2016-04-29 10:41:54 +08:00
|
|
|
// Functions for executing a program.
|
|
|
|
//
|
|
|
|
// Some of the code in this file is based on code from the Glibc manual, though the changes
|
|
|
|
// performed have been massive.
|
2016-04-21 14:00:54 +08:00
|
|
|
#include "config.h"
|
2006-08-11 09:18:35 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
#include <errno.h>
|
|
|
|
#include <fcntl.h>
|
2017-02-11 10:47:02 +08:00
|
|
|
#ifdef HAVE_SIGINFO_H
|
|
|
|
#include <siginfo.h>
|
|
|
|
#endif
|
2016-04-29 10:41:54 +08:00
|
|
|
#include <signal.h>
|
2017-02-11 10:47:02 +08:00
|
|
|
#ifdef HAVE_SPAWN_H
|
|
|
|
#include <spawn.h>
|
|
|
|
#endif
|
2005-09-20 21:26:39 +08:00
|
|
|
#include <stdio.h>
|
2016-04-29 10:41:54 +08:00
|
|
|
#include <string.h>
|
Fixed race condition in new job control synchronization
We were having child processes SIGSTOP themselves immediately after
setting their process group and before launching their intended targets,
but they were not necessarily stopped by the time the next command was
being executed (so the opposite of the original race condition where
they might have finished executing by the time the next command came
around), and as a result when we sent them SIGCONT, that could never
reach. Now using waitpid to synchronize the SIGSTOP/SIGCONT between the
two.
If we had a good, unnamed inter-process event/semaphore, we could use
that to have a child process conditionally stop itself if the next
command in the job chain hadn't yet been started / setup, but this is
probably a lot more straightforward and less-confusing, which isn't a
bad thing.
Additionally, there was a bug caused by the fact that the main exec_job
loop actually blocks to read from previous commands in the job if the
current command is a built-in that doesn't need to fork.
With this waitpid code, I was able to finally add the SIGSTOP code to
all the fork'd processes in the main exec_job loop without introducing
deadlocks; it turns out that they should be treated just like the main
EXTERNAL fork, but they tend to execute faster causing the same deadlock
described above to occur more readily.
The only thing I'm not sure about is whether we should execute
unblock_pid undconditionally for all !EXTERNAL commands. It makes more
sense to *only* do that if a blocking read were about to be done in the
main loop, otherwise the original race condition could still appear
(though it is probably mitigated by whatever duration the SIGSTOP lasted
for, even if it is SIGCONT'd before the next command tries to join the
process group).
2017-07-27 03:19:00 +08:00
|
|
|
#include <sys/wait.h>
|
2005-09-20 21:26:39 +08:00
|
|
|
#include <unistd.h>
|
2017-02-11 10:47:02 +08:00
|
|
|
|
2012-02-10 23:55:06 +08:00
|
|
|
#include <algorithm>
|
2017-08-07 06:47:01 +08:00
|
|
|
#include <functional>
|
2015-07-25 23:14:25 +08:00
|
|
|
#include <map>
|
2016-04-21 14:00:54 +08:00
|
|
|
#include <memory>
|
2016-04-29 10:41:54 +08:00
|
|
|
#include <string>
|
2017-02-11 10:47:02 +08:00
|
|
|
#include <type_traits>
|
|
|
|
#include <vector>
|
2006-07-31 04:26:59 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
#include "builtin.h"
|
2005-09-20 21:26:39 +08:00
|
|
|
#include "common.h"
|
2016-04-29 10:41:54 +08:00
|
|
|
#include "env.h"
|
2005-09-20 21:26:39 +08:00
|
|
|
#include "exec.h"
|
2016-04-29 10:41:54 +08:00
|
|
|
#include "fallback.h" // IWYU pragma: keep
|
2005-09-20 21:26:39 +08:00
|
|
|
#include "function.h"
|
2015-07-25 23:14:25 +08:00
|
|
|
#include "io.h"
|
|
|
|
#include "parse_tree.h"
|
2016-04-29 10:41:54 +08:00
|
|
|
#include "parser.h"
|
|
|
|
#include "postfork.h"
|
|
|
|
#include "proc.h"
|
2015-12-15 09:21:43 +08:00
|
|
|
#include "reader.h"
|
2017-08-07 06:47:01 +08:00
|
|
|
#include "signal.h"
|
2016-04-29 10:41:54 +08:00
|
|
|
#include "wutil.h" // IWYU pragma: keep
|
2005-09-20 21:26:39 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
/// File descriptor redirection error message.
|
|
|
|
#define FD_ERROR _(L"An error occurred while redirecting file descriptor %d")
|
2007-10-27 02:42:32 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
/// File descriptor redirection error message.
|
|
|
|
#define WRITE_ERROR _(L"An error occurred while writing output")
|
2009-02-23 04:28:52 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
/// File redirection error message.
|
|
|
|
#define FILE_ERROR _(L"An error occurred while redirecting file '%s'")
|
2007-10-27 02:42:32 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
/// Base open mode to pass to calls to open.
