fuse_lowlevel.h"
#include "fuse_misc.h"
#include "fuse_opt.h"
#include "fuse_pollhandle.h"
#include <assert.h>
#include <dlfcn.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <poll.h>
#include <signal.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/file.h>
#include <sys/mman.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/uio.h>
#include <time.h>
#include <unistd.h>
#ifdef HAVE_MALLOC_TRIM
#include <malloc.h>
#endif
#define FUSE_UNKNOWN_INO UINT64_MAX
#define OFFSET_MAX 0x7fffffffffffffffLL
#define NODE_TABLE_MIN_SIZE 8192
#define PARAM(inarg) ((void*)(((char*)(inarg)) + sizeof(*(inarg))))
static int g_LOG_METRICS = 0;
struct fuse_config
{
unsigned int uid;
unsigned int gid;
unsigned int umask;
int remember;
int debug;
int nogc;
int use_ino;
int set_mode;
int set_uid;
int set_gid;
int help;
int threads;
};
struct fuse_fs
{
struct fuse_operations op;
};
struct lock_queue_element
{
struct lock_queue_element *next;
pthread_cond_t cond;
uint64_t nodeid1;
const char *name1;
char **path1;
struct node **wnode1;
uint64_t nodeid2;
const char *name2;
char **path2;
struct node **wnode2;
int err;
bool first_locked : 1;
bool second_locked : 1;
bool done : 1;
};
struct node_table
{
struct node **array;
size_t use;
size_t size;
size_t split;
};
#define container_of(ptr,type,member) ({ \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - offsetof(type,member) );})
#define list_entry(ptr,type,member) \
container_of(ptr,type,member)
struct list_head
{
struct list_head *next;
struct list_head *prev;
};
typedef struct remembered_node_t remembered_node_t;
struct remembered_node_t
{
struct node *node;
time_t time;
};
typedef struct nodeid_gen_t nodeid_gen_t;
struct nodeid_gen_t
{
uint64_t nodeid;
uint64_t generation;
};
struct fuse
{
struct fuse_session *se;
struct node_table name_table;
struct node_table id_table;
nodeid_gen_t nodeid_gen;
unsigned int hidectr;
pthread_mutex_t lock;
struct fuse_config conf;
struct fuse_fs *fs;
struct lock_queue_element *lockq;
pthread_t maintenance_thread;
lfmp_t node_fmp;
kvec_t(remembered_node_t) remembered_nodes;
};
struct lock
{
int type;
off_t start;
off_t end;
pid_t pid;
uint64_t owner;
struct lock *next;
};
struct node
{
struct node *name_next;
struct node *id_next;
uint64_t nodeid;
char *name;
struct node *parent;
uint64_t nlookup;
uint32_t refctr;
uint32_t open_count;
uint64_t hidden_fh;
int32_t treelock;
struct lock *locks;
uint32_t stat_crc32b;
uint8_t is_hidden:1;
uint8_t is_stat_cache_valid:1;
};
#define TREELOCK_WRITE -1
#define TREELOCK_WAIT_OFFSET INT_MIN
struct fuse_dh
{
pthread_mutex_t lock;
uint64_t fh;
fuse_dirents_t d;
};
struct fuse_context_i
{
struct fuse_context ctx;
fuse_req_t req;
};
static pthread_key_t fuse_context_key;
static pthread_mutex_t fuse_context_lock = PTHREAD_MUTEX_INITIALIZER;
static int fuse_context_ref;
/*
Why was the nodeid:generation logic simplified?
nodeid is uint64_t: max value of 18446744073709551616
If nodes were created at a rate of 1048576 per second it would take
over 500 thousand years to roll over. I'm fine with risking that.
*/
static
uint64_t
generate_nodeid(nodeid_gen_t *ng_)
{
ng_->nodeid++;
return ng_->nodeid;
}
static
char*
filename_strdup(struct fuse *f_,
const char *fn_)
{
return strdup(fn_);
}
static
void
filename_free(struct fuse *f_,
char *fn_)
{
free(fn_);
}
static
void*
fuse_hdr_arg(const struct fuse_in_header *hdr_)
{
return (void*)&hdr_[1];
}
static
void
list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
{
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}
static
inline
void
list_add_head(struct list_head *new,
struct list_head *head)
{
list_add(new,head,head->next);
}
static
inline
void
list_add_tail(struct list_head *new,
struct list_head *head)
{
list_add(new,head->prev,head);
}
static
inline
void
list_del(struct list_head *entry)
{
struct list_head *prev = entry->prev;
struct list_head *next = entry->next;
next->prev = prev;
prev->next = next;
}
static
struct node*
alloc_node(struct fuse *f)
{
return lfmp_calloc(&f->node_fmp);
}
static
void
free_node_mem(struct fuse *f,
struct node *node)
{
return lfmp_free(&f->node_fmp,node);
}
static
size_t
id_hash(struct fuse *f,
uint64_t ino)
{
uint64_t hash = ((uint32_t)ino * 2654435761U) % f->id_table.size;
uint64_t oldhash = hash % (f->id_table.size / 2);
if(oldhash >= f->id_table.split)
return oldhash;
else
return hash;
}
static
struct node*
get_node_nocheck(struct fuse *f,
uint64_t nodeid)
{
size_t hash = id_hash(f,nodeid);
struct node *node;
for(node = f->id_table.array[hash]; node != NULL; node = node->id_next)
if(node->nodeid == nodeid)
return node;
return NULL;
}
static
struct node*
get_node(struct fuse *f,
const uint64_t nodeid)
{
struct node *node = get_node_nocheck(f,nodeid);
if(!node)
{
fprintf(stderr,"fuse internal error: node %llu not found\n",
(unsigned long long)nodeid);
abort();
}
return node;
}
static
void
remove_remembered_node(struct fuse *f_,
struct node *node_)
{
for(size_t i = 0; i < kv_size(f_->remembered_nodes); i++)
{
if(kv_A(f_->remembered_nodes,i).node != node_)
continue;
kv_delete(f_->remembered_nodes,i);
break;
}
}
static
uint32_t
stat_crc32b(const struct stat *st_)
{
uint32_t crc;
crc = crc32b_start();
crc = crc32b_continue(&st_->st_ino,sizeof(st_->st_ino),crc);
crc = crc32b_continue(&st_->st_size,sizeof(st_->st_size),crc);
crc = crc32b_continue(&st_->st_mtim,sizeof(st_->st_mtim),crc);
crc = crc32b_finish(crc);
return crc;
}
#ifndef CLOCK_MONOTONIC
# define CLOCK_MONOTONIC CLOCK_REALTIME
#endif
static
time_t
current_time()
{
int rv;
struct timespec now;
static clockid_t clockid = CLOCK_MONOTONIC;
rv = clock_gettime(clockid,&now);
if((rv == -1) && (errno == EINVAL))
{
clockid = CLOCK_REALTIME;
rv = clock_gettime(clockid,&now);
}
if(rv == -1)
now.tv_sec = time(NULL);
return now.tv_sec;
}
static
void
free_node(struct fuse *f_,
struct node *node_)
{
filename_free(f_,node_->name);
if(node_->is_hidden)
f_->fs->op.free_hide(node_->hidden_fh);
free_node_mem(f_,node_);
}
static
void
node_table_reduce(struct node_table *t)
{
size_t newsize = t->size / 2;
void *newarray;
if(newsize < NODE_TABLE_MIN_SIZE)
return;
newarray = realloc(t->array,sizeof(struct node *)* newsize);
if(newarray != NULL)
t->array = newarray;
t->size = newsize;
t->split = t->size / 2;
}
static
void
remerge_id(struct fuse *f)
{
struct node_table *t = &f->id_table;
int iter;
if(t->split == 0)
node_table_reduce(t);
for(iter = 8; t->split > 0 && iter; iter--)
{
struct node **upper;
t->split--;
upper = &t->array[t->split + t->size / 2];
if(*upper)
{
struct node **nodep;
for(nodep = &t->array[t->split]; *nodep;
nodep = &(*nodep)->id_next);
*nodep = *upper;
*upper = NULL;
break;
}
}
}
static
void
unhash_id(struct fuse *f,
struct node *node)
{
struct node **nodep = &f->id_table.array[id_hash(f,node->nodeid)];
for(; *nodep != NULL; nodep = &(*nodep)->id_next)
if(*nodep == node)
{
*nodep = node->id_next;
f->id_table.use--;
if(f->id_table.use < f->id_table.size / 4)
remerge_id(f);
return;
}
}
static
int
node_table_resize(struct node_table *t)
{
size_t newsize = t->size * 2;
void *newarray;
newarray = realloc(t->array,sizeof(struct node *)* newsize);
if(newarray == NULL)
return -1;
t->array = newarray;
memset(t->array + t->size,0,t->size * sizeof(struct node *));
t->size = newsize;
t->split = 0;
return 0;
}
static
void
rehash_id(struct fuse *f)
{
struct node_table *t = &f->id_table;
struct node **nodep;
struct node **next;
size_t hash;
if(t->split == t->size / 2)
return;
hash = t->split;
t->split++;
for(nodep = &t->array[hash]; *nodep != NULL; nodep = next)
{
struct node *node = *nodep;
size_t newhash = id_hash(f,node->nodeid);
if(newhash != hash)
{
next = nodep;
*nodep = node->id_next;
node->id_next = t->array[newhash];
t->array[newhash] = node;
}
else
{
next = &node->id_next;
}
}
if(t->split == t->size / 2)
node_table_resize(t);
}
static
void
hash_id(struct fuse *f,
