rclone/backend/onedrive/quickxorhash/quickxorhash.go
2018-04-20 21:02:37 +01:00

204 lines
6.1 KiB
Go

// Package quickxorhash provides the quickXorHash algorithm which is a
// quick, simple non-cryptographic hash algorithm that works by XORing
// the bytes in a circular-shifting fashion.
//
// It is used by Microsoft Onedrive for Business to hash data.
//
// See: https://docs.microsoft.com/en-us/onedrive/developer/code-snippets/quickxorhash
package quickxorhash
// This code was ported from the code snippet linked from
// https://docs.microsoft.com/en-us/onedrive/developer/code-snippets/quickxorhash
// Which has the copyright
// ------------------------------------------------------------------------------
// Copyright (c) 2016 Microsoft Corporation
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// ------------------------------------------------------------------------------
import (
"hash"
)
const (
// BlockSize is the preferred size for hashing
BlockSize = 64
// Size of the output checksum
Size = 20
bitsInLastCell = 32
shift = 11
threshold = 600
widthInBits = 8 * Size
dataSize = (widthInBits-1)/64 + 1
)
type quickXorHash struct {
data [dataSize]uint64
lengthSoFar uint64
shiftSoFar int
}
// New returns a new hash.Hash computing the quickXorHash checksum.
func New() hash.Hash {
return &quickXorHash{}
}
// Write (via the embedded io.Writer interface) adds more data to the running hash.
// It never returns an error.
//
// Write writes len(p) bytes from p to the underlying data stream. It returns
// the number of bytes written from p (0 <= n <= len(p)) and any error
// encountered that caused the write to stop early. Write must return a non-nil
// error if it returns n < len(p). Write must not modify the slice data, even
// temporarily.
//
// Implementations must not retain p.
func (q *quickXorHash) Write(p []byte) (n int, err error) {
currentshift := q.shiftSoFar
// The bitvector where we'll start xoring
vectorArrayIndex := currentshift / 64
// The position within the bit vector at which we begin xoring
vectorOffset := currentshift % 64
iterations := len(p)
if iterations > widthInBits {
iterations = widthInBits
}
for i := 0; i < iterations; i++ {
isLastCell := vectorArrayIndex == len(q.data)-1
var bitsInVectorCell int
if isLastCell {
bitsInVectorCell = bitsInLastCell
} else {
bitsInVectorCell = 64
}
// There's at least 2 bitvectors before we reach the end of the array
if vectorOffset <= bitsInVectorCell-8 {
for j := i; j < len(p); j += widthInBits {
q.data[vectorArrayIndex] ^= uint64(p[j]) << uint(vectorOffset)
}
} else {
index1 := vectorArrayIndex
var index2 int
if isLastCell {
index2 = 0
} else {
index2 = vectorArrayIndex + 1
}
low := byte(bitsInVectorCell - vectorOffset)
xoredByte := byte(0)
for j := i; j < len(p); j += widthInBits {
xoredByte ^= p[j]
}
q.data[index1] ^= uint64(xoredByte) << uint(vectorOffset)
q.data[index2] ^= uint64(xoredByte) >> low
}
vectorOffset += shift
for vectorOffset >= bitsInVectorCell {
if isLastCell {
vectorArrayIndex = 0
} else {
vectorArrayIndex = vectorArrayIndex + 1
}
vectorOffset -= bitsInVectorCell
}
}
// Update the starting position in a circular shift pattern
q.shiftSoFar = (q.shiftSoFar + shift*(len(p)%widthInBits)) % widthInBits
q.lengthSoFar += uint64(len(p))
return len(p), nil
}
// Calculate the current checksum
func (q *quickXorHash) checkSum() (h [Size]byte) {
// Output the data as little endian bytes
ph := 0
for _, d := range q.data[:len(q.data)-1] {
_ = h[ph+7] // bounds check
h[ph+0] = byte(d >> (8 * 0))
h[ph+1] = byte(d >> (8 * 1))
h[ph+2] = byte(d >> (8 * 2))
h[ph+3] = byte(d >> (8 * 3))
h[ph+4] = byte(d >> (8 * 4))
h[ph+5] = byte(d >> (8 * 5))
h[ph+6] = byte(d >> (8 * 6))
h[ph+7] = byte(d >> (8 * 7))
ph += 8
}
// remaining 32 bits
d := q.data[len(q.data)-1]
h[Size-4] = byte(d >> (8 * 0))
h[Size-3] = byte(d >> (8 * 1))
h[Size-2] = byte(d >> (8 * 2))
h[Size-1] = byte(d >> (8 * 3))
// XOR the file length with the least significant bits in little endian format
d = q.lengthSoFar
h[Size-8] ^= byte(d >> (8 * 0))
h[Size-7] ^= byte(d >> (8 * 1))
h[Size-6] ^= byte(d >> (8 * 2))
h[Size-5] ^= byte(d >> (8 * 3))
h[Size-4] ^= byte(d >> (8 * 4))
h[Size-3] ^= byte(d >> (8 * 5))
h[Size-2] ^= byte(d >> (8 * 6))
h[Size-1] ^= byte(d >> (8 * 7))
return h
}
// Sum appends the current hash to b and returns the resulting slice.
// It does not change the underlying hash state.
func (q *quickXorHash) Sum(b []byte) []byte {
hash := q.checkSum()
return append(b, hash[:]...)
}
// Reset resets the Hash to its initial state.
func (q *quickXorHash) Reset() {
*q = quickXorHash{}
}
// Size returns the number of bytes Sum will return.
func (q *quickXorHash) Size() int {
return Size
}
// BlockSize returns the hash's underlying block size.
// The Write method must be able to accept any amount
// of data, but it may operate more efficiently if all writes
// are a multiple of the block size.
func (q *quickXorHash) BlockSize() int {
return BlockSize
}
// Sum returns the quickXorHash checksum of the data.
func Sum(data []byte) [Size]byte {
var d quickXorHash
_, _ = d.Write(data)
return d.checkSum()
}