|
2006-11-15 21:30:46 +08:00
|
|
|
#define OPEN_MASK 0666
|
2005-10-17 21:24:12 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
/// Called in a forked child.
|
|
|
|
static void exec_write_and_exit(int fd, const char *buff, size_t count, int status) {
|
|
|
|
if (write_loop(fd, buff, count) == -1) {
|
2012-11-19 08:30:30 +08:00
|
|
|
debug(0, WRITE_ERROR);
|
|
|
|
wperror(L"write");
|
|
|
|
exit_without_destructors(status);
|
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
exit_without_destructors(status);
|
2009-02-23 04:28:52 +08:00
|
|
|
}
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
void exec_close(int fd) {
|
2012-08-05 06:11:43 +08:00
|
|
|
ASSERT_IS_MAIN_THREAD();
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// This may be called in a child of fork(), so don't allocate memory.
|
|
|
|
if (fd < 0) {
|
2012-11-19 08:30:30 +08:00
|
|
|
debug(0, L"Called close on invalid file descriptor ");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
while (close(fd) == -1) {
|
|
|
|
if (errno != EINTR) {
|
2012-11-19 08:30:30 +08:00
|
|
|
debug(1, FD_ERROR, fd);
|
|
|
|
wperror(L"close");
|
|
|
|
break;
|
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
}
|
2005-10-03 21:09:37 +08:00
|
|
|
}
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
int exec_pipe(int fd[2]) {
|
2013-01-30 18:22:38 +08:00
|
|
|
ASSERT_IS_MAIN_THREAD();
|
2013-02-01 07:57:08 +08:00
|
|
|
|
2012-11-19 08:30:30 +08:00
|
|
|
int res;
|
2016-04-29 10:41:54 +08:00
|
|
|
while ((res = pipe(fd))) {
|
|
|
|
if (errno != EINTR) {
|
|
|
|
return res; // caller will call wperror
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
}
|
|
|
|
|
2012-11-19 08:30:30 +08:00
|
|
|
debug(4, L"Created pipe using fds %d and %d", fd[0], fd[1]);
|
2016-04-29 10:41:54 +08:00
|
|
|
|
|
|
|
// Pipes ought to be cloexec. Pipes are dup2'd the corresponding fds; the resulting fds are not
|
|
|
|
// cloexec.
|
2015-01-08 10:07:06 +08:00
|
|
|
set_cloexec(fd[0]);
|
|
|
|
set_cloexec(fd[1]);
|
2012-11-19 08:30:30 +08:00
|
|
|
return res;
|
2005-10-03 21:09:37 +08:00
|
|
|
}
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
/// Returns true if the redirection is a file redirection to a file other than /dev/null.
|
|
|
|
static bool redirection_is_to_real_file(const io_data_t *io) {
|
2013-06-17 14:26:43 +08:00
|
|
|
bool result = false;
|
2016-04-29 10:41:54 +08:00
|
|
|
if (io != NULL && io->io_mode == IO_FILE) {
|
|
|
|
// It's a file redirection. Compare the path to /dev/null.
|
2016-07-31 03:01:37 +08:00
|
|
|
const io_file_t *io_file = static_cast<const io_file_t *>(io);
|
2013-06-17 14:26:43 +08:00
|
|
|
const char *path = io_file->filename_cstr;
|
2016-04-29 10:41:54 +08:00
|
|
|
if (strcmp(path, "/dev/null") != 0) {
|
|
|
|
// It's not /dev/null.
|
2013-06-17 14:26:43 +08:00
|
|
|
result = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
static bool chain_contains_redirection_to_real_file(const io_chain_t &io_chain) {
|
Big fat refactoring of how redirections work. In fish 1.x and 2.0.0, the redirections for a process were flattened into a big list associated with the job, so there was no way to tell which redirections applied to each process. Each process therefore got all the redirections associated with the job. See https://github.com/fish-shell/fish-shell/issues/877 for how this could manifest.
With this change, jobs only track their block-level redirections. Process level redirections are correctly associated with the process, and at exec time we stitch them together (block, pipe, and process redirects).
This fixes the weird issues where redirects bleed across pipelines (like #877), and also allows us to play with the order in which redirections are applied, since the final list is constructed right before it's needed. This lets us put pipes after block level redirections but before process level redirections, so that a 2>&1-type redirection gets picked up after the pipe, i.e. it should fix https://github.com/fish-shell/fish-shell/issues/110
This is a significant change. The tests all pass. Cross your fingers.
2013-08-20 07:16:41 +08:00
|
|
|
bool result = false;
|
2016-04-29 10:41:54 +08:00
|
|
|
for (size_t idx = 0; idx < io_chain.size(); idx++) {
|
2016-02-03 07:39:35 +08:00
|
|
|
const io_data_t *io = io_chain.at(idx).get();
|
2016-04-29 10:41:54 +08:00
|
|
|
if (redirection_is_to_real_file(io)) {
|
Big fat refactoring of how redirections work. In fish 1.x and 2.0.0, the redirections for a process were flattened into a big list associated with the job, so there was no way to tell which redirections applied to each process. Each process therefore got all the redirections associated with the job. See https://github.com/fish-shell/fish-shell/issues/877 for how this could manifest.