struct node *node)
{
size_t hash;
hash = id_hash(f,node->nodeid);
node->id_next = f->id_table.array[hash];
f->id_table.array[hash] = node;
f->id_table.use++;
if(f->id_table.use >= f->id_table.size / 2)
rehash_id(f);
}
static
size_t
name_hash(struct fuse *f,
uint64_t parent,
const char *name)
{
uint64_t hash = parent;
uint64_t oldhash;
for(; *name; name++)
hash = hash * 31 + (unsigned char)*name;
hash %= f->name_table.size;
oldhash = hash % (f->name_table.size / 2);
if(oldhash >= f->name_table.split)
return oldhash;
else
return hash;
}
static
void
unref_node(struct fuse *f,
struct node *node);
static
void
remerge_name(struct fuse *f)
{
int iter;
struct node_table *t = &f->name_table;
if(t->split == 0)
node_table_reduce(t);
for(iter = 8; t->split > 0 && iter; iter--)
{
struct node **upper;
t->split--;
upper = &t->array[t->split + t->size / 2];
if(*upper)
{
struct node **nodep;
for(nodep = &t->array[t->split]; *nodep; nodep = &(*nodep)->name_next);
*nodep = *upper;
*upper = NULL;
break;
}
}
}
static
void
unhash_name(struct fuse *f,
struct node *node)
{
if(node->name)
{
size_t hash = name_hash(f,node->parent->nodeid,node->name);
struct node **nodep = &f->name_table.array[hash];
for(; *nodep != NULL; nodep = &(*nodep)->name_next)
if(*nodep == node)
{
*nodep = node->name_next;
node->name_next = NULL;
unref_node(f,node->parent);
filename_free(f,node->name);
node->name = NULL;
node->parent = NULL;
f->name_table.use--;
if(f->name_table.use < f->name_table.size / 4)
remerge_name(f);
return;
}
fprintf(stderr,
"fuse internal error: unable to unhash node: %llu\n",
(unsigned long long)node->nodeid);
abort();
}
}
static
void
rehash_name(struct fuse *f)
{
struct node_table *t = &f->name_table;
struct node **nodep;
struct node **next;
size_t hash;
if(t->split == t->size / 2)
return;
hash = t->split;
t->split++;
for(nodep = &t->array[hash]; *nodep != NULL; nodep = next)
{
struct node *node = *nodep;
size_t newhash = name_hash(f,node->parent->nodeid,node->name);
if(newhash != hash)
{
next = nodep;
*nodep = node->name_next;
node->name_next = t->array[newhash];
t->array[newhash] = node;
}
else
{
next = &node->name_next;
}
}
if(t->split == t->size / 2)
node_table_resize(t);
}
static
int
hash_name(struct fuse *f,
struct node *node,
uint64_t parentid,
const char *name)
{
size_t hash = name_hash(f,parentid,name);
struct node *parent = get_node(f,parentid);
node->name = filename_strdup(f,name);
if(node->name == NULL)
return -1;
parent->refctr++;
node->parent = parent;
node->name_next = f->name_table.array[hash];
f->name_table.array[hash] = node;
f->name_table.use++;
if(f->name_table.use >= f->name_table.size / 2)
rehash_name(f);
return 0;
}
static
inline
int
remember_nodes(struct fuse *f_)
{
return (f_->conf.remember > 0);
}
static
void
delete_node(struct fuse *f,
struct node *node)
{
assert(node->treelock == 0);
unhash_name(f,node);
if(remember_nodes(f))
remove_remembered_node(f,node);
unhash_id(f,node);
free_node(f,node);
}
static
void
unref_node(struct fuse *f,
struct node *node)
{
assert(node->refctr > 0);
node->refctr--;
if(!node->refctr)
delete_node(f,node);
}
static
uint64_t
rand64(void)
{
uint64_t rv;
rv = rand();
rv <<= 32;
rv |= rand();
return rv;
}
static
struct node*
lookup_node(struct fuse *f,
uint64_t parent,
const char *name)
{
size_t hash;
struct node *node;
hash = name_hash(f,parent,name);
for(node = f->name_table.array[hash]; node != NULL; node = node->name_next)
if(node->parent->nodeid == parent && strcmp(node->name,name) == 0)
return node;
return NULL;
}
static
void
inc_nlookup(struct node *node)
{
if(!node->nlookup)
node->refctr++;
node->nlookup++;
}
static
struct node*
find_node(struct fuse *f,
uint64_t parent,
const char *name)
{
struct node *node;
pthread_mutex_lock(&f->lock);
if(!name)
node = get_node(f,parent);
else
node = lookup_node(f,parent,name);
if(node == NULL)
{
node = alloc_node(f);
if(node == NULL)
goto out_err;
node->nodeid = generate_nodeid(&f->nodeid_gen);
if(f->conf.remember)
inc_nlookup(node);
if(hash_name(f,node,parent,name) == -1)
{
free_node(f,node);
node = NULL;
goto out_err;
}
hash_id(f,node);
}
else if((node->nlookup == 1) && remember_nodes(f))
{
remove_remembered_node(f,node);
}
inc_nlookup(node);
out_err:
pthread_mutex_unlock(&f->lock);
return node;
}
static
char*
add_name(char **buf,
unsigned *bufsize,
char *s,
const char *name)
{
size_t len = strlen(name);
if(s - len <= *buf)
{
unsigned pathlen = *bufsize - (s - *buf);
unsigned newbufsize = *bufsize;
char *newbuf;
while(newbufsize < pathlen + len + 1)
{
if(newbufsize >= 0x80000000)
newbufsize = 0xffffffff;
else
newbufsize *= 2;
}
newbuf = realloc(*buf,newbufsize);
if(newbuf == NULL)
return NULL;
*buf = newbuf;
s = newbuf + newbufsize - pathlen;
memmove(s,newbuf + *bufsize - pathlen,pathlen);
*bufsize = newbufsize;
}
s -= len;
strncpy(s,name,len);
s--;
*s = '/';
return s;
}
static
void
unlock_path(struct fuse *f,
uint64_t nodeid,
struct node *wnode,
struct node *end)
{
struct node *node;
if(wnode)
{
assert(wnode->treelock == TREELOCK_WRITE);
wnode->treelock = 0;
}
for(node = get_node(f,nodeid); node != end && node->nodeid != FUSE_ROOT_ID; node = node->parent)
{
assert(node->treelock != 0);
assert(node->treelock != TREELOCK_WAIT_OFFSET);
assert(node->treelock != TREELOCK_WRITE);
node->treelock--;
if(node->treelock == TREELOCK_WAIT_OFFSET)
node->treelock = 0;
}
}
static
int
try_get_path(struct fuse *f,
uint64_t nodeid,
const char *name,
char **path,
struct node **wnodep,
bool need_lock)
{
unsigned bufsize = 256;
char *buf;
char *s;
struct node *node;
struct node *wnode = NULL;
int err;
*path = NULL;
err = -ENOMEM;
buf = malloc(bufsize);
if(buf == NULL)
goto out_err;
s = buf + bufsize - 1;
*s = '\0';
if(name != NULL)
{
s = add_name(&buf,&bufsize,s,name);
err = -ENOMEM;
if(s == NULL)
goto out_free;
}
if(wnodep)
{
assert(need_lock);
wnode = lookup_node(f,nodeid,name);
if(wnode)
{
if(wnode->treelock != 0)
{
if(wnode->treelock > 0)
wnode->treelock += TREELOCK_WAIT_OFFSET;
err = -EAGAIN;
goto out_free;
}
wnode->treelock = TREELOCK_WRITE;
}
}
for(node = get_node(f,nodeid); node->nodeid != FUSE_ROOT_ID; node = node->parent)
{
err = -ESTALE;
if(node->name == NULL || node->parent == NULL)
goto out_unlock;
err = -ENOMEM;
s = add_name(&buf,&bufsize,s,node->name);
if(s == NULL)
goto out_unlock;
if(need_lock)
{
err = -EAGAIN;
if(node->treelock < 0)
goto out_unlock;
node->treelock++;
}
}
if(s[0])
memmove(buf,s,bufsize - (s - buf));
else
strcpy(buf,"/");
*path = buf;
if(wnodep)
*wnodep = wnode;
return 0;
out_unlock:
if(need_lock)
unlock_path(f,nodeid,wnode,node);
out_free:
free(buf);
out_err:
return err;
}
static
void
queue_element_unlock(struct fuse *f,
struct lock_queue_element *qe)
{
struct node *wnode;
if(qe->first_locked)
{
wnode = qe->wnode1 ? *qe->wnode1 : NULL;
unlock_path(f,qe->nodeid1,wnode,NULL);
qe->first_locked = false;
}
if(qe->second_locked)
{
wnode = qe->wnode2 ? *qe->wnode2 : NULL;
unlock_path(f,qe->nodeid2,wnode,NULL);
qe->second_locked = false;
}
}
static
void
queue_element_wakeup(struct fuse *f,
struct lock_queue_element *qe)
{
int err;
bool first = (qe == f->lockq);
if(!qe->path1)
{
/* Just waiting for it to be unlocked */
if(get_node(f,qe->nodeid1)->treelock == 0)
pthread_cond_signal(&qe->cond);
return;
}
if(!qe->first_locked)
{
err = try_get_path(f,qe->nodeid1,qe->name1,qe->path1,qe->wnode1,true);
if(!err)
qe->first_locked = true;
else if(err != -EAGAIN)
goto err_unlock;
}
if(!qe->second_locked && qe->path2)
{
err = try_get_path(f,qe->nodeid2,qe->name2,qe->path2,qe->wnode2,true);
if(!err)
qe->second_locked = true;
else if(err != -EAGAIN)
goto err_unlock;
}
if(qe->first_locked && (qe->second_locked || !qe->path2))
{
err = 0;
goto done;
}
/*
* Only let the first element be partially locked otherwise there could
* be a deadlock.
*
* But do allow the first element to be partially locked to prevent
* starvation.
