2013-04-06 00:59:14 +13:00

295 lines
13 KiB
OCaml

(* ========================================================================= *)
(* Knuth-Bendix completion done by HOL inference. John Harrison 2005 *)
(* *)
(* This was written by fairly mechanical modification of the code at *)
(* *)
(* http://www.cl.cam.ac.uk/users/jrh/atp/order.ml *)
(* http://www.cl.cam.ac.uk/users/jrh/atp/completion.ml *)
(* *)
(* for HOL's slightly different term structure, with ad hoc term *)
(* manipulations replaced by inference on equational theorems. We also have *)
(* the optimization of throwing left-reducible rules back into the set of *)
(* critical pairs. However, we don't prioritize smaller critical pairs or *)
(* anything like that; this is still a very naive implementation. *)
(* *)
(* For something very similar done 15 years ago, see Konrad Slind's Master's *)
(* thesis: "An Implementation of Higher Order Logic", U Calgary 1991. *)
(* ========================================================================= *)
let is_realvar w x = is_var x & not(mem x w);;
let rec real_strip w tm =
if mem tm w then tm,[] else
let l,r = dest_comb tm in
let f,args = real_strip w l in f,args@[r];;
(* ------------------------------------------------------------------------- *)
(* Construct a weighting function. *)
(* ------------------------------------------------------------------------- *)
let weight lis (f,n) (g,m) =
let i = index f lis and j = index g lis in
i > j or i = j & n > m;;
(* ------------------------------------------------------------------------- *)
(* Generic lexicographic ordering function. *)
(* ------------------------------------------------------------------------- *)
let rec lexord ord l1 l2 =
match (l1,l2) with
(h1::t1,h2::t2) -> if ord h1 h2 then length t1 = length t2
else h1 = h2 & lexord ord t1 t2
| _ -> false;;
(* ------------------------------------------------------------------------- *)
(* Lexicographic path ordering. Note that we also use the weights *)
(* to define the set of constants, so they don't literally have to be *)
(* constants in the HOL sense. *)
(* ------------------------------------------------------------------------- *)
let rec lpo_gt w s t =
if is_realvar w t then not(s = t) & mem t (frees s)
else if is_realvar w s or is_abs s or is_abs t then false else
let f,fargs = real_strip w s and g,gargs = real_strip w t in
exists (fun si -> lpo_ge w si t) fargs or
forall (lpo_gt w s) gargs &
(f = g & lexord (lpo_gt w) fargs gargs or
weight w (f,length fargs) (g,length gargs))
and lpo_ge w s t = (s = t) or lpo_gt w s t;;
(* ------------------------------------------------------------------------- *)
(* Unification. Again we have the weights "w" fixing the set of constants. *)
(* ------------------------------------------------------------------------- *)
let rec istriv w env x t =
if is_realvar w t then t = x or defined env t & istriv w env x (apply env t)
else if is_const t then false else
let f,args = strip_comb t in
exists (istriv w env x) args & failwith "cyclic";;
let rec unify w env tp =
match tp with
((Var(_,_) as x),t) | (t,(Var(_,_) as x)) when not(mem x w) ->
if defined env x then unify w env (apply env x,t)
else if istriv w env x t then env else (x|->t) env
| (Comb(f,x),Comb(g,y)) -> unify w (unify w env (x,y)) (f,g)
| (s,t) -> if s = t then env else failwith "unify: not unifiable";;
(* ------------------------------------------------------------------------- *)
(* Full unification, unravelling graph into HOL-style instantiation list. *)
(* ------------------------------------------------------------------------- *)
let fullunify w (s,t) =
let env = unify w undefined (s,t) in
let th = map (fun (x,t) -> (t,x)) (graph env) in
let rec subs t =
let t' = vsubst th t in
if t' = t then t else subs t' in