With this change, jobs only track their block-level redirections. Process level redirections are correctly associated with the process, and at exec time we stitch them together (block, pipe, and process redirects).
This fixes the weird issues where redirects bleed across pipelines (like #877), and also allows us to play with the order in which redirections are applied, since the final list is constructed right before it's needed. This lets us put pipes after block level redirections but before process level redirections, so that a 2>&1-type redirection gets picked up after the pipe, i.e. it should fix https://github.com/fish-shell/fish-shell/issues/110
This is a significant change. The tests all pass. Cross your fingers.
2013-08-20 07:16:41 +08:00
|
|
|
result = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
/// Returns the interpreter for the specified script. Returns NULL if file is not a script with a
|
|
|
|
/// shebang.
|
|
|
|
char *get_interpreter(const char *command, char *interpreter, size_t buff_size) {
|
|
|
|
// OK to not use CLO_EXEC here because this is only called after fork.
|
2012-11-19 08:30:30 +08:00
|
|
|
int fd = open(command, O_RDONLY);
|
2016-04-29 10:41:54 +08:00
|
|
|
if (fd >= 0) {
|
2012-11-19 08:30:30 +08:00
|
|
|
size_t idx = 0;
|
2016-04-29 10:41:54 +08:00
|
|
|
while (idx + 1 < buff_size) {
|
2012-03-01 03:27:14 +08:00
|
|
|
char ch;
|
|
|
|
ssize_t amt = read(fd, &ch, sizeof ch);
|
2016-04-29 10:41:54 +08:00
|
|
|
if (amt <= 0) break;
|
|
|
|
if (ch == '\n') break;
|
2012-03-01 03:27:14 +08:00
|
|
|
interpreter[idx++] = ch;
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
2012-03-01 03:27:14 +08:00
|
|
|
interpreter[idx++] = '\0';
|
|
|
|
close(fd);
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
2016-05-05 06:19:47 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
if (strncmp(interpreter, "#! /", 4) == 0) {
|
2012-03-01 03:27:14 +08:00
|
|
|
return interpreter + 3;
|
2016-04-29 10:41:54 +08:00
|
|
|
} else if (strncmp(interpreter, "#!/", 3) == 0) {
|
2012-03-01 03:27:14 +08:00
|
|
|
return interpreter + 2;
|
2012-02-23 04:00:02 +08:00
|
|
|
}
|
2016-05-05 06:19:47 +08:00
|
|
|
|
|
|
|
return NULL;
|
2008-01-16 09:04:54 +08:00
|
|
|
}
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
/// This function is executed by the child process created by a call to fork(). It should be called
|
|
|
|
/// after \c setup_child_process. It calls execve to replace the fish process image with the command
|
|
|
|
/// specified in \c p. It never returns. Called in a forked child! Do not allocate memory, etc.
|
|
|
|
static void safe_launch_process(process_t *p, const char *actual_cmd, const char *const *cargv,
|
|
|
|
const char *const *cenvv) {
|
2016-10-10 05:38:26 +08:00
|
|
|
UNUSED(p);
|
2012-11-19 08:30:30 +08:00
|
|
|
int err;
|
2016-04-29 10:41:54 +08:00
|
|
|
// debug( 1, L"exec '%ls'", p->argv[0] );
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// This function never returns, so we take certain liberties with constness.
|
|
|
|
char *const *envv = const_cast<char *const *>(cenvv);
|
|
|
|
char *const *argv = const_cast<char *const *>(cargv);
|
2013-02-23 08:22:56 +08:00
|
|
|
|
2012-11-19 08:30:30 +08:00
|
|
|
execve(actual_cmd, argv, envv);
|
|
|
|
err = errno;
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Something went wrong with execve, check for a ":", and run /bin/sh if encountered. This is a
|
|
|
|
// weird predecessor to the shebang that is still sometimes used since it is supported on
|
|
|
|
// Windows. OK to not use CLO_EXEC here because this is called after fork and the file is
|
|
|
|
// immediately closed.
|
2012-11-19 08:30:30 +08:00
|
|
|
int fd = open(actual_cmd, O_RDONLY);
|
2016-04-29 10:41:54 +08:00
|
|
|
if (fd >= 0) {
|
2012-11-19 08:30:30 +08:00
|
|
|
char begin[1] = {0};
|
|
|
|
ssize_t amt_read = read(fd, begin, 1);
|
|
|
|
close(fd);
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
if ((amt_read == 1) && (begin[0] == ':')) {
|
|
|
|
// Relaunch it with /bin/sh. Don't allocate memory, so if you have more args than this,
|
|
|
|
// update your silly script! Maybe this should be changed to be based on ARG_MAX
|
|
|
|
// somehow.