*/
if(!first)
queue_element_unlock(f,qe);
/* keep trying */
return;
err_unlock:
queue_element_unlock(f,qe);
done:
qe->err = err;
qe->done = true;
pthread_cond_signal(&qe->cond);
}
static
void
wake_up_queued(struct fuse *f)
{
struct lock_queue_element *qe;
for(qe = f->lockq; qe != NULL; qe = qe->next)
queue_element_wakeup(f,qe);
}
static
void
queue_path(struct fuse *f,
struct lock_queue_element *qe)
{
struct lock_queue_element **qp;
qe->done = false;
qe->first_locked = false;
qe->second_locked = false;
pthread_cond_init(&qe->cond,NULL);
qe->next = NULL;
for(qp = &f->lockq; *qp != NULL; qp = &(*qp)->next);
*qp = qe;
}
static
void
dequeue_path(struct fuse *f,
struct lock_queue_element *qe)
{
struct lock_queue_element **qp;
pthread_cond_destroy(&qe->cond);
for(qp = &f->lockq; *qp != qe; qp = &(*qp)->next);
*qp = qe->next;
}
static
int
wait_path(struct fuse *f,
struct lock_queue_element *qe)
{
queue_path(f,qe);
do
{
pthread_cond_wait(&qe->cond,&f->lock);
} while(!qe->done);
dequeue_path(f,qe);
return qe->err;
}
static
int
get_path_common(struct fuse *f,
uint64_t nodeid,
const char *name,
char **path,
struct node **wnode)
{
int err;
pthread_mutex_lock(&f->lock);
err = try_get_path(f,nodeid,name,path,wnode,true);
if(err == -EAGAIN)
{
struct lock_queue_element qe = {0};
qe.nodeid1 = nodeid;
qe.name1 = name;
qe.path1 = path;
qe.wnode1 = wnode;
err = wait_path(f,&qe);
}
pthread_mutex_unlock(&f->lock);
return err;
}
static
int
get_path(struct fuse *f,
uint64_t nodeid,
char **path)
{
return get_path_common(f,nodeid,NULL,path,NULL);
}
static
int
get_path_name(struct fuse *f,
uint64_t nodeid,
const char *name,
char **path)
{
return get_path_common(f,nodeid,name,path,NULL);
}
static
int
get_path_wrlock(struct fuse *f,
uint64_t nodeid,
const char *name,
char **path,
struct node **wnode)
{
return get_path_common(f,nodeid,name,path,wnode);
}
static
int
try_get_path2(struct fuse *f,
uint64_t nodeid1,
const char *name1,
uint64_t nodeid2,
const char *name2,
char **path1,
char **path2,
struct node **wnode1,
struct node **wnode2)
{
int err;
/* FIXME: locking two paths needs deadlock checking */
err = try_get_path(f,nodeid1,name1,path1,wnode1,true);
if(!err)
{
err = try_get_path(f,nodeid2,name2,path2,wnode2,true);
if(err)
{
struct node *wn1 = wnode1 ? *wnode1 : NULL;
unlock_path(f,nodeid1,wn1,NULL);
free(*path1);
}
}
return err;
}
static
int
get_path2(struct fuse *f,
uint64_t nodeid1,
const char *name1,
uint64_t nodeid2,
const char *name2,
char **path1,
char **path2,
struct node **wnode1,
struct node **wnode2)
{
int err;
pthread_mutex_lock(&f->lock);
err = try_get_path2(f,nodeid1,name1,nodeid2,name2,
path1,path2,wnode1,wnode2);
if(err == -EAGAIN)
{
struct lock_queue_element qe = {0};
qe.nodeid1 = nodeid1;
qe.name1 = name1;
qe.path1 = path1;
qe.wnode1 = wnode1;
qe.nodeid2 = nodeid2;
qe.name2 = name2;
qe.path2 = path2;
qe.wnode2 = wnode2;
err = wait_path(f,&qe);
}
pthread_mutex_unlock(&f->lock);
return err;
}
static
void
free_path_wrlock(struct fuse *f,
uint64_t nodeid,
struct node *wnode,
char *path)
{
pthread_mutex_lock(&f->lock);
unlock_path(f,nodeid,wnode,NULL);
if(f->lockq)
wake_up_queued(f);
pthread_mutex_unlock(&f->lock);
free(path);
}
static
void
free_path(struct fuse *f,
uint64_t nodeid,
char *path)
{
if(path)
free_path_wrlock(f,nodeid,NULL,path);
}
static
void
free_path2(struct fuse *f,
uint64_t nodeid1,
uint64_t nodeid2,
struct node *wnode1,
struct node *wnode2,
char *path1,
char *path2)
{
pthread_mutex_lock(&f->lock);
unlock_path(f,nodeid1,wnode1,NULL);
unlock_path(f,nodeid2,wnode2,NULL);
wake_up_queued(f);
pthread_mutex_unlock(&f->lock);
free(path1);
free(path2);
}
static
void
forget_node(struct fuse *f,
const uint64_t nodeid,
const uint64_t nlookup)
{
struct node *node;
if(nodeid == FUSE_ROOT_ID)
return;
pthread_mutex_lock(&f->lock);
node = get_node(f,nodeid);
/*
* Node may still be locked due to interrupt idiocy in open,
* create and opendir
*/
while(node->nlookup == nlookup && node->treelock)
{
struct lock_queue_element qe = {0};
qe.nodeid1 = nodeid;
queue_path(f,&qe);
do
{
pthread_cond_wait(&qe.cond,&f->lock);
}
while((node->nlookup == nlookup) && node->treelock);
dequeue_path(f,&qe);
}
assert(node->nlookup >= nlookup);
node->nlookup -= nlookup;
if(node->nlookup == 0)
{
unref_node(f,node);
}
else if((node->nlookup == 1) && remember_nodes(f))
{
remembered_node_t fn;
fn.node = node;
fn.time = current_time();
kv_push(remembered_node_t,f->remembered_nodes,fn);
}
pthread_mutex_unlock(&f->lock);
}
static
void
unlink_node(struct fuse *f,
struct node *node)
{
if(remember_nodes(f))
{
assert(node->nlookup > 1);
node->nlookup--;
}
unhash_name(f,node);
}
static
void
remove_node(struct fuse *f,
uint64_t dir,
const char *name)
{
struct node *node;
pthread_mutex_lock(&f->lock);
node = lookup_node(f,dir,name);
if(node != NULL)
unlink_node(f,node);
pthread_mutex_unlock(&f->lock);
}
static
int
rename_node(struct fuse *f,
uint64_t olddir,
const char *oldname,
uint64_t newdir,
const char *newname)
{
struct node *node;
struct node *newnode;
int err = 0;
pthread_mutex_lock(&f->lock);
node = lookup_node(f,olddir,oldname);
newnode = lookup_node(f,newdir,newname);
if(node == NULL)
goto out;
if(newnode != NULL)
unlink_node(f,newnode);
unhash_name(f,node);
if(hash_name(f,node,newdir,newname) == -1)
{
err = -ENOMEM;
goto out;
}
out:
pthread_mutex_unlock(&f->lock);
return err;
}
static
void
set_stat(struct fuse *f,
uint64_t nodeid,
struct stat *stbuf)
{
if(!f->conf.use_ino)
stbuf->st_ino = nodeid;
if(f->conf.set_mode)
stbuf->st_mode = (stbuf->st_mode & S_IFMT) | (0777 & ~f->conf.umask);
if(f->conf.set_uid)
stbuf->st_uid = f->conf.uid;
if(f->conf.set_gid)
stbuf->st_gid = f->conf.gid;
}
static
struct fuse*
req_fuse(fuse_req_t req)
{
return (struct fuse*)fuse_req_userdata(req);
}
static
void
fuse_free_buf(struct fuse_bufvec *buf)
{
if(buf != NULL)
{
size_t i;
for(i = 0; i < buf->count; i++)
free(buf->buf[i].mem);
free(buf);
}
}
static
int
node_open(const struct node *node_)
{
return ((node_ != NULL) && (node_->open_count > 0));
}
static
void
update_stat(struct node *node_,
const struct stat *stnew_)
{
uint32_t crc32b;
crc32b = stat_crc32b(stnew_);
if(node_->is_stat_cache_valid && (crc32b != node_->stat_crc32b))
node_->is_stat_cache_valid = 0;
node_->stat_crc32b = crc32b;
}
static
int
set_path_info(struct fuse *f,
uint64_t nodeid,
const char *name,
struct fuse_entry_param *e)
{
struct node *node;
node = find_node(f,nodeid,name);
if(node == NULL)
return -ENOMEM;
e->ino = node->nodeid;
e->generation = f->nodeid_gen.generation;
pthread_mutex_lock(&f->lock);
update_stat(node,&e->attr);
pthread_mutex_unlock(&f->lock);
set_stat(f,e->ino,&e->attr);
return 0;
}
static
int
lookup_path(struct fuse *f,
uint64_t nodeid,
const char *name,
const char *path,
struct fuse_entry_param *e,
fuse_file_info_t *fi)
{
int rv;
memset(e,0,sizeof(struct fuse_entry_param));
rv = ((fi == NULL) ?
f->fs->op.getattr(path,&e->attr,&e->timeout) :
f->fs->op.fgetattr(fi,&e->attr,&e->timeout));
if(rv)
return rv;
return set_path_info(f,nodeid,name,e);
}
static
struct fuse_context_i*
fuse_get_context_internal(void)
{
struct fuse_context_i *c;
c = (struct fuse_context_i *)pthread_getspecific(fuse_context_key);
if(c == NULL)
{
c = (struct fuse_context_i*)calloc(1,sizeof(struct fuse_context_i));
if(c == NULL)
{
/* This is hard to deal with properly,so just
abort. If memory is so low that the
context cannot be allocated,there's not
much hope for the filesystem anyway */
fprintf(stderr,"fuse: failed to allocate thread specific data\n");
abort();
}
pthread_setspecific(fuse_context_key,c);
}
return c;
}
static
void
fuse_freecontext(void *data)
{
free(data);
}
static
int
fuse_create_context_key(void)
{
int err = 0;
pthread_mutex_lock(&fuse_context_lock);
if(!fuse_context_ref)
{
err = pthread_key_create(&fuse_context_key,fuse_freecontext);
if(err)
{
fprintf(stderr,"fuse: failed to create thread specific key: %s\n",
strerror(err));
pthread_mutex_unlock(&fuse_context_lock);
return -1;
}
}
fuse_context_ref++;
pthread_mutex_unlock(&fuse_context_lock);
return 0;
}
static
void
fuse_delete_context_key(void)
{
pthread_mutex_lock(&fuse_context_lock);
fuse_context_ref--;
if(!fuse_context_ref)
{
free(pthread_getspecific(fuse_context_key));
pthread_key_delete(fuse_context_key);
}
pthread_mutex_unlock(&fuse_context_lock);
}
static
struct fuse*
req_fuse_prepare(fuse_req_t req)
{
struct fuse_context_i *c = fuse_get_context_internal();
const struct fuse_ctx *ctx = fuse_req_ctx(req);
c->req = req;
c->ctx.fuse = req_fuse(req);
c->ctx.uid = ctx->uid;
c->ctx.gid = ctx->gid;
c->ctx.pid = ctx->pid;
c->ctx.umask = ctx->umask;
return c->ctx.fuse;
}
static
inline
void
reply_err(fuse_req_t req,
int err)
{
/* fuse_reply_err() uses non-negated errno values */
fuse_reply_err(req,-err);
}
static
void
reply_entry(fuse_req_t req,
const struct fuse_entry_param *e,
int err)
{
if(!err)
{
struct fuse *f = req_fuse(req);
if(fuse_reply_entry(req,e) == -ENOENT)
{
/* Skip forget for negative result */
if(e->ino != 0)
forget_node(f,e->ino,1);
}
}
else
{
reply_err(req,err);
}
}
static
void
fuse_lib_init(void *data,
struct fuse_conn_info *conn)
{
struct fuse *f = (struct fuse *)data;
struct fuse_context_i *c = fuse_get_context_internal();
memset(c,0,sizeof(*c));
c->ctx.fuse = f;
conn->want |= FUSE_CAP_EXPORT_SUPPORT;
f->fs->op.init(conn);
}
static
void
fuse_lib_destroy(void *data)
{
struct fuse *f = (struct fuse *)data;
struct fuse_context_i *c = fuse_get_context_internal();
memset(c,0,sizeof(*c));
c->ctx.fuse = f;
f->fs->op.destroy();
free(f->fs);
f->fs = NULL;
}
static
void
fuse_lib_lookup(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int err;
uint64_t nodeid;
char *path;
const char *name;
struct fuse *f;
struct node *dot = NULL;
struct fuse_entry_param e = {0};
name = fuse_hdr_arg(hdr_);
nodeid = hdr_->nodeid;
f = req_fuse_prepare(req);
if(name[0] == '.')