map (fun (t,x) -> (subs t,x)) th;;
(* ------------------------------------------------------------------------- *)
(* Construct "overlaps": ways of rewriting subterms using unification. *)
(* ------------------------------------------------------------------------- *)
let LIST_MK_COMB f ths = rev_itlist (fun s t -> MK_COMB(t,s)) ths (REFL f);;
let rec listcases fn rfn lis acc =
match lis with
[] -> acc
| h::t -> fn h (fun i h' -> rfn i (h'::map REFL t)) @
listcases fn (fun i t' -> rfn i (REFL h::t')) t acc;;
let rec overlaps w th tm rfn =
let l,r = dest_eq(concl th) in
if not (is_comb tm) then [] else
let f,args = strip_comb tm in
listcases (overlaps w th) (fun i a -> rfn i (LIST_MK_COMB f a)) args
(try [rfn (fullunify w (l,tm)) th] with Failure _ -> []);;
(* ------------------------------------------------------------------------- *)
(* Rename variables canonically to avoid clashes or remove redundancy. *)
(* ------------------------------------------------------------------------- *)
let fixvariables s th =
let fvs = subtract (frees(concl th)) (freesl(hyp th)) in
let gvs = map2 (fun v n -> mk_var(s^string_of_int n,type_of v))
fvs (1--(length fvs)) in
INST (zip gvs fvs) th;;
let renamepair (th1,th2) = fixvariables "x" th1,fixvariables "y" th2;;
(* ------------------------------------------------------------------------- *)
(* Find all critical pairs. *)
(* ------------------------------------------------------------------------- *)
let crit1 w eq1 eq2 =
let l1,r1 = dest_eq(concl eq1)
and l2,r2 = dest_eq(concl eq2) in
overlaps w eq1 l2 (fun i th -> TRANS (SYM(INST i th)) (INST i eq2));;
let thm_union l1 l2 =
itlist (fun th ths -> let th' = fixvariables "x" th in
let tm = concl th' in
if exists (fun th'' -> concl th'' = tm) ths then ths
else th'::ths)
l1 l2;;
let critical_pairs w tha thb =
let th1,th2 = renamepair (tha,thb) in
if concl th1 = concl th2 then crit1 w th1 th2 else
filter (fun th -> let l,r = dest_eq(concl th) in l <> r)
(thm_union (crit1 w th1 th2) (thm_union (crit1 w th2 th1) []));;
(* ------------------------------------------------------------------------- *)
(* Normalize an equation and try to orient it. *)
(* ------------------------------------------------------------------------- *)
let normalize_and_orient w eqs th =
let th' = GEN_REWRITE_RULE TOP_DEPTH_CONV eqs th in
let s',t' = dest_eq(concl th') in
if lpo_ge w s' t' then th' else if lpo_ge w t' s' then SYM th'
else failwith "Can't orient equation";;
(* ------------------------------------------------------------------------- *)
(* Print out status report to reduce user boredom. *)
(* ------------------------------------------------------------------------- *)
let status(eqs,crs) eqs0 =
if eqs = eqs0 & (length crs) mod 1000 <> 0 then () else
(print_string(string_of_int(length eqs)^" equations and "^
string_of_int(length crs)^" pending critical pairs");
print_newline());;
(* ------------------------------------------------------------------------- *)
(* Basic completion, throwing back left-reducible rules. *)
(* ------------------------------------------------------------------------- *)
let left_reducible eqs eq =
can (CHANGED_CONV(GEN_REWRITE_CONV (LAND_CONV o ONCE_DEPTH_CONV) eqs))
(concl eq);;
let rec complete w (eqs,crits) =
match crits with
(eq::ocrits) ->
let trip =
try let eq' = normalize_and_orient w eqs eq in
let s',t' = dest_eq(concl eq') in
if s' = t' then (eqs,ocrits) else
let crits',eqs' = partition(left_reducible [eq']) eqs in
let eqs'' = eq'::eqs' in
eqs'',
ocrits @ crits' @ itlist ((@) o critical_pairs w eq') eqs'' []
with Failure _ ->
if exists (can (normalize_and_orient w eqs)) ocrits
then (eqs,ocrits@[eq])
else failwith "complete: no orientable equations" in
status trip eqs; complete w trip
| [] -> eqs;;
