tagbar/tests/ocaml/heap.ml
2013-04-06 00:59:14 +13:00

154 lines
4.5 KiB
OCaml

(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
(*s Heaps *)
module type Ordered = sig
type t
val compare : t -> t -> int
end
module type S =sig
(* Type of functional heaps *)
type t
(* Type of elements *)
type elt
(* The empty heap *)
val empty : t
(* [add x h] returns a new heap containing the elements of [h], plus [x];
complexity $O(log(n))$ *)
val add : elt -> t -> t
(* [maximum h] returns the maximum element of [h]; raises [EmptyHeap]
when [h] is empty; complexity $O(1)$ *)
val maximum : t -> elt
(* [remove h] returns a new heap containing the elements of [h], except
the maximum of [h]; raises [EmptyHeap] when [h] is empty;
complexity $O(log(n))$ *)
val remove : t -> t
(* usual iterators and combinators; elements are presented in
arbitrary order *)
val iter : (elt -> unit) -> t -> unit
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
end
exception EmptyHeap
(*s Functional implementation *)
module Functional(X : Ordered) = struct
(* Heaps are encoded as complete binary trees, i.e., binary trees
which are full expect, may be, on the bottom level where it is filled
from the left.
These trees also enjoy the heap property, namely the value of any node
is greater or equal than those of its left and right subtrees.
There are 4 kinds of complete binary trees, denoted by 4 constructors:
[FFF] for a full binary tree (and thus 2 full subtrees);
[PPF] for a partial tree with a partial left subtree and a full
right subtree;
[PFF] for a partial tree with a full left subtree and a full right subtree
(but of different heights);
and [PFP] for a partial tree with a full left subtree and a partial
right subtree. *)
type t =
| Empty
| FFF of t * X.t * t (* full (full, full) *)
| PPF of t * X.t * t (* partial (partial, full) *)
| PFF of t * X.t * t (* partial (full, full) *)
| PFP of t * X.t * t (* partial (full, partial) *)
type elt = X.t
let empty = Empty
(* smart constructors for insertion *)
let p_f l x r = match l with
| Empty | FFF _ -> PFF (l, x, r)
| _ -> PPF (l, x, r)
let pf_ l x = function
| Empty | FFF _ as r -> FFF (l, x, r)
| r -> PFP (l, x, r)
let rec add x = function
| Empty ->
FFF (Empty, x, Empty)
(* insertion to the left *)
| FFF (l, y, r) | PPF (l, y, r) ->
if X.compare x y > 0 then p_f (add y l) x r else p_f (add x l) y r
(* insertion to the right *)
| PFF (l, y, r) | PFP (l, y, r) ->
if X.compare x y > 0 then pf_ l x (add y r) else pf_ l y (add x r)
let maximum = function
| Empty -> raise EmptyHeap
| FFF (_, x, _) | PPF (_, x, _) | PFF (_, x, _) | PFP (_, x, _) -> x
(* smart constructors for removal; note that they are different
from the ones for insertion! *)
let p_f l x r = match l with
| Empty | FFF _ -> FFF (l, x, r)
| _ -> PPF (l, x, r)
let pf_ l x = function
| Empty | FFF _ as r -> PFF (l, x, r)
| r -> PFP (l, x, r)
let rec remove = function
| Empty ->
raise EmptyHeap
| FFF (Empty, _, Empty) ->
Empty
| PFF (l, _, Empty) ->
l
(* remove on the left *)
| PPF (l, x, r) | PFF (l, x, r) ->
let xl = maximum l in
let xr = maximum r in
let l' = remove l in
if X.compare xl xr >= 0 then
p_f l' xl r
else
p_f l' xr (add xl (remove r))
(* remove on the right *)
| FFF (l, x, r) | PFP (l, x, r) ->
let xl = maximum l in
let xr = maximum r in
let r' = remove r in
if X.compare xl xr > 0 then
pf_ (add xr (remove l)) xl r'
else
pf_ l xr r'
let rec iter f = function
| Empty ->
()
| FFF (l, x, r) | PPF (l, x, r) | PFF (l, x, r) | PFP (l, x, r) ->
iter f l; f x; iter f r
let rec fold f h x0 = match h with
| Empty ->
x0
| FFF (l, x, r) | PPF (l, x, r) | PFF (l, x, r) | PFP (l, x, r) ->
fold f l (fold f r (f x x0))
end