{
if(name[1] == '\0')
{
name = NULL;
pthread_mutex_lock(&f->lock);
dot = get_node_nocheck(f,nodeid);
if(dot == NULL)
{
pthread_mutex_unlock(&f->lock);
reply_entry(req,&e,-ESTALE);
return;
}
dot->refctr++;
pthread_mutex_unlock(&f->lock);
}
else if((name[1] == '.') && (name[2] == '\0'))
{
if(nodeid == 1)
{
reply_entry(req,&e,-ENOENT);
return;
}
name = NULL;
pthread_mutex_lock(&f->lock);
nodeid = get_node(f,nodeid)->parent->nodeid;
pthread_mutex_unlock(&f->lock);
}
}
err = get_path_name(f,nodeid,name,&path);
if(!err)
{
err = lookup_path(f,nodeid,name,path,&e,NULL);
if(err == -ENOENT)
{
e.ino = 0;
err = 0;
}
free_path(f,nodeid,path);
}
if(dot)
{
pthread_mutex_lock(&f->lock);
unref_node(f,dot);
pthread_mutex_unlock(&f->lock);
}
reply_entry(req,&e,err);
}
static
void
fuse_lib_forget(fuse_req_t req,
struct fuse_in_header *hdr_)
{
struct fuse *f;
struct fuse_forget_in *arg;
f = req_fuse(req);
arg = fuse_hdr_arg(hdr_);
forget_node(f,hdr_->nodeid,arg->nlookup);
fuse_reply_none(req);
}
static
void
fuse_lib_forget_multi(fuse_req_t req,
struct fuse_in_header *hdr_)
{
struct fuse *f;
struct fuse_batch_forget_in *arg;
struct fuse_forget_one *entry;
f = req_fuse(req);
arg = fuse_hdr_arg(hdr_);
entry = PARAM(arg);
for(uint32_t i = 0; i < arg->count; i++)
forget_node(f,
entry[i].nodeid,
entry[i].nlookup);
fuse_reply_none(req);
}
static
void
fuse_lib_getattr(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int err;
char *path;
struct fuse *f;
struct stat buf;
struct node *node;
fuse_timeouts_t timeout;
fuse_file_info_t ffi = {0};
const struct fuse_getattr_in *arg;
arg = fuse_hdr_arg(hdr_);
f = req_fuse_prepare(req);
if(arg->getattr_flags & FUSE_GETATTR_FH)
{
ffi.fh = arg->fh;
}
else
{
pthread_mutex_lock(&f->lock);
node = get_node(f,hdr_->nodeid);
if(node->is_hidden)
ffi.fh = node->hidden_fh;
pthread_mutex_unlock(&f->lock);
}
memset(&buf,0,sizeof(buf));
err = 0;
path = NULL;
if(ffi.fh == 0)
err = get_path(f,hdr_->nodeid,&path);
if(!err)
{
err = ((ffi.fh == 0) ?
f->fs->op.getattr(path,&buf,&timeout) :
f->fs->op.fgetattr(&ffi,&buf,&timeout));
free_path(f,hdr_->nodeid,path);
}
if(!err)
{
pthread_mutex_lock(&f->lock);
node = get_node(f,hdr_->nodeid);
update_stat(node,&buf);
pthread_mutex_unlock(&f->lock);
set_stat(f,hdr_->nodeid,&buf);
fuse_reply_attr(req,&buf,timeout.attr);
}
else
{
reply_err(req,err);
}
}
static
void
fuse_lib_setattr(fuse_req_t req,
struct fuse_in_header *hdr_)
{
struct fuse *f = req_fuse_prepare(req);
struct stat stbuf = {0};
char *path;
int err;
struct node *node;
fuse_timeouts_t timeout;
fuse_file_info_t *fi;
fuse_file_info_t ffi = {0};
struct fuse_setattr_in *arg;
arg = fuse_hdr_arg(hdr_);
fi = NULL;
if(arg->valid & FATTR_FH)
{
fi = &ffi;
fi->fh = arg->fh;
}
else
{
pthread_mutex_lock(&f->lock);
node = get_node(f,hdr_->nodeid);
if(node->is_hidden)
{
fi = &ffi;
fi->fh = node->hidden_fh;
}
pthread_mutex_unlock(&f->lock);
}
err = 0;
path = NULL;
if(fi == NULL)
err = get_path(f,hdr_->nodeid,&path);
if(!err)
{
err = 0;
if(!err && (arg->valid & FATTR_MODE))
err = ((fi == NULL) ?
f->fs->op.chmod(path,arg->mode) :
f->fs->op.fchmod(fi,arg->mode));
if(!err && (arg->valid & (FATTR_UID | FATTR_GID)))
{
uid_t uid = ((arg->valid & FATTR_UID) ? arg->uid : (uid_t)-1);
gid_t gid = ((arg->valid & FATTR_GID) ? arg->gid : (gid_t)-1);
err = ((fi == NULL) ?
f->fs->op.chown(path,uid,gid) :
f->fs->op.fchown(fi,uid,gid));
}
if(!err && (arg->valid & FATTR_SIZE))
err = ((fi == NULL) ?
f->fs->op.truncate(path,arg->size) :
f->fs->op.ftruncate(fi,arg->size));
#ifdef HAVE_UTIMENSAT
if(!err && (arg->valid & (FATTR_ATIME | FATTR_MTIME)))
{
struct timespec tv[2];
tv[0].tv_sec = 0;
tv[1].tv_sec = 0;
tv[0].tv_nsec = UTIME_OMIT;
tv[1].tv_nsec = UTIME_OMIT;
if(arg->valid & FATTR_ATIME_NOW)
tv[0].tv_nsec = UTIME_NOW;
else if(arg->valid & FATTR_ATIME)
tv[0] = (struct timespec){ arg->atime, arg->atimensec };
if(arg->valid & FATTR_MTIME_NOW)
tv[1].tv_nsec = UTIME_NOW;
else if(arg->valid & FATTR_MTIME)
tv[1] = (struct timespec){ arg->mtime, arg->mtimensec };
err = ((fi == NULL) ?
f->fs->op.utimens(path,tv) :
f->fs->op.futimens(fi,tv));
}
else
#endif
if(!err && ((arg->valid & (FATTR_ATIME|FATTR_MTIME)) == (FATTR_ATIME|FATTR_MTIME)))
{
struct timespec tv[2];
tv[0].tv_sec = arg->atime;
tv[0].tv_nsec = arg->atimensec;
tv[1].tv_sec = arg->mtime;
tv[1].tv_nsec = arg->mtimensec;
err = ((fi == NULL) ?
f->fs->op.utimens(path,tv) :
f->fs->op.futimens(fi,tv));
}
if(!err)
err = ((fi == NULL) ?
f->fs->op.getattr(path,&stbuf,&timeout) :
f->fs->op.fgetattr(fi,&stbuf,&timeout));
free_path(f,hdr_->nodeid,path);
}
if(!err)
{
pthread_mutex_lock(&f->lock);
update_stat(get_node(f,hdr_->nodeid),&stbuf);
pthread_mutex_unlock(&f->lock);
set_stat(f,hdr_->nodeid,&stbuf);
fuse_reply_attr(req,&stbuf,timeout.attr);
}
else
{
reply_err(req,err);
}
}
static
void
fuse_lib_access(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int err;
char *path;
struct fuse *f;
struct fuse_access_in *arg;
arg = fuse_hdr_arg(hdr_);
f = req_fuse_prepare(req);
err = get_path(f,hdr_->nodeid,&path);
if(!err)
{
err = f->fs->op.access(path,arg->mask);
free_path(f,hdr_->nodeid,path);
}
reply_err(req,err);
}
static
void
fuse_lib_readlink(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int err;
char *path;
struct fuse *f;
char linkname[PATH_MAX + 1];
f = req_fuse_prepare(req);
err = get_path(f,hdr_->nodeid,&path);
if(!err)
{
err = f->fs->op.readlink(path,linkname,sizeof(linkname));
free_path(f,hdr_->nodeid,path);
}
if(!err)
{
linkname[PATH_MAX] = '\0';
fuse_reply_readlink(req,linkname);
}
else
{
reply_err(req,err);
}
}
static
void
fuse_lib_mknod(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int err;
char *path;
struct fuse *f;
const char* name;
struct fuse_entry_param e;
struct fuse_mknod_in *arg;
arg = fuse_hdr_arg(hdr_);
name = PARAM(arg);
if(req->f->conn.proto_minor >= 12)
req->ctx.umask = arg->umask;
else
name = (char*)arg + FUSE_COMPAT_MKNOD_IN_SIZE;
f = req_fuse_prepare(req);
err = get_path_name(f,hdr_->nodeid,name,&path);
if(!err)
{
err = -ENOSYS;
if(S_ISREG(arg->mode))
{
fuse_file_info_t fi;
memset(&fi,0,sizeof(fi));
fi.flags = O_CREAT | O_EXCL | O_WRONLY;
err = f->fs->op.create(path,arg->mode,&fi);
if(!err)
{
err = lookup_path(f,hdr_->nodeid,name,path,&e,&fi);
f->fs->op.release(&fi);
}
}
if(err == -ENOSYS)
{
err = f->fs->op.mknod(path,arg->mode,arg->rdev);
if(!err)
err = lookup_path(f,hdr_->nodeid,name,path,&e,NULL);
}
free_path(f,hdr_->nodeid,path);
}
reply_entry(req,&e,err);
}
static
void
fuse_lib_mkdir(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int err;
char *path;
struct fuse *f;
const char *name;
struct fuse_entry_param e;
struct fuse_mkdir_in *arg;
arg = fuse_hdr_arg(hdr_);
name = PARAM(arg);
if(req->f->conn.proto_minor >= 12)
req->ctx.umask = arg->umask;
f = req_fuse_prepare(req);
err = get_path_name(f,hdr_->nodeid,name,&path);
if(!err)
{
err = f->fs->op.mkdir(path,arg->mode);
if(!err)
err = lookup_path(f,hdr_->nodeid,name,path,&e,NULL);
free_path(f,hdr_->nodeid,path);
}
reply_entry(req,&e,err);
}
static
void
fuse_lib_unlink(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int err;
char *path;
struct fuse *f;
const char *name;
struct node *wnode;
name = PARAM(hdr_);
f = req_fuse_prepare(req);
err = get_path_wrlock(f,hdr_->nodeid,name,&path,&wnode);
if(!err)
{
pthread_mutex_lock(&f->lock);
if(node_open(wnode))
{
err = f->fs->op.prepare_hide(path,&wnode->hidden_fh);
if(!err)
wnode->is_hidden = 1;
}
pthread_mutex_unlock(&f->lock);
err = f->fs->op.unlink(path);
if(!err)
remove_node(f,hdr_->nodeid,name);
free_path_wrlock(f,hdr_->nodeid,wnode,path);
}
reply_err(req,err);
}
static
void
fuse_lib_rmdir(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int err;
char *path;
struct fuse *f;
const char *name;
struct node *wnode;
name = PARAM(hdr_);
f = req_fuse_prepare(req);
err = get_path_wrlock(f,hdr_->nodeid,name,&path,&wnode);
if(!err)
{
err = f->fs->op.rmdir(path);
if(!err)
remove_node(f,hdr_->nodeid,name);
free_path_wrlock(f,hdr_->nodeid,wnode,path);
}
reply_err(req,err);
}
static
void
fuse_lib_symlink(fuse_req_t req_,
struct fuse_in_header *hdr_)
{
int rv;
char *path;
struct fuse *f;
const char *name;
const char *linkname;
struct fuse_entry_param e = {0};
name = fuse_hdr_arg(hdr_);
linkname = (name + strlen(name) + 1);
f = req_fuse_prepare(req_);
