Before this change, --resync was handled in three steps, and needed to do a lot
of unnecessary work to implement its own --ignore-existing logic, which also
caused problems with unicode normalization, in addition to being pretty slow.
After this change, it is refactored to produce the same result much more
efficiently, by reducing the three steps to two and letting ci.IgnoreExisting
do the work instead of reinventing the wheel.
The behavior and sync order remain unchanged for now -- just faster (but see
the ongoing lively discussions about potential future changes in #5681!)
Before this change, Bisync sometimes normalized NFD to NFC and sometimes
did not, causing errors in some scenarios (particularly for users of macOS).
It was similarly inconsistent in its handling of case-insensitivity.
There were three main places where Bisync should have normalized, but didn't:
1. When building the list of files that need to be transferred during --resync
2. When building the list of deltas during a non-resync
3. When comparing Path1 to Path2 during --check-sync
After this change, 1 and 3 are resolved, and bisync supports
--no-unicode-normalization and --ignore-case-sync in the same way as sync.
2 will be addressed in a future update.
Before this change, a sync to a case insensitive dest (such as macOS / Windows)
would not result in a matching filename if the source and dest had casing
differences but were otherwise equal. For example, syncing `hello.txt` to
`HELLO.txt` would result in the dest filename remaining `HELLO.txt`.
Furthermore, `--local-case-sensitive` did not solve this, as it actually caused
`HELLO.txt` to get deleted!
After this change, `HELLO.txt` is renamed to `hello.txt` to match the source,
only if the `--fix-case` flag is specified. (The old behavior remains the
default.)
Before this change, changing the case of a file on a case insensitive remote
would fatally panic when `--dry-run` was set, due to `moveOrCopyFile`
attempting to access the non-existent `tmpObj` it (would normally have)
created. After this change, the panic is avoided by skipping this step during
a `--dry-run` (with the usual "skipped as --dry-run is set" log message.)
Before this change, bisync needed to build a full listing for Path1, then a
full listing for Path2, then compare them -- and each of those tasks needed to
finish before the next one could start. In addition to being slow and
inefficient, it also caused real problems if a file changed between the time
bisync checked it on Path1 and the time it checked the corresponding file on
Path2.
This change solves these problems by listing both paths concurrently, using
the same March infrastructure that check and sync use to traverse two
directories in lock-step, optimized by Go's robust concurrency support.
Listings should now be much faster, and any given path is now checked
nearly-instantaneously on both sides, minimizing room for error.
Further discussion:
https://forum.rclone.org/t/bisync-bugs-and-feature-requests/37636#:~:text=4.%20Listings%20should%20alternate%20between%20paths%20to%20minimize%20errors
This introduces a few basic color codings to make the terminal output more
readable (and more fun). Rclone's standard --color flag is supported.
(AUTO|NEVER|ALWAYS)
Only a few lines have colors right now -- more will probably be added in
future versions.
Before this change, bisync had no mechanism for "retrying" a file again next
time, in the event of an unexpected and possibly temporary error. After this
change, bisync is now essentially able to mark a file as needing to be
rechecked next time. Bisync does this by keeping one prior listing on hand at
all times. In a low-confidence situation, bisync can revert a given file row
back to its state at the end of the last known successful sync, ensuring that
any subsequent changes will be re-noticed on the next run.
This can potentially be helpful for a dynamically changing file system, where
files may be changing quickly while bisync is working with them.
Before this change, if --create-empty-src-dirs was specified, bisync would
include directories in the list of deltas to evaluate by their modtime,
relative to the prior sync. This was unnecessary, as rclone does not yet
support setting modtime for directories.
After this change, we skip directories when comparing modtimes. (In other
words, we care only if a directory is created or deleted, not whether it is
newer or older.)
Before this change, if there were changes to sync, bisync listed each path
twice: once before the sync and once after. The second listing caused quite
a lot of problems, in addition to making each run much slower and more
expensive. A serious side-effect was that file changes could slip through
undetected, if they happened to occur while a sync was running (between the
first and second listing snapshots.)
After this change, the second listing is eliminated by getting the underlying
sync operation to report back a list of what it changed. Not only is this more
efficient, but also much more robust to concurrent modifications. It should no
longer be necessary to avoid make changes while it's running -- bisync will
simply learn about those changes next time and handle them on the next run.
Additionally, this also makes --check-sync usable again.
For further discussion, see:
https://forum.rclone.org/t/bisync-bugs-and-feature-requests/37636#:~:text=5.%20Final%20listings%20should%20be%20created%20from%20initial%20snapshot%20%2B%20deltas%2C%20not%20full%20re%2Dscans%2C%20to%20avoid%20errors%20if%20files%20changed%20during%20sync
Allows rclone sync to accept the same output file flags as rclone check,
for the purpose of writing results to a file.
A new --dest-after option is also supported, which writes a list file using
the same ListFormat flags as lsf (including customizable options for hash,
modtime, etc.) Conceptually it is similar to rsync's --itemize-changes, but
not identical -- it should output an accurate list of what will be on the
destination after the sync.