(* ------------------------------------------------------------------------- *)
(* Overall completion. *)
(* ------------------------------------------------------------------------- *)
let complete_equations wts eqs =
let eqs' = map (normalize_and_orient wts []) eqs in
complete wts ([],eqs');;
(* ------------------------------------------------------------------------- *)
(* Knuth-Bendix example 4: the inverse property. *)
(* ------------------------------------------------------------------------- *)
complete_equations [`1`; `(*):num->num->num`; `i:num->num`]
[SPEC_ALL(ASSUME `!a b. i(a) * a * b = b`)];;
(* ------------------------------------------------------------------------- *)
(* Knuth-Bendix example 6: central groupoids. *)
(* ------------------------------------------------------------------------- *)
complete_equations [`(*):num->num->num`]
[SPEC_ALL(ASSUME `!a b c. (a * b) * (b * c) = b`)];;
(* ------------------------------------------------------------------------- *)
(* Knuth-Bendix example 9: cancellation law. *)
(* ------------------------------------------------------------------------- *)
complete_equations
[`1`; `( * ):num->num->num`; `(+):num->num->num`; `(-):num->num->num`]
(map SPEC_ALL (CONJUNCTS (ASSUME
`(!a b:num. a - a * b = b) /\
(!a b:num. a * b - b = a) /\
(!a. a * 1 = a) /\
(!a. 1 * a = a)`)));;
(* ------------------------------------------------------------------------- *)
(* Another example: pure congruence closure (no variables). *)
(* ------------------------------------------------------------------------- *)
complete_equations [`c:A`; `f:A->A`]
(map SPEC_ALL (CONJUNCTS (ASSUME
`((f(f(f(f(f c))))) = c:A) /\ (f(f(f c)) = c)`)));;
(* ------------------------------------------------------------------------- *)
(* Knuth-Bendix example 1: group theory. *)
(* ------------------------------------------------------------------------- *)
let eqs = map SPEC_ALL (CONJUNCTS (ASSUME
`(!x. 1 * x = x) /\ (!x. i(x) * x = 1) /\
(!x y z. (x * y) * z = x * y * z)`));;
complete_equations [`1`; `(*):num->num->num`; `i:num->num`] eqs;;
(* ------------------------------------------------------------------------- *)
(* Near-rings (from Aichinger's Diplomarbeit). *)
(* ------------------------------------------------------------------------- *)
let eqs = map SPEC_ALL (CONJUNCTS (ASSUME
`(!x. 0 + x = x) /\
(!x. neg x + x = 0) /\
(!x y z. (x + y) + z = x + y + z) /\
(!x y z. (x * y) * z = x * y * z) /\
(!x y z. (x + y) * z = (x * z) + (y * z))`));;
let nreqs =
complete_equations
[`0`; `(+):num->num->num`; `neg:num->num`; `( * ):num->num->num`] eqs;;
(*** This weighting also works OK, though the system is a bit bigger
let nreqs =
complete_equations
[`0`; `(+):num->num->num`; `( * ):num->num->num`; `INV`] eqs;;
****)
(* ------------------------------------------------------------------------- *)
(* A "completion" tactic. *)
(* ------------------------------------------------------------------------- *)
let COMPLETE_TAC w th =
let eqs = map SPEC_ALL (CONJUNCTS(SPEC_ALL th)) in
let eqs' = complete_equations w eqs in
MAP_EVERY (ASSUME_TAC o GEN_ALL) eqs';;
(* ------------------------------------------------------------------------- *)
(* Solve example problems in gr *)
g `(!x. 1 * x = x) /\
(!x. i(x) * x = 1) /\
(!x y z. (x * y) * z = x * y * z)
==> !x y. i(y) * i(i(i(x * i(y)))) * x = 1`;;
e (DISCH_THEN(COMPLETE_TAC [`1`; `(*):num->num->num`; `i:num->num`]));;
e (ASM_REWRITE_TAC[]);;
g `(!x. 0 + x = x) /\
(!x. neg x + x = 0) /\
(!x y z. (x + y) + z = x + y + z) /\
(!x y z. (x * y) * z = x * y * z) /\
(!x y z. (x + y) * z = (x * z) + (y * z))
==> (neg 0 * (x * y + z + neg(neg(w + z))) + neg(neg b + neg a) =
a + b)`;;
e (DISCH_THEN(COMPLETE_TAC
[`0`; `(+):num->num->num`; `neg:num->num`; `( * ):num->num->num`]));;
e (ASM_REWRITE_TAC[]);;