rv = get_path_name(f,hdr_->nodeid,name,&path);
if(rv == 0)
{
rv = f->fs->op.symlink(linkname,path,&e.attr,&e.timeout);
if(rv == 0)
rv = set_path_info(f,hdr_->nodeid,name,&e);
free_path(f,hdr_->nodeid,path);
}
reply_entry(req_,&e,rv);
}
static
void
fuse_lib_rename(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int err;
struct fuse *f;
char *oldpath;
char *newpath;
const char *oldname;
const char *newname;
struct node *wnode1;
struct node *wnode2;
struct fuse_rename_in *arg;
arg = fuse_hdr_arg(hdr_);
oldname = PARAM(arg);
newname = (oldname + strlen(oldname) + 1);
f = req_fuse_prepare(req);
err = get_path2(f,hdr_->nodeid,oldname,arg->newdir,newname,
&oldpath,&newpath,&wnode1,&wnode2);
if(!err)
{
pthread_mutex_lock(&f->lock);
if(node_open(wnode2))
{
err = f->fs->op.prepare_hide(newpath,&wnode2->hidden_fh);
if(!err)
wnode2->is_hidden = 1;
}
pthread_mutex_unlock(&f->lock);
err = f->fs->op.rename(oldpath,newpath);
if(!err)
err = rename_node(f,hdr_->nodeid,oldname,arg->newdir,newname);
free_path2(f,hdr_->nodeid,arg->newdir,wnode1,wnode2,oldpath,newpath);
}
reply_err(req,err);
}
static
void
fuse_lib_link(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int rv;
char *oldpath;
char *newpath;
struct fuse *f;
const char *newname;
struct fuse_link_in *arg;
struct fuse_entry_param e = {0};
arg = fuse_hdr_arg(hdr_);
newname = PARAM(arg);
f = req_fuse_prepare(req);
rv = get_path2(f,
arg->oldnodeid,NULL,
hdr_->nodeid,newname,
&oldpath,&newpath,NULL,NULL);
if(!rv)
{
rv = f->fs->op.link(oldpath,newpath,&e.attr,&e.timeout);
if(rv == 0)
rv = set_path_info(f,hdr_->nodeid,newname,&e);
free_path2(f,arg->oldnodeid,hdr_->nodeid,NULL,NULL,oldpath,newpath);
}
reply_entry(req,&e,rv);
}
static
void
fuse_do_release(struct fuse *f,
uint64_t ino,
fuse_file_info_t *fi)
{
struct node *node;
uint64_t fh;
int was_hidden;
fh = 0;
f->fs->op.release(fi);
pthread_mutex_lock(&f->lock);
node = get_node(f,ino);
assert(node->open_count > 0);
node->open_count--;
was_hidden = 0;
if(node->is_hidden && (node->open_count == 0))
{
was_hidden = 1;
node->is_hidden = 0;
fh = node->hidden_fh;
}
pthread_mutex_unlock(&f->lock);
if(was_hidden)
f->fs->op.free_hide(fh);
}
static
void
fuse_lib_create(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int err;
char *path;
struct fuse *f;
const char *name;
fuse_file_info_t ffi = {0};
struct fuse_entry_param e;
struct fuse_create_in *arg;
arg = fuse_hdr_arg(hdr_);
name = PARAM(arg);
ffi.flags = arg->flags;
if(req->f->conn.proto_minor >= 12)
req->ctx.umask = arg->umask;
else
name = (char*)arg + sizeof(struct fuse_open_in);
f = req_fuse_prepare(req);
err = get_path_name(f,hdr_->nodeid,name,&path);
if(!err)
{
err = f->fs->op.create(path,arg->mode,&ffi);
if(!err)
{
err = lookup_path(f,hdr_->nodeid,name,path,&e,&ffi);
if(err)
{
f->fs->op.release(&ffi);
}
else if(!S_ISREG(e.attr.st_mode))
{
err = -EIO;
f->fs->op.release(&ffi);
forget_node(f,e.ino,1);
}
}
}
if(!err)
{
pthread_mutex_lock(&f->lock);
get_node(f,e.ino)->open_count++;
pthread_mutex_unlock(&f->lock);
if(fuse_reply_create(req,&e,&ffi) == -ENOENT)
{
/* The open syscall was interrupted,so it
must be cancelled */
fuse_do_release(f,e.ino,&ffi);
forget_node(f,e.ino,1);
}
}
else
{
reply_err(req,err);
}
free_path(f,hdr_->nodeid,path);
}
static
void
open_auto_cache(struct fuse *f,
uint64_t ino,
const char *path,
fuse_file_info_t *fi)
{
struct node *node;
fuse_timeouts_t timeout;
pthread_mutex_lock(&f->lock);
node = get_node(f,ino);
if(node->is_stat_cache_valid)
{
int err;
struct stat stbuf;
pthread_mutex_unlock(&f->lock);
err = f->fs->op.fgetattr(fi,&stbuf,&timeout);
pthread_mutex_lock(&f->lock);
if(!err)
update_stat(node,&stbuf);
else
node->is_stat_cache_valid = 0;
}
if(node->is_stat_cache_valid)
fi->keep_cache = 1;
node->is_stat_cache_valid = 1;
pthread_mutex_unlock(&f->lock);
}
static
void
fuse_lib_open(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int err;
char *path;
struct fuse *f;
fuse_file_info_t ffi = {0};
struct fuse_open_in *arg;
arg = fuse_hdr_arg(hdr_);
ffi.flags = arg->flags;
f = req_fuse_prepare(req);
err = get_path(f,hdr_->nodeid,&path);
if(!err)
{
err = f->fs->op.open(path,&ffi);
if(!err)
{
if(ffi.auto_cache)
open_auto_cache(f,hdr_->nodeid,path,&ffi);
}
}
if(!err)
{
pthread_mutex_lock(&f->lock);
get_node(f,hdr_->nodeid)->open_count++;
pthread_mutex_unlock(&f->lock);
/* The open syscall was interrupted,so it must be cancelled */
if(fuse_reply_open(req,&ffi) == -ENOENT)
fuse_do_release(f,hdr_->nodeid,&ffi);
}
else
{
reply_err(req,err);
}
free_path(f,hdr_->nodeid,path);
}
static
void
fuse_lib_read(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int res;
struct fuse *f;
fuse_file_info_t ffi = {0};
struct fuse_bufvec *buf = NULL;
struct fuse_read_in *arg;
arg = fuse_hdr_arg(hdr_);
ffi.fh = arg->fh;
if(req->f->conn.proto_minor >= 9)
{
ffi.flags = arg->flags;
ffi.lock_owner = arg->lock_owner;
}
f = req_fuse_prepare(req);
res = f->fs->op.read_buf(&ffi,&buf,arg->size,arg->offset);
if(res >= 0)
fuse_reply_data(req,buf,FUSE_BUF_SPLICE_MOVE);
else
reply_err(req,res);
fuse_free_buf(buf);
}
static
void
fuse_lib_write(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int res;
char *data;
struct fuse *f;
fuse_file_info_t ffi = {0};
struct fuse_write_in *arg;
arg = fuse_hdr_arg(hdr_);
ffi.fh = arg->fh;
ffi.writepage = !!(arg->write_flags & 1);
if(req->f->conn.proto_minor < 9)
{
data = ((char*)arg) + FUSE_COMPAT_WRITE_IN_SIZE;
}
else
{
ffi.flags = arg->flags;
ffi.lock_owner = arg->lock_owner;
data = PARAM(arg);
}
f = req_fuse_prepare(req);
res = f->fs->op.write(&ffi,data,arg->size,arg->offset);
free_path(f,hdr_->nodeid,NULL);
if(res >= 0)
fuse_reply_write(req,res);
else
reply_err(req,res);
}
static
void
fuse_lib_fsync(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int err;
struct fuse *f;
struct fuse_fsync_in *arg;
fuse_file_info_t ffi = {0};
arg = fuse_hdr_arg(hdr_);
ffi.fh = arg->fh;
f = req_fuse_prepare(req);
err = f->fs->op.fsync(&ffi,
!!(arg->fsync_flags & 1));
reply_err(req,err);
}
static
struct fuse_dh*
get_dirhandle(const fuse_file_info_t *llfi,
fuse_file_info_t *fi)
{
struct fuse_dh *dh = (struct fuse_dh *)(uintptr_t)llfi->fh;
memset(fi,0,sizeof(fuse_file_info_t));
fi->fh = dh->fh;
return dh;
}
static
void
fuse_lib_opendir(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int err;
char *path;
struct fuse_dh *dh;
fuse_file_info_t llffi = {0};
fuse_file_info_t ffi = {0};
struct fuse *f;
struct fuse_open_in *arg;
arg = fuse_hdr_arg(hdr_);
llffi.flags = arg->flags;
f = req_fuse_prepare(req);
dh = (struct fuse_dh *)calloc(1,sizeof(struct fuse_dh));
if(dh == NULL)
{
reply_err(req,-ENOMEM);
return;
}
fuse_dirents_init(&dh->d);
fuse_mutex_init(&dh->lock);
llffi.fh = (uintptr_t)dh;
ffi.flags = llffi.flags;
err = get_path(f,hdr_->nodeid,&path);
if(!err)
{
err = f->fs->op.opendir(path,&ffi);
dh->fh = ffi.fh;
llffi.keep_cache = ffi.keep_cache;
llffi.cache_readdir = ffi.cache_readdir;
}
if(!err)
{
if(fuse_reply_open(req,&llffi) == -ENOENT)
{
/* The opendir syscall was interrupted,so it
must be cancelled */
f->fs->op.releasedir(&ffi);
pthread_mutex_destroy(&dh->lock);
free(dh);
}
}
else
{
reply_err(req,err);
pthread_mutex_destroy(&dh->lock);
free(dh);
}
free_path(f,hdr_->nodeid,path);
}
static
size_t
readdir_buf_size(fuse_dirents_t *d_,
size_t size_,
off_t off_)
{
if(off_ >= kv_size(d_->offs))
return 0;
if((kv_A(d_->offs,off_) + size_) > kv_size(d_->data))
return (kv_size(d_->data) - kv_A(d_->offs,off_));
return size_;
}
static
char*
readdir_buf(fuse_dirents_t *d_,
off_t off_)
{
size_t i;
i = kv_A(d_->offs,off_);
return &kv_A(d_->data,i);
}
static
void
fuse_lib_readdir(fuse_req_t req_,
struct fuse_in_header *hdr_)
{
int rv;
size_t size;
struct fuse *f;
fuse_dirents_t *d;
struct fuse_dh *dh;
fuse_file_info_t ffi = {0};
fuse_file_info_t llffi = {0};
struct fuse_read_in *arg;
arg = fuse_hdr_arg(hdr_);
size = arg->size;
llffi.fh = arg->fh;
f = req_fuse_prepare(req_);
dh = get_dirhandle(&llffi,&ffi);
d = &dh->d;
pthread_mutex_lock(&dh->lock);
rv = 0;
if((arg->offset == 0) || (kv_size(d->data) == 0))
rv = f->fs->op.readdir(&ffi,d);
if(rv)
{
reply_err(req_,rv);
goto out;
}
size = readdir_buf_size(d,size,arg->offset);
fuse_reply_buf(req_,
readdir_buf(d,arg->offset),
size);
out:
pthread_mutex_unlock(&dh->lock);
}
static
void