|
2012-03-01 03:27:14 +08:00
|
|
|
char sh_command[] = "/bin/sh";
|
|
|
|
char *argv2[128];
|
|
|
|
argv2[0] = sh_command;
|
2016-04-29 10:41:54 +08:00
|
|
|
for (size_t i = 1; i < sizeof argv2 / sizeof *argv2; i++) {
|
|
|
|
argv2[i] = argv[i - 1];
|
|
|
|
if (argv2[i] == NULL) break;
|
2012-03-01 03:27:14 +08:00
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2012-11-19 08:30:30 +08:00
|
|
|
execve(sh_command, argv2, envv);
|
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
}
|
|
|
|
|
2012-11-19 08:30:30 +08:00
|
|
|
errno = err;
|
2012-08-15 15:57:56 +08:00
|
|
|
safe_report_exec_error(errno, actual_cmd, argv, envv);
|
2012-11-19 08:30:30 +08:00
|
|
|
exit_without_destructors(STATUS_EXEC_FAIL);
|
2012-03-01 03:27:14 +08:00
|
|
|
}
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
/// This function is similar to launch_process, except it is not called after a fork (i.e. it only
|
|
|
|
/// calls exec) and therefore it can allocate memory.
|
|
|
|
static void launch_process_nofork(process_t *p) {
|
2012-03-01 03:27:14 +08:00
|
|
|
ASSERT_IS_MAIN_THREAD();
|
|
|
|
ASSERT_IS_NOT_FORKED_CHILD();
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2014-10-31 09:10:06 +08:00
|
|
|
null_terminated_array_t<char> argv_array;
|
|
|
|
convert_wide_array_to_narrow(p->get_argv_array(), &argv_array);
|
|
|
|
|
2017-01-27 04:03:14 +08:00
|
|
|
const char *const *envv = env_export_arr();
|
2012-07-21 11:39:31 +08:00
|
|
|
char *actual_cmd = wcs2str(p->actual_cmd.c_str());
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Ensure the terminal modes are what they were before we changed them.
|
2015-12-15 09:21:43 +08:00
|
|
|
restore_term_mode();
|
2016-04-29 10:41:54 +08:00
|
|
|
// Bounce to launch_process. This never returns.
|
2014-10-31 09:10:06 +08:00
|
|
|
safe_launch_process(p, actual_cmd, argv_array.get(), envv);
|
2005-09-20 21:26:39 +08:00
|
|
|
}
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
/// Check if the IO redirection chains contains redirections for the specified file descriptor.
|
|
|
|
static int has_fd(const io_chain_t &d, int fd) { return io_chain_get(d, fd).get() != NULL; }
|
2005-09-20 21:26:39 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
/// Close a list of fds.
|
|
|
|
static void io_cleanup_fds(const std::vector<int> &opened_fds) {
|
2013-01-20 02:59:43 +08:00
|
|
|
std::for_each(opened_fds.begin(), opened_fds.end(), close);
|
2012-08-23 04:41:21 +08:00
|
|
|
}
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
/// Make a copy of the specified io redirection chain, but change file redirection into fd
|
|
|
|
/// redirection. This makes the redirection chain suitable for use as block-level io, since the file
|
|
|
|
/// won't be repeatedly reopened for every command in the block, which would reset the cursor
|
|
|
|
/// position.
|
|
|
|
///
|
|
|
|
/// \return true on success, false on failure. Returns the output chain and opened_fds by reference.
|
|
|
|
static bool io_transmogrify(const io_chain_t &in_chain, io_chain_t *out_chain,
|
|
|
|
std::vector<int> *out_opened_fds) {
|
2012-08-23 04:41:21 +08:00
|
|
|
ASSERT_IS_MAIN_THREAD();
|
2013-12-27 17:38:43 +08:00
|
|
|
assert(out_chain != NULL && out_opened_fds != NULL);
|
|
|
|
assert(out_chain->empty());
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Just to be clear what we do for an empty chain.
|
|
|
|
if (in_chain.empty()) {
|
2012-08-23 04:41:21 +08:00
|
|
|
return true;
|
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2012-08-23 04:41:21 +08:00
|
|
|
bool success = true;
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Make our chain of redirections.
|
2012-08-23 04:41:21 +08:00
|
|
|
io_chain_t result_chain;
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// In the event we can't finish transmorgrifying, we'll have to close all the files we opened.
|
2012-08-23 04:41:21 +08:00
|
|
|
std::vector<int> opened_fds;
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
for (size_t idx = 0; idx < in_chain.size(); idx++) {
|
2013-01-07 23:04:55 +08:00
|
|
|
const shared_ptr<io_data_t> &in = in_chain.at(idx);
|
2016-04-29 10:41:54 +08:00
|
|
|
shared_ptr<io_data_t> out; // gets allocated via new
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
switch (in->io_mode) {
|
2012-11-19 16:31:03 +08:00
|
|
|
case IO_PIPE:
|
|
|
|
case IO_FD:
|
|
|
|
case IO_BUFFER:
|
2016-04-29 10:41:54 +08:00
|
|
|
case IO_CLOSE: {
|
2016-05-04 07:23:30 +08:00
|
|
|
// These redirections don't need transmogrification. They can be passed through.
|
2013-01-07 23:04:55 +08:00
|
|
|
out = in;
|
2012-11-19 16:31:03 +08:00
|
|
|
break;
|
|
|
|
}
|
2016-04-29 10:41:54 +08:00
|
|
|
case IO_FILE: {
|
2016-05-04 07:23:30 +08:00
|
|
|
// Transmogrify file redirections.