Note that it has a few limitations, and certain scenarios
are not currently supported:
--max-duration / CutoffModeHard
--compare-dest / --copy-dest (because equal() is called multiple times for the
same file)
server-side moves of an entire dir at once (because we never get the individual
file objects in the dir)
High-level retries, because there would be dupes
Possibly some error scenarios that didn't come up on the tests
Note also that each file is logged during the sync, as opposed to after, so it
is most useful as a predictor of what SHOULD happen to each file
(which may or may not match what actually DID.)
Only rclone sync is currently supported -- support for copy and move may be
added in the future.
Logger instruments the Sync routine with a status report for each file pair,
making it possible to output a list of the synced files, along with their
attributes and sigil categorization (match/differ/missing/etc.)
It is very customizable by passing in a custom LoggerFn, options, and
io.Writers to be written to. Possible uses include:
- allow sync to write path lists to a file, in the same format as rclone check
- allow sync to output a --dest-after file using the same format flags as lsf
- receive results as JSON when calling sync from an internal function
- predict the post-sync state of the destination
For usage examples, see bisync.WriteResults() or sync.SyncLoggerFn()
Before this change, bisync handled copies and deletes in separate operations.
After this change, they are combined in one sync operation, which is faster
and also allows bisync to support --track-renames and --backup-dir.
Bisync uses a --files-from filter containing only the paths bisync has
determined need to be synced. Just like in sync (but in both directions),
if a path is present on the dst but not the src, it's interpreted as a delete
rather than a copy.
Before this change, --no-unicode-normalization and --ignore-case-sync
were respected for rclone check but not for rclone check --checkfile,
causing them to give different results.
This change adds support for --checkfile so that the behavior is consistent.
Before this change, lsf's time format was hard-coded to "2006-01-02 15:04:05",
regardless of the Fs's precision. After this change, a new optional
--time-format flag is added to allow customizing the format (the default is
unchanged).
Examples:
rclone lsf remote:path --format pt --time-format 'Jan 2, 2006 at 3:04pm (MST)'
rclone lsf remote:path --format pt --time-format '2006-01-02 15:04:05.000000000'
rclone lsf remote:path --format pt --time-format '2006-01-02T15:04:05.999999999Z07:00'
rclone lsf remote:path --format pt --time-format RFC3339
rclone lsf remote:path --format pt --time-format DateOnly
rclone lsf remote:path --format pt --time-format max
--time-format max will automatically truncate '2006-01-02 15:04:05.000000000'
to the maximum precision supported by the remote.
Before this change StatsInfo.ResetCounters() and stopAverageLoop()
(when called from time.AfterFunc) could race on StatsInfo.average.
This was because the deferred stopAverageLoop accessed
StatsInfo.average without locking.
For some reason this only ever happened on macOS. This caused the CI
to fail on macOS thus causing the macOS builds not to appear.
This commit fixes the problem with a bit of extra locking.
It also renames all StatsInfo methods that should be called without
the lock to start with an initial underscore as this is the convention
we use elsewhere.
Fixes#7567
This updates the direct dependencies.
The latest github.com/willscott/go-nfs has changed the interface
slightly so this implements a dummy InvalidateHandle method in order
to satisfy it.
Before this change the VFS cache could get into a state where when an
object was updated remotely, the fingerprint of the item was correct
for the new object but the data in the VFS cache was for the old
object.
This fixes the problem by updating the fingerprint of the item at the
point we remove the stale data. The empty cache item now represents
the new item even though it has no data in.
This stops the fallback code for an empty fingerprint running (used
when we are writing items to the cache instead of reading them) which
was causing the problem.
Fixes#6053
See: https://forum.rclone.org/t/cached-webdav-mount-fingerprints-get-nuked-on-ls/43974/
Before this change we were only counting moves as checks. This means
that when using `rclone move` the `Transfers` stat did not count up
like it should do.
This changes introduces a new primitive operations.MoveTransfers which
counts moves as Transfers for use where that is appropriate, such as
rclone move/moveto. Otherwise moves are counted as checks and their
bytes are not accounted.
See: #7183
See: https://forum.rclone.org/t/stats-one-line-date-broken-in-1-64-0-and-later/43263/
Before this fix we were not counting transferred files nor transferred
bytes for server side moves/copies.
If the server side move/copy has been marked as a transfer and not a
checker then this accounts transferred files and transferred bytes.
The transferred bytes are not accounted to the network though so this
should not affect the network stats.
Before this change, listing a subdirectory gave errors like this:
Entry doesn't belong in directory "" (contains subdir) - ignoring
It also did full recursive listings when it didn't need to.
This was caused by the code using the underlying Fs to do recursive
listings on bucket based backends.
Using both the VFS and the underlying Fs is a mistake so this patch
removes the code which uses the underlying Fs and just uses the VFS.
Fixes#7500