fuse_lib_readdir_plus(fuse_req_t req_,
struct fuse_in_header *hdr_)
{
int rv;
size_t size;
struct fuse *f;
fuse_dirents_t *d;
struct fuse_dh *dh;
fuse_file_info_t ffi = {0};
fuse_file_info_t llffi = {0};
struct fuse_read_in *arg;
arg = fuse_hdr_arg(hdr_);
size = arg->size;
llffi.fh = arg->fh;
f = req_fuse_prepare(req_);
dh = get_dirhandle(&llffi,&ffi);
d = &dh->d;
pthread_mutex_lock(&dh->lock);
rv = 0;
if((arg->offset == 0) || (kv_size(d->data) == 0))
rv = f->fs->op.readdir_plus(&ffi,d);
if(rv)
{
reply_err(req_,rv);
goto out;
}
size = readdir_buf_size(d,size,arg->offset);
fuse_reply_buf(req_,
readdir_buf(d,arg->offset),
size);
out:
pthread_mutex_unlock(&dh->lock);
}
static
void
fuse_lib_releasedir(fuse_req_t req_,
struct fuse_in_header *hdr_)
{
struct fuse *f;
struct fuse_dh *dh;
fuse_file_info_t ffi;
fuse_file_info_t llffi = {0};
struct fuse_release_in *arg;
arg = fuse_hdr_arg(hdr_);
llffi.fh = arg->fh;
llffi.flags = arg->flags;
f = req_fuse_prepare(req_);
dh = get_dirhandle(&llffi,&ffi);
f->fs->op.releasedir(&ffi);
/* Done to keep race condition between last readdir reply and the unlock */
pthread_mutex_lock(&dh->lock);
pthread_mutex_unlock(&dh->lock);
pthread_mutex_destroy(&dh->lock);
fuse_dirents_free(&dh->d);
free(dh);
reply_err(req_,0);
}
static
void
fuse_lib_fsyncdir(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int err;
struct fuse *f;
fuse_file_info_t ffi;
fuse_file_info_t llffi = {0};
struct fuse_fsync_in *arg;
arg = fuse_hdr_arg(hdr_);
llffi.fh = arg->fh;
f = req_fuse_prepare(req);
get_dirhandle(&llffi,&ffi);
err = f->fs->op.fsyncdir(&ffi,
!!(arg->fsync_flags & FUSE_FSYNC_FDATASYNC));
reply_err(req,err);
}
static
void
fuse_lib_statfs(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int err = 0;
char *path = NULL;
struct fuse *f;
struct statvfs buf = {0};
f = req_fuse_prepare(req);
if(hdr_->nodeid)
err = get_path(f,hdr_->nodeid,&path);
if(!err)
{
err = f->fs->op.statfs(path ? path : "/",&buf);
free_path(f,hdr_->nodeid,path);
}
if(!err)
fuse_reply_statfs(req,&buf);
else
reply_err(req,err);
}
static
void
fuse_lib_setxattr(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int err;
char *path;
const char *name;
const char *value;
struct fuse *f;
struct fuse_setxattr_in *arg;
arg = fuse_hdr_arg(hdr_);
name = PARAM(arg);
value = (name + strlen(name) + 1);
f = req_fuse_prepare(req);
err = get_path(f,hdr_->nodeid,&path);
if(!err)
{
err = f->fs->op.setxattr(path,name,value,arg->size,arg->flags);
free_path(f,hdr_->nodeid,path);
}
reply_err(req,err);
}
static
int
common_getxattr(struct fuse *f,
fuse_req_t req,
uint64_t ino,
const char *name,
char *value,
size_t size)
{
int err;
char *path;
err = get_path(f,ino,&path);
if(!err)
{
err = f->fs->op.getxattr(path,name,value,size);
free_path(f,ino,path);
}
return err;
}
static
void
fuse_lib_getxattr(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int res;
struct fuse *f;
const char* name;
struct fuse_getxattr_in *arg;
arg = fuse_hdr_arg(hdr_);
name = PARAM(arg);
f = req_fuse_prepare(req);
if(arg->size)
{
char *value = (char*)malloc(arg->size);
if(value == NULL)
{
reply_err(req,-ENOMEM);
return;
}
res = common_getxattr(f,req,hdr_->nodeid,name,value,arg->size);
if(res > 0)
fuse_reply_buf(req,value,res);
else
reply_err(req,res);
free(value);
}
else
{
res = common_getxattr(f,req,hdr_->nodeid,name,NULL,0);
if(res >= 0)
fuse_reply_xattr(req,res);
else
reply_err(req,res);
}
}
static
int
common_listxattr(struct fuse *f,
fuse_req_t req,
uint64_t ino,
char *list,
size_t size)
{
char *path;
int err;
err = get_path(f,ino,&path);
if(!err)
{
err = f->fs->op.listxattr(path,list,size);
free_path(f,ino,path);
}
return err;
}
static
void
fuse_lib_listxattr(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int res;
struct fuse *f;
struct fuse_getxattr_in *arg;
arg = fuse_hdr_arg(hdr_);
f = req_fuse_prepare(req);
if(arg->size)
{
char *list = (char*)malloc(arg->size);
if(list == NULL)
{
reply_err(req,-ENOMEM);
return;
}
res = common_listxattr(f,req,hdr_->nodeid,list,arg->size);
if(res > 0)
fuse_reply_buf(req,list,res);
else
reply_err(req,res);
free(list);
}
else
{
res = common_listxattr(f,req,hdr_->nodeid,NULL,0);
if(res >= 0)
fuse_reply_xattr(req,res);
else
reply_err(req,res);
}
}
static
void
fuse_lib_removexattr(fuse_req_t req,
const struct fuse_in_header *hdr_)
{
int err;
char *path;
const char *name;
struct fuse *f;
name = fuse_hdr_arg(hdr_);
f = req_fuse_prepare(req);
err = get_path(f,hdr_->nodeid,&path);
if(!err)
{
err = f->fs->op.removexattr(path,name);
free_path(f,hdr_->nodeid,path);
}
reply_err(req,err);
}
static
void
fuse_lib_copy_file_range(fuse_req_t req_,
const struct fuse_in_header *hdr_)
{
ssize_t rv;
struct fuse *f;
fuse_file_info_t ffi_in = {0};
fuse_file_info_t ffi_out = {0};
const struct fuse_copy_file_range_in *arg;
arg = fuse_hdr_arg(hdr_);
ffi_in.fh = arg->fh_in;
ffi_out.fh = arg->fh_out;
f = req_fuse_prepare(req_);
rv = f->fs->op.copy_file_range(&ffi_in,
arg->off_in,
&ffi_out,
arg->off_out,
arg->len,
arg->flags);
if(rv >= 0)
fuse_reply_write(req_,rv);
else
reply_err(req_,rv);
}
static
struct lock*
locks_conflict(struct node *node,
const struct lock *lock)
{
struct lock *l;
for(l = node->locks; l; l = l->next)
if(l->owner != lock->owner &&
lock->start <= l->end && l->start <= lock->end &&
(l->type == F_WRLCK || lock->type == F_WRLCK))
break;
return l;
}
static
void
delete_lock(struct lock **lockp)
{
struct lock *l = *lockp;
*lockp = l->next;
free(l);
}
static
void
insert_lock(struct lock **pos,
struct lock *lock)
{
lock->next = *pos;
*pos = lock;
}
static
int
locks_insert(struct node *node,
struct lock *lock)
{
struct lock **lp;
struct lock *newl1 = NULL;
struct lock *newl2 = NULL;
if(lock->type != F_UNLCK || lock->start != 0 || lock->end != OFFSET_MAX)
{
newl1 = malloc(sizeof(struct lock));
newl2 = malloc(sizeof(struct lock));
if(!newl1 || !newl2)
{
free(newl1);
free(newl2);
return -ENOLCK;
}
}
for(lp = &node->locks; *lp;)
{
struct lock *l = *lp;
if(l->owner != lock->owner)
goto skip;
if(lock->type == l->type)
{
if(l->end < lock->start - 1)
goto skip;
if(lock->end < l->start - 1)
break;
if(l->start <= lock->start && lock->end <= l->end)
goto out;
if(l->start < lock->start)
lock->start = l->start;
if(lock->end < l->end)
lock->end = l->end;
goto delete;
}
else
{
if(l->end < lock->start)
goto skip;
if(lock->end < l->start)
break;
if(lock->start <= l->start && l->end <= lock->end)
goto delete;
if(l->end <= lock->end)
{
l->end = lock->start - 1;
goto skip;
}
if(lock->start <= l->start)
{
l->start = lock->end + 1;
break;
}
*newl2 = *l;
newl2->start = lock->end + 1;
l->end = lock->start - 1;
insert_lock(&l->next,newl2);
newl2 = NULL;
}
skip:
lp = &l->next;
continue;
delete:
delete_lock(lp);
}
if(lock->type != F_UNLCK)
{
*newl1 = *lock;
insert_lock(lp,newl1);
newl1 = NULL;
}
out:
free(newl1);
free(newl2);
return 0;
}
static
void
flock_to_lock(struct flock *flock,
struct lock *lock)
{
memset(lock,0,sizeof(struct lock));
lock->type = flock->l_type;
lock->start = flock->l_start;
lock->end = flock->l_len ? flock->l_start + flock->l_len - 1 : OFFSET_MAX;
lock->pid = flock->l_pid;
}
static
void
lock_to_flock(struct lock *lock,
struct flock *flock)
{
flock->l_type = lock->type;
flock->l_start = lock->start;
flock->l_len = (lock->end == OFFSET_MAX) ? 0 : lock->end - lock->start + 1;
flock->l_pid = lock->pid;
}
static
int
fuse_flush_common(struct fuse *f,
fuse_req_t req,
uint64_t ino,
fuse_file_info_t *fi)
{
struct flock lock;
struct lock l;
int err;
int errlock;
memset(&lock,0,sizeof(lock));
lock.l_type = F_UNLCK;
lock.l_whence = SEEK_SET;
err = f->fs->op.flush(fi);
errlock = f->fs->op.lock(fi,F_SETLK,&lock);
if(errlock != -ENOSYS)
{
flock_to_lock(&lock,&l);
l.owner = fi->lock_owner;
pthread_mutex_lock(&f->lock);
locks_insert(get_node(f,ino),&l);
pthread_mutex_unlock(&f->lock);
/* if op.lock() is defined FLUSH is needed regardless
of op.flush() */
if(err == -ENOSYS)
err = 0;
}
return err;
}
static
void
fuse_lib_release(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int err = 0;
struct fuse *f;
fuse_file_info_t ffi = {0};
struct fuse_release_in *arg;
arg = fuse_hdr_arg(hdr_);
ffi.fh = arg->fh;
ffi.flags = arg->flags;
if(req->f->conn.proto_minor >= 8)
{
ffi.flush = !!(arg->release_flags & FUSE_RELEASE_FLUSH);
ffi.lock_owner = arg->lock_owner;
}