|
2012-11-19 16:31:03 +08:00
|
|
|
int fd;
|
2016-07-31 03:01:37 +08:00
|
|
|
io_file_t *in_file = static_cast<io_file_t *>(in.get());
|
2016-04-29 10:41:54 +08:00
|
|
|
if ((fd = open(in_file->filename_cstr, in_file->flags, OPEN_MASK)) == -1) {
|
|
|
|
debug(1, FILE_ERROR, in_file->filename_cstr);
|
2012-08-23 04:41:21 +08:00
|
|
|
|
2012-11-19 16:31:03 +08:00
|
|
|
wperror(L"open");
|
|
|
|
success = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
opened_fds.push_back(fd);
|
2015-01-09 02:44:05 +08:00
|
|
|
out.reset(new io_fd_t(in->fd, fd, false));
|
2012-08-23 04:41:21 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
if (out.get() != NULL) result_chain.push_back(out);
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Don't go any further if we failed.
|
|
|
|
if (!success) {
|
2012-08-23 04:41:21 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Now either return success, or clean up.
|
|
|
|
if (success) {
|
2017-01-27 08:14:50 +08:00
|
|
|
*out_chain = std::move(result_chain);
|
|
|
|
*out_opened_fds = std::move(opened_fds);
|
2016-04-29 10:41:54 +08:00
|
|
|
} else {
|
2013-01-20 02:59:43 +08:00
|
|
|
result_chain.clear();
|
|
|
|
io_cleanup_fds(opened_fds);
|
2012-08-23 04:41:21 +08:00
|
|
|
}
|
|
|
|
return success;
|
|
|
|
}
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
/// Morph an io redirection chain into redirections suitable for passing to eval, call eval, and
|
|
|
|
/// clean up morphed redirections.
|
|
|
|
///
|
|
|
|
/// \param def the code to evaluate, or the empty string if none
|
|
|
|
/// \param node_offset the offset of the node to evalute, or NODE_OFFSET_INVALID
|
|
|
|
/// \param block_type the type of block to push on evaluation
|
2016-06-06 09:46:04 +08:00
|
|
|
/// \param ios the io redirections to be performed on this block
|
2016-04-29 10:41:54 +08:00
|
|
|
static void internal_exec_helper(parser_t &parser, const wcstring &def, node_offset_t node_offset,
|
|
|
|
enum block_type_t block_type, const io_chain_t &ios) {
|
|
|
|
// If we have a valid node offset, then we must not have a string to execute.
|
2013-12-27 17:38:43 +08:00
|
|
|
assert(node_offset == NODE_OFFSET_INVALID || def.empty());
|
|
|
|
|
2012-08-23 04:41:21 +08:00
|
|
|
io_chain_t morphed_chain;
|
|
|
|
std::vector<int> opened_fds;
|
2013-12-27 17:38:43 +08:00
|
|
|
bool transmorgrified = io_transmogrify(ios, &morphed_chain, &opened_fds);
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Did the transmogrification fail - if so, set error status and return.
|
|
|
|
if (!transmorgrified) {
|
2012-11-19 08:30:30 +08:00
|
|
|
proc_set_last_status(STATUS_EXEC_FAIL);
|
|
|
|
return;
|
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
if (node_offset == NODE_OFFSET_INVALID) {
|
2013-12-27 17:38:43 +08:00
|
|
|
parser.eval(def, morphed_chain, block_type);
|
2016-04-29 10:41:54 +08:00
|
|
|
} else {
|
2013-12-27 17:38:43 +08:00
|
|
|
parser.eval_block_node(node_offset, morphed_chain, block_type);
|
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2013-01-20 02:59:43 +08:00
|
|
|
morphed_chain.clear();
|
|
|
|
io_cleanup_fds(opened_fds);
|
2012-11-19 08:30:30 +08:00
|
|
|
job_reap(0);
|
2005-09-20 21:26:39 +08:00
|
|
|
}
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Returns whether we can use posix spawn for a given process in a given job. Per
|
|
|
|
// https://github.com/fish-shell/fish-shell/issues/364 , error handling for file redirections is too
|
|
|
|
// difficult with posix_spawn, so in that case we use fork/exec.
|
|
|
|
//
|
|
|
|
// Furthermore, to avoid the race between the caller calling tcsetpgrp() and the client checking the
|
|
|
|
// foreground process group, we don't use posix_spawn if we're going to foreground the process. (If
|
|
|
|
// we use fork(), we can call tcsetpgrp after the fork, before the exec, and avoid the race).
|
|
|
|
static bool can_use_posix_spawn_for_job(const job_t *job, const process_t *process) {
|
2017-01-27 07:06:58 +08:00
|
|
|
if (job->get_flag(JOB_CONTROL)) { //!OCLINT(collapsible if statements)
|
2016-04-29 10:41:54 +08:00
|
|
|
// We are going to use job control; therefore when we launch this job it will get its own
|
|
|
|
// process group ID. But will it be foregrounded?