else
{
ffi.flock_release = 1;
ffi.lock_owner = arg->lock_owner;
}
f = req_fuse_prepare(req);
if(ffi.flush)
{
err = fuse_flush_common(f,req,hdr_->nodeid,&ffi);
if(err == -ENOSYS)
err = 0;
}
fuse_do_release(f,hdr_->nodeid,&ffi);
reply_err(req,err);
}
static
void
fuse_lib_flush(fuse_req_t req,
struct fuse_in_header *hdr_)
{
int err;
struct fuse *f;
fuse_file_info_t ffi = {0};
struct fuse_flush_in *arg;
arg = fuse_hdr_arg(hdr_);
ffi.fh = arg->fh;
ffi.flush = 1;
if(req->f->conn.proto_minor >= 7)
ffi.lock_owner = arg->lock_owner;
f = req_fuse_prepare(req);
err = fuse_flush_common(f,req,hdr_->nodeid,&ffi);
reply_err(req,err);
}
static
int
fuse_lock_common(fuse_req_t req,
uint64_t ino,
fuse_file_info_t *fi,
struct flock *lock,
int cmd)
{
int err;
struct fuse *f = req_fuse_prepare(req);
err = f->fs->op.lock(fi,cmd,lock);
return err;
}
static
void
convert_fuse_file_lock(const struct fuse_file_lock *fl,
struct flock *flock)
{
memset(flock, 0, sizeof(struct flock));
flock->l_type = fl->type;
flock->l_whence = SEEK_SET;
flock->l_start = fl->start;
if (fl->end == OFFSET_MAX)
flock->l_len = 0;
else
flock->l_len = fl->end - fl->start + 1;
flock->l_pid = fl->pid;
}
static
void
fuse_lib_getlk(fuse_req_t req,
const struct fuse_in_header *hdr_)
{
int err;
struct fuse *f;
struct lock lk;
struct flock flk;
struct lock *conflict;
fuse_file_info_t ffi = {0};
const struct fuse_lk_in *arg;
arg = fuse_hdr_arg(hdr_);
ffi.fh = arg->fh;
ffi.lock_owner = arg->owner;
convert_fuse_file_lock(&arg->lk,&flk);
f = req_fuse(req);
flock_to_lock(&flk,&lk);
lk.owner = ffi.lock_owner;
pthread_mutex_lock(&f->lock);
conflict = locks_conflict(get_node(f,hdr_->nodeid),&lk);
if(conflict)
lock_to_flock(conflict,&flk);
pthread_mutex_unlock(&f->lock);
if(!conflict)
err = fuse_lock_common(req,hdr_->nodeid,&ffi,&flk,F_GETLK);
else
err = 0;
if(!err)
fuse_reply_lock(req,&flk);
else
reply_err(req,err);
}
static
void
fuse_lib_setlk(fuse_req_t req,
uint64_t ino,
fuse_file_info_t *fi,
struct flock *lock,
int sleep)
{
int err = fuse_lock_common(req,ino,fi,lock,
sleep ? F_SETLKW : F_SETLK);
if(!err)
{
struct fuse *f = req_fuse(req);
struct lock l;
flock_to_lock(lock,&l);
l.owner = fi->lock_owner;
pthread_mutex_lock(&f->lock);
locks_insert(get_node(f,ino),&l);
pthread_mutex_unlock(&f->lock);
}
reply_err(req,err);
}
static
void
fuse_lib_flock(fuse_req_t req,
uint64_t ino,
fuse_file_info_t *fi,
int op)
{
int err;
struct fuse *f = req_fuse_prepare(req);
err = f->fs->op.flock(fi,op);
reply_err(req,err);
}
static
void
fuse_lib_bmap(fuse_req_t req,
const struct fuse_in_header *hdr_)
{
int err;
char *path;
struct fuse *f;
uint64_t block;
const struct fuse_bmap_in *arg;
arg = fuse_hdr_arg(hdr_);
block = arg->block;
f = req_fuse_prepare(req);
err = get_path(f,hdr_->nodeid,&path);
if(!err)
{
err = f->fs->op.bmap(path,arg->blocksize,&block);
free_path(f,hdr_->nodeid,path);
}
if(!err)
fuse_reply_bmap(req,block);
else
reply_err(req,err);
}
static
void
fuse_lib_ioctl(fuse_req_t req,
const struct fuse_in_header *hdr_)
{
int err;
char *out_buf = NULL;
struct fuse *f = req_fuse_prepare(req);
fuse_file_info_t ffi;
fuse_file_info_t llffi = {0};
const void *in_buf;
uint32_t out_size;
const struct fuse_ioctl_in *arg;
arg = fuse_hdr_arg(hdr_);
if((arg->flags & FUSE_IOCTL_DIR) && !(req->f->conn.want & FUSE_CAP_IOCTL_DIR))
{
fuse_reply_err(req,ENOTTY);
return;
}
if((sizeof(void*) == 4) &&
(req->f->conn.proto_minor >= 16) &&
!(arg->flags & FUSE_IOCTL_32BIT))
{
req->ioctl_64bit = 1;
}
llffi.fh = arg->fh;
out_size = arg->out_size;
in_buf = (arg->in_size ? PARAM(arg) : NULL);
err = -EPERM;
if(arg->flags & FUSE_IOCTL_UNRESTRICTED)
goto err;
if(arg->flags & FUSE_IOCTL_DIR)
get_dirhandle(&llffi,&ffi);
else
ffi = llffi;
if(out_size)
{
err = -ENOMEM;
out_buf = malloc(out_size);
if(!out_buf)
goto err;
}
assert(!arg->in_size || !out_size || arg->in_size == out_size);
if(out_buf)
memcpy(out_buf,in_buf,arg->in_size);
err = f->fs->op.ioctl(&ffi,
arg->cmd,
(void*)(uintptr_t)arg->arg,
arg->flags,
out_buf ?: (void *)in_buf,
&out_size);
fuse_reply_ioctl(req,err,out_buf,out_size);
goto out;
err:
reply_err(req,err);
out:
free(out_buf);
}
static
void
fuse_lib_poll(fuse_req_t req,
const struct fuse_in_header *hdr_)
{
int err;
struct fuse *f = req_fuse_prepare(req);
unsigned revents = 0;
fuse_file_info_t ffi = {0};
fuse_pollhandle_t *ph = NULL;
const struct fuse_poll_in *arg;
arg = fuse_hdr_arg(hdr_);
ffi.fh = arg->fh;
if(arg->flags & FUSE_POLL_SCHEDULE_NOTIFY)
{
ph = (fuse_pollhandle_t*)malloc(sizeof(fuse_pollhandle_t));
if(ph == NULL)
{
fuse_reply_err(req,ENOMEM);
return;
}
ph->kh = arg->kh;
ph->ch = req->ch;
ph->f = req->f;
}
err = f->fs->op.poll(&ffi,ph,&revents);
if(!err)
fuse_reply_poll(req,revents);
else
reply_err(req,err);
}
static
void
fuse_lib_fallocate(fuse_req_t req,
const struct fuse_in_header *hdr_)
{
int err;
struct fuse *f;
fuse_file_info_t ffi = {0};
const struct fuse_fallocate_in *arg;
arg = fuse_hdr_arg(hdr_);
ffi.fh = arg->fh;
f = req_fuse_prepare(req);
err = f->fs->op.fallocate(&ffi,
arg->mode,
arg->offset,
arg->length);
reply_err(req,err);
}
static
int
remembered_node_cmp(const void *a_,
const void *b_)
{
const remembered_node_t *a = a_;
const remembered_node_t *b = b_;
return (a->time - b->time);
}
static
void
remembered_nodes_sort(struct fuse *f_)
{
pthread_mutex_lock(&f_->lock);
qsort(&kv_first(f_->remembered_nodes),
kv_size(f_->remembered_nodes),
sizeof(remembered_node_t),
remembered_node_cmp);
pthread_mutex_unlock(&f_->lock);
}
#define MAX_PRUNE 100
#define MAX_CHECK 1000
int
fuse_prune_some_remembered_nodes(struct fuse *f_,
int *offset_)
{
time_t now;
int pruned;
int checked;
pthread_mutex_lock(&f_->lock);
pruned = 0;
checked = 0;
now = current_time();
while(*offset_ < kv_size(f_->remembered_nodes))
{
time_t age;
remembered_node_t *fn = &kv_A(f_->remembered_nodes,*offset_);
if(pruned >= MAX_PRUNE)
break;
if(checked >= MAX_CHECK)
break;
checked++;
age = (now - fn->time);
if(f_->conf.remember > age)
break;
assert(fn->node->nlookup == 1);
/* Don't forget active directories */
if(fn->node->refctr > 1)
{
(*offset_)++;
continue;
}
fn->node->nlookup = 0;
unref_node(f_,fn->node);
kv_delete(f_->remembered_nodes,*offset_);
pruned++;
}
pthread_mutex_unlock(&f_->lock);
if((pruned < MAX_PRUNE) && (checked < MAX_CHECK))
*offset_ = -1;
return pruned;
}
#undef MAX_PRUNE
#undef MAX_CHECK
static
void
sleep_100ms(void)
{
const struct timespec ms100 = {0,100 * 1000000};
nanosleep(&ms100,NULL);
}
void
fuse_prune_remembered_nodes(struct fuse *f_)
{
int offset;
int pruned;
offset = 0;
pruned = 0;
for(;;)
{
pruned += fuse_prune_some_remembered_nodes(f_,&offset);
if(offset >= 0)
{
sleep_100ms();
continue;
}
break;
}
if(pruned > 0)
remembered_nodes_sort(f_);
}
static struct fuse_lowlevel_ops fuse_path_ops =
{
.access = fuse_lib_access,
.bmap = fuse_lib_bmap,
.copy_file_range = fuse_lib_copy_file_range,
.create = fuse_lib_create,
.destroy = fuse_lib_destroy,
.fallocate = fuse_lib_fallocate,
.flock = fuse_lib_flock,
.flush = fuse_lib_flush,
.forget = fuse_lib_forget,
.forget_multi = fuse_lib_forget_multi,
.fsync = fuse_lib_fsync,
.fsyncdir = fuse_lib_fsyncdir,
.getattr = fuse_lib_getattr,
.getlk = fuse_lib_getlk,
.getxattr = fuse_lib_getxattr,
.init = fuse_lib_init,
.ioctl = fuse_lib_ioctl,
.link = fuse_lib_link,
.listxattr = fuse_lib_listxattr,
.lookup = fuse_lib_lookup,
.mkdir = fuse_lib_mkdir,
.mknod = fuse_lib_mknod,
.open = fuse_lib_open,
.opendir = fuse_lib_opendir,
.poll = fuse_lib_poll,
.read = fuse_lib_read,
.readdir = fuse_lib_readdir,
.readdir_plus = fuse_lib_readdir_plus,
.readlink = fuse_lib_readlink,
.release = fuse_lib_release,
.releasedir = fuse_lib_releasedir,
.removexattr = fuse_lib_removexattr,
.rename = fuse_lib_rename,
.retrieve_reply = NULL,
.rmdir = fuse_lib_rmdir,
.setattr = fuse_lib_setattr,
.setlk = fuse_lib_setlk,
.setxattr = fuse_lib_setxattr,
.statfs = fuse_lib_statfs,
.symlink = fuse_lib_symlink,
.unlink = fuse_lib_unlink,
.write = fuse_lib_write,
};
int
fuse_notify_poll(fuse_pollhandle_t *ph)
{
return fuse_lowlevel_notify_poll(ph);
}
static
void
free_cmd(struct fuse_cmd *cmd)
{
free(cmd->buf);
free(cmd);
}
int
fuse_exited(struct fuse *f)
{
return fuse_session_exited(f->se);
}
struct fuse_session*
fuse_get_session(struct fuse *f)
{
return f->se;
}
static
struct fuse_cmd*