|
2017-01-27 07:06:58 +08:00
|
|
|
if (job->get_flag(JOB_TERMINAL) && job->get_flag(JOB_FOREGROUND)) {
|
2016-04-29 10:41:54 +08:00
|
|
|
// It will be foregrounded, so we will call tcsetpgrp(), therefore do not use
|
|
|
|
// posix_spawn.
|
2012-11-05 07:45:52 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
2013-10-27 06:27:39 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Now see if we have a redirection involving a file. The only one we allow is /dev/null, which
|
|
|
|
// we assume will not fail.
|
2012-10-29 16:45:51 +08:00
|
|
|
bool result = true;
|
2016-04-29 10:41:54 +08:00
|
|
|
if (chain_contains_redirection_to_real_file(job->block_io_chain()) ||
|
|
|
|
chain_contains_redirection_to_real_file(process->io_chain())) {
|
Big fat refactoring of how redirections work. In fish 1.x and 2.0.0, the redirections for a process were flattened into a big list associated with the job, so there was no way to tell which redirections applied to each process. Each process therefore got all the redirections associated with the job. See https://github.com/fish-shell/fish-shell/issues/877 for how this could manifest.
With this change, jobs only track their block-level redirections. Process level redirections are correctly associated with the process, and at exec time we stitch them together (block, pipe, and process redirects).
This fixes the weird issues where redirects bleed across pipelines (like #877), and also allows us to play with the order in which redirections are applied, since the final list is constructed right before it's needed. This lets us put pipes after block level redirections but before process level redirections, so that a 2>&1-type redirection gets picked up after the pipe, i.e. it should fix https://github.com/fish-shell/fish-shell/issues/110
This is a significant change. The tests all pass. Cross your fingers.
2013-08-20 07:16:41 +08:00
|
|
|
result = false;
|
2012-10-29 16:45:51 +08:00
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2017-07-31 06:26:41 +08:00
|
|
|
void internal_exec(job_t *j, const io_chain_t &&all_ios) {
|
|
|
|
// Do a regular launch - but without forking first...
|
|
|
|
signal_block();
|
|
|
|
|
|
|
|
// setup_child_process makes sure signals are properly set up. It will also call
|
|
|
|
// signal_unblock.
|
|
|
|
|
|
|
|
// PCA This is for handling exec. Passing all_ios here matches what fish 2.0.0 and 1.x did.
|
|
|
|
// It's known to be wrong - for example, it means that redirections bound for subsequent
|
|
|
|
// commands in the pipeline will apply to exec. However, using exec in a pipeline doesn't
|
|
|
|
// really make sense, so I'm not trying to fix it here.
|
|
|
|
if (!setup_child_process(0, all_ios)) {
|
|
|
|
// Decrement SHLVL as we're removing ourselves from the shell "stack".
|
2017-08-07 06:25:42 +08:00
|
|
|
const env_var_t shlvl_var = env_get(L"SHLVL", ENV_GLOBAL | ENV_EXPORT);
|
|
|
|
wcstring shlvl_str = L"0";
|
|
|
|
if (!shlvl_var.missing()) {
|
|
|
|
long shlvl = fish_wcstol(shlvl_var.c_str());
|
|
|
|
if (!errno && shlvl > 0) {
|
|
|
|
shlvl_str = to_string<long>(shlvl - 1);
|
2017-07-31 06:26:41 +08:00
|
|
|
}
|
|
|
|
}
|
2017-08-07 06:25:42 +08:00
|
|
|
env_set(L"SHLVL", shlvl_str.c_str(), ENV_GLOBAL | ENV_EXPORT);
|
2017-07-31 06:26:41 +08:00
|
|
|
|
|
|
|
// launch_process _never_ returns.
|
|
|
|
launch_process_nofork(j->processes.front().get());
|
|
|
|
} else {
|
|
|
|
j->set_flag(JOB_CONSTRUCTED, true);
|
|
|
|
j->processes.front()->completed = 1;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
void exec_job(parser_t &parser, job_t *j) {
|
2012-11-19 08:30:30 +08:00
|
|
|
pid_t pid = 0;
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Set to true if something goes wrong while exec:ing the job, in which case the cleanup code
|
|
|
|
// will kick in.
|
2012-11-19 08:30:30 +08:00
|
|
|
bool exec_error = false;
|
|
|
|
bool needs_keepalive = false;
|
|
|
|
process_t keepalive;
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
CHECK(j, );
|
2012-11-19 08:30:30 +08:00
|
|
|
CHECK_BLOCK();
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// If fish was invoked with -n or --no-execute, then no_exec will be set and we do nothing.
|
|
|
|
if (no_exec) {
|
2012-11-19 08:30:30 +08:00
|
|
|
return;
|
2013-03-26 07:06:12 +08:00
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2012-11-19 08:30:30 +08:00
|
|
|
debug(4, L"Exec job '%ls' with id %d", j->command_wcstr(), j->job_id);
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Verify that all IO_BUFFERs are output. We used to support a (single, hacked-in) magical input
|
|
|
|
// IO_BUFFER used by fish_pager, but now the claim is that there are no more clients and it is
|
|
|
|
// removed. This assertion double-checks that.
|
2017-07-27 11:17:04 +08:00
|
|
|
size_t stdout_read_limit = 0;
|
Big fat refactoring of how redirections work. In fish 1.x and 2.0.0, the redirections for a process were flattened into a big list associated with the job, so there was no way to tell which redirections applied to each process. Each process therefore got all the redirections associated with the job. See https://github.com/fish-shell/fish-shell/issues/877 for how this could manifest.
With this change, jobs only track their block-level redirections. Process level redirections are correctly associated with the process, and at exec time we stitch them together (block, pipe, and process redirects).
This fixes the weird issues where redirects bleed across pipelines (like #877), and also allows us to play with the order in which redirections are applied, since the final list is constructed right before it's needed. This lets us put pipes after block level redirections but before process level redirections, so that a 2>&1-type redirection gets picked up after the pipe, i.e. it should fix https://github.com/fish-shell/fish-shell/issues/110
This is a significant change. The tests all pass. Cross your fingers.
2013-08-20 07:16:41 +08:00
|
|
|
const io_chain_t all_ios = j->all_io_redirections();
|
2016-04-29 10:41:54 +08:00
|
|
|
for (size_t idx = 0; idx < all_ios.size(); idx++) {
|
Big fat refactoring of how redirections work. In fish 1.x and 2.0.0, the redirections for a process were flattened into a big list associated with the job, so there was no way to tell which redirections applied to each process. Each process therefore got all the redirections associated with the job. See https://github.com/fish-shell/fish-shell/issues/877 for how this could manifest.
With this change, jobs only track their block-level redirections. Process level redirections are correctly associated with the process, and at exec time we stitch them together (block, pipe, and process redirects).
This fixes the weird issues where redirects bleed across pipelines (like #877), and also allows us to play with the order in which redirections are applied, since the final list is constructed right before it's needed. This lets us put pipes after block level redirections but before process level redirections, so that a 2>&1-type redirection gets picked up after the pipe, i.e. it should fix https://github.com/fish-shell/fish-shell/issues/110
This is a significant change. The tests all pass. Cross your fingers.
2013-08-20 07:16:41 +08:00
|
|
|
const shared_ptr<io_data_t> &io = all_ios.at(idx);
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
if ((io->io_mode == IO_BUFFER)) {
|
2016-07-31 03:01:37 +08:00
|
|
|
io_buffer_t *io_buffer = static_cast<io_buffer_t *>(io.get());
|
2017-07-27 11:17:04 +08:00
|
|
|
assert(!io_buffer->is_input);
|
|
|
|
stdout_read_limit = io_buffer->get_buffer_limit();
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
}
|
|
|
|
|
2017-01-24 01:28:34 +08:00
|
|
|
if (j->processes.front()->type == INTERNAL_EXEC) {
|
2017-07-31 06:26:41 +08:00
|
|
|
internal_exec(j, std::move(all_ios));
|
2016-11-02 12:19:34 +08:00
|
|
|
DIE("this should be unreachable");
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
2016-04-29 10:41:54 +08:00
|
|
|
|
|
|
|
// We may have block IOs that conflict with fd redirections. For example, we may have a command
|
|
|
|
// with a redireciton like <&3; we may also have chosen 3 as the fd for our pipe. Ensure we have
|
|
|
|
// no conflicts.
|
|
|
|
for (size_t i = 0; i < all_ios.size(); i++) {
|
2015-01-08 10:07:06 +08:00
|
|
|
io_data_t *io = all_ios.at(i).get();
|
2016-04-29 10:41:54 +08:00
|
|
|
if (io->io_mode == IO_BUFFER) {
|
2016-07-31 03:01:37 +08:00
|
|
|
io_buffer_t *io_buffer = static_cast<io_buffer_t *>(io);
|
2016-04-29 10:41:54 +08:00
|
|
|
if (!io_buffer->avoid_conflicts_with_io_chain(all_ios)) {
|
|
|
|
// We could not avoid conflicts, probably due to fd exhaustion. Mark an error.
|
2015-01-08 10:07:06 +08:00
|
|
|
exec_error = true;
|
2017-01-24 01:28:34 +08:00
|
|
|
job_mark_process_as_failed(j, j->processes.front().get());
|
2015-01-08 10:07:06 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2013-02-01 07:57:08 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// See if we need to create a group keepalive process. This is a process that we create to make
|
|
|
|
// sure that the process group doesn't die accidentally, and is often needed when a
|
|
|
|
// builtin/block/function is inside a pipeline, since that usually means we have to wait for one
|
|
|
|
// program to exit before continuing in the pipeline, causing the group leader to exit.
|
2017-01-27 07:06:58 +08:00
|
|
|
if (j->get_flag(JOB_CONTROL) && !exec_error) {
|
2017-01-24 01:28:34 +08:00
|
|
|
for (const process_ptr_t &p : j->processes) {
|
2017-05-05 13:42:42 +08:00
|
|
|
if (p->type != EXTERNAL && (!p->is_last_in_job || !p->is_first_in_job)) {
|
|
|
|
needs_keepalive = true;
|
|
|
|
break;
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
}
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
if (needs_keepalive) {
|
|
|
|
// Call fork. No need to wait for threads since our use is confined and simple.