fuse_alloc_cmd(size_t bufsize)
{
struct fuse_cmd *cmd = (struct fuse_cmd *)malloc(sizeof(*cmd));
if(cmd == NULL)
{
fprintf(stderr,"fuse: failed to allocate cmd\n");
return NULL;
}
cmd->buf = (char *)malloc(bufsize);
if(cmd->buf == NULL)
{
fprintf(stderr,"fuse: failed to allocate read buffer\n");
free(cmd);
return NULL;
}
return cmd;
}
struct fuse_cmd*
fuse_read_cmd(struct fuse *f)
{
struct fuse_chan *ch = f->se->ch;
size_t bufsize = fuse_chan_bufsize(ch);
struct fuse_cmd *cmd = fuse_alloc_cmd(bufsize);
if(cmd != NULL)
{
int res = fuse_chan_recv(ch,cmd->buf,bufsize);
if(res <= 0)
{
free_cmd(cmd);
if(res < 0 && res != -EINTR && res != -EAGAIN)
fuse_exit(f);
return NULL;
}
cmd->buflen = res;
cmd->ch = ch;
}
return cmd;
}
void
fuse_exit(struct fuse *f)
{
f->se->exited = 1;
}
struct fuse_context*
fuse_get_context(void)
{
return &fuse_get_context_internal()->ctx;
}
enum {
KEY_HELP,
};
#define FUSE_LIB_OPT(t,p,v) { t,offsetof(struct fuse_config,p),v }
static const struct fuse_opt fuse_lib_opts[] =
{
FUSE_OPT_KEY("-h", KEY_HELP),
FUSE_OPT_KEY("--help", KEY_HELP),
FUSE_OPT_KEY("debug", FUSE_OPT_KEY_KEEP),
FUSE_OPT_KEY("-d", FUSE_OPT_KEY_KEEP),
FUSE_LIB_OPT("debug", debug,1),
FUSE_LIB_OPT("-d", debug,1),
FUSE_LIB_OPT("nogc", nogc,1),
FUSE_LIB_OPT("umask=", set_mode,1),
FUSE_LIB_OPT("umask=%o", umask,0),
FUSE_LIB_OPT("uid=", set_uid,1),
FUSE_LIB_OPT("uid=%d", uid,0),
FUSE_LIB_OPT("gid=", set_gid,1),
FUSE_LIB_OPT("gid=%d", gid,0),
FUSE_LIB_OPT("noforget", remember,-1),
FUSE_LIB_OPT("remember=%u", remember,0),
FUSE_LIB_OPT("threads=%d", threads,0),
FUSE_LIB_OPT("use_ino", use_ino,1),
FUSE_OPT_END
};
static void fuse_lib_help(void)
{
fprintf(stderr,
" -o umask=M set file permissions (octal)\n"
" -o uid=N set file owner\n"
" -o gid=N set file group\n"
" -o noforget never forget cached inodes\n"
" -o remember=T remember cached inodes for T seconds (0s)\n"
" -o threads=NUM number of worker threads. 0 = autodetect.\n"
" Negative values autodetect then divide by\n"
" absolute value. default = 0\n"
"\n");
}
static
int
fuse_lib_opt_proc(void *data,
const char *arg,
int key,
struct fuse_args *outargs)
{
(void)arg; (void)outargs;
if(key == KEY_HELP)
{
struct fuse_config *conf = (struct fuse_config *)data;
fuse_lib_help();
conf->help = 1;
}
return 1;
}
int
fuse_is_lib_option(const char *opt)
{
return fuse_lowlevel_is_lib_option(opt) || fuse_opt_match(fuse_lib_opts,opt);
}
struct fuse_fs*
fuse_fs_new(const struct fuse_operations *op,
size_t op_size)
{
struct fuse_fs *fs;
if(sizeof(struct fuse_operations) < op_size)
{
fprintf(stderr,"fuse: warning: library too old,some operations may not not work\n");
op_size = sizeof(struct fuse_operations);
}
fs = (struct fuse_fs *)calloc(1,sizeof(struct fuse_fs));
if(!fs)
{
fprintf(stderr,"fuse: failed to allocate fuse_fs object\n");
return NULL;
}
if(op)
memcpy(&fs->op,op,op_size);
return fs;
}
static
int
node_table_init(struct node_table *t)
{
t->size = NODE_TABLE_MIN_SIZE;
t->array = (struct node **)calloc(1,sizeof(struct node *) * t->size);
if(t->array == NULL)
{
fprintf(stderr,"fuse: memory allocation failed\n");
return -1;
}
t->use = 0;
t->split = 0;
return 0;
}
static
void
metrics_log_nodes_info(struct fuse *f_,
FILE *file_)
{
char buf[1024];
lfmp_lock(&f_->node_fmp);
snprintf(buf,sizeof(buf),
"time: %zu\n"
"sizeof(node): %zu\n"
"node id_table size: %zu\n"
"node id_table usage: %zu\n"
"node id_table total allocated memory: %zu\n"
"node name_table size: %zu\n"
"node name_table usage: %zu\n"
"node name_table total allocated memory: %zu\n"
"node memory pool slab count: %zu\n"
"node memory pool usage ratio: %f\n"
"node memory pool avail objs: %zu\n"
"node memory pool total allocated memory: %zu\n"
"\n"
,
time(NULL),
sizeof(struct node),
f_->id_table.size,
f_->id_table.use,
(f_->id_table.size * sizeof(struct node*)),
f_->name_table.size,
f_->name_table.use,
(f_->name_table.size * sizeof(struct node*)),
fmp_slab_count(&f_->node_fmp.fmp),
fmp_slab_usage_ratio(&f_->node_fmp.fmp),
fmp_avail_objs(&f_->node_fmp.fmp),
fmp_total_allocated_memory(&f_->node_fmp.fmp)
);
lfmp_unlock(&f_->node_fmp);
fputs(buf,file_);
}
static
void
metrics_log_nodes_info_to_tmp_dir(struct fuse *f_)
{
FILE *file;
char filepath[256];
sprintf(filepath,"/tmp/mergerfs.%d.info",getpid());
file = fopen(filepath,"w");
if(file == NULL)
return;
metrics_log_nodes_info(f_,file);
fclose(file);
}
static
void
fuse_malloc_trim(void)
{
#ifdef HAVE_MALLOC_TRIM
malloc_trim(1024 * 1024);
#endif
}
static
void*
fuse_maintenance_loop(void *fuse_)
{
int gc;
int loops;
int sleep_time;
struct fuse *f = (struct fuse*)fuse_;
gc = 0;
loops = 0;
sleep_time = 60;
while(1)
{
if(remember_nodes(f))
fuse_prune_remembered_nodes(f);
if((loops % 15) == 0)
{
fuse_malloc_trim();
gc = 1;
}
// Trigger a followup gc if this gc succeeds
if(!f->conf.nogc && gc)
gc = lfmp_gc(&f->node_fmp);
if(g_LOG_METRICS)
metrics_log_nodes_info_to_tmp_dir(f);
loops++;
sleep(sleep_time);
}
return NULL;
}
int
fuse_start_maintenance_thread(struct fuse *f_)
{
return fuse_start_thread(&f_->maintenance_thread,fuse_maintenance_loop,f_);
}
void
fuse_stop_maintenance_thread(struct fuse *f_)
{
pthread_mutex_lock(&f_->lock);
pthread_cancel(f_->maintenance_thread);
pthread_mutex_unlock(&f_->lock);
pthread_join(f_->maintenance_thread,NULL);
}
struct fuse*
fuse_new_common(struct fuse_chan *ch,
struct fuse_args *args,
const struct fuse_operations *op,
size_t op_size)
{
struct fuse *f;
struct node *root;
struct fuse_fs *fs;
struct fuse_lowlevel_ops llop = fuse_path_ops;
if(fuse_create_context_key() == -1)
goto out;
f = (struct fuse *)calloc(1,sizeof(struct fuse));
if(f == NULL)
{
fprintf(stderr,"fuse: failed to allocate fuse object\n");
goto out_delete_context_key;
}
fs = fuse_fs_new(op,op_size);
if(!fs)
goto out_free;
f->fs = fs;
/* Oh f**k,this is ugly! */
if(!fs->op.lock)
{
llop.getlk = NULL;
llop.setlk = NULL;
}
if(fuse_opt_parse(args,&f->conf,fuse_lib_opts,fuse_lib_opt_proc) == -1)
goto out_free_fs;
g_LOG_METRICS = f->conf.debug;
f->se = fuse_lowlevel_new_common(args,&llop,sizeof(llop),f);
if(f->se == NULL)
goto out_free_fs;
fuse_session_add_chan(f->se,ch);
/* Trace topmost layer by default */
srand(time(NULL));
f->nodeid_gen.nodeid = FUSE_ROOT_ID;
f->nodeid_gen.generation = rand64();
if(node_table_init(&f->name_table) == -1)
goto out_free_session;
if(node_table_init(&f->id_table) == -1)
goto out_free_name_table;
fuse_mutex_init(&f->lock);
lfmp_init(&f->node_fmp,sizeof(struct node),256);
kv_init(f->remembered_nodes);
root = alloc_node(f);
if(root == NULL)
{
fprintf(stderr,"fuse: memory allocation failed\n");
goto out_free_id_table;
}
root->name = filename_strdup(f,"/");
root->parent = NULL;
root->nodeid = FUSE_ROOT_ID;
inc_nlookup(root);
hash_id(f,root);
return f;
out_free_id_table:
free(f->id_table.array);
out_free_name_table:
free(f->name_table.array);
out_free_session:
fuse_session_destroy(f->se);
out_free_fs:
/* Horrible compatibility hack to stop the destructor from being
called on the filesystem without init being called first */
fs->op.destroy = NULL;
free(f->fs);
out_free:
free(f);
out_delete_context_key:
fuse_delete_context_key();
out:
return NULL;
}
struct fuse*
fuse_new(struct fuse_chan *ch,
struct fuse_args *args,
const struct fuse_operations *op,
size_t op_size)
{
return fuse_new_common(ch,args,op,op_size);
}
void
fuse_destroy(struct fuse *f)
{
size_t i;
if(f->fs)
{
struct fuse_context_i *c = fuse_get_context_internal();
memset(c,0,sizeof(*c));
c->ctx.fuse = f;
for(i = 0; i < f->id_table.size; i++)
{
struct node *node;
for(node = f->id_table.array[i]; node != NULL; node = node->id_next)
{
if(node->is_hidden)
f->fs->op.free_hide(node->hidden_fh);
}
}
}
for(i = 0; i < f->id_table.size; i++)
{
struct node *node;
struct node *next;
for(node = f->id_table.array[i]; node != NULL; node = next)
{
next = node->id_next;
free_node(f,node);
f->id_table.use--;
}
}
free(f->id_table.array);
free(f->name_table.array);
pthread_mutex_destroy(&f->lock);
fuse_session_destroy(f->se);
lfmp_destroy(&f->node_fmp);
kv_destroy(f->remembered_nodes);
free(f);
fuse_delete_context_key();
}
int
fuse_config_num_threads(const struct fuse *fuse_)
{
return fuse_->conf.threads;
}
void
fuse_log_metrics_set(int log_)
{
g_LOG_METRICS = log_;
}
int
fuse_log_metrics_get(void)
{
return g_LOG_METRICS;
}