|
2012-11-19 08:30:30 +08:00
|
|
|
keepalive.pid = execute_fork(false);
|
2016-04-29 10:41:54 +08:00
|
|
|
if (keepalive.pid == 0) {
|
2016-05-06 11:05:45 +08:00
|
|
|
// Child
|
2012-11-19 08:30:30 +08:00
|
|
|
keepalive.pid = getpid();
|
2017-07-27 10:45:22 +08:00
|
|
|
child_set_group(j, &keepalive);
|
2012-11-19 08:30:30 +08:00
|
|
|
pause();
|
|
|
|
exit_without_destructors(0);
|
2016-04-29 10:41:54 +08:00
|
|
|
} else {
|
2016-05-06 11:05:45 +08:00
|
|
|
// Parent
|
|
|
|
debug(2, L"Fork #%d, pid %d: keepalive fork for '%ls'", g_fork_count, keepalive.pid,
|
|
|
|
j->command_wcstr());
|
2017-07-27 10:45:22 +08:00
|
|
|
set_child_group(j, keepalive.pid);
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
}
|
2013-02-01 07:57:08 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// This loop loops over every process_t in the job, starting it as appropriate. This turns out
|
|
|
|
// to be rather complex, since a process_t can be one of many rather different things.
|
|
|
|
//
|
|
|
|
// The loop also has to handle pipelining between the jobs.
|
|
|
|
//
|
|
|
|
// We can have up to three pipes "in flight" at a time:
|
|
|
|
//
|
|
|
|
// 1. The pipe the current process should read from (courtesy of the previous process)
|
|
|
|
// 2. The pipe that the current process should write to
|
|
|
|
// 3. The pipe that the next process should read from (courtesy of us)
|
|
|
|
//
|
|
|
|
// We are careful to set these to -1 when closed, so if we exit the loop abruptly, we can still
|
|
|
|
// close them.
|
2017-07-28 06:12:51 +08:00
|
|
|
bool pgrp_set = false;
|
2017-08-07 06:47:01 +08:00
|
|
|
// This is static since processes can block on input/output across jobs the main exec_job loop
|
|
|
|
// is only ever run in a single thread, so this is OK.
|
2017-07-26 11:50:38 +08:00
|
|
|
static pid_t blocked_pid = -1;
|
2013-01-30 19:08:06 +08:00
|
|
|
int pipe_current_read = -1, pipe_current_write = -1, pipe_next_read = -1;
|
2017-01-24 01:28:34 +08:00
|
|
|
for (std::unique_ptr<process_t> &unique_p : j->processes) {
|
|
|
|
if (exec_error) {
|
|
|
|
break;
|
|
|
|
}
|
2017-01-27 12:00:43 +08:00
|
|
|
process_t *const p = unique_p.get();
|
2016-04-29 10:41:54 +08:00
|
|
|
// The IO chain for this process. It starts with the block IO, then pipes, and then gets any
|
|
|
|
// from the process.
|
Big fat refactoring of how redirections work. In fish 1.x and 2.0.0, the redirections for a process were flattened into a big list associated with the job, so there was no way to tell which redirections applied to each process. Each process therefore got all the redirections associated with the job. See https://github.com/fish-shell/fish-shell/issues/877 for how this could manifest.
With this change, jobs only track their block-level redirections. Process level redirections are correctly associated with the process, and at exec time we stitch them together (block, pipe, and process redirects).
This fixes the weird issues where redirects bleed across pipelines (like #877), and also allows us to play with the order in which redirections are applied, since the final list is constructed right before it's needed. This lets us put pipes after block level redirections but before process level redirections, so that a 2>&1-type redirection gets picked up after the pipe, i.e. it should fix https://github.com/fish-shell/fish-shell/issues/110
This is a significant change. The tests all pass. Cross your fingers.
2013-08-20 07:16:41 +08:00
|
|
|
io_chain_t process_net_io_chain = j->block_io_chain();
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// "Consume" any pipe_next_read by making it current.
|
2013-01-30 19:08:06 +08:00
|
|
|
assert(pipe_current_read == -1);
|
|
|
|
pipe_current_read = pipe_next_read;
|
|
|
|
pipe_next_read = -1;
|
2013-02-01 07:57:08 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// See if we need a pipe.
|
2017-01-27 12:00:43 +08:00
|
|
|
const bool pipes_to_next_command = !p->is_last_in_job;
|
2017-08-07 06:47:01 +08:00
|
|
|
// Set to true if we end up forking for this process.
|
2017-07-27 10:45:22 +08:00
|
|
|
bool child_forked = false;
|
2017-07-28 02:47:25 +08:00
|
|
|
bool child_spawned = false;
|
2017-07-29 10:52:01 +08:00
|
|
|
bool block_child = true;
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// The pipes the current process write to and read from. Unfortunately these can't be just
|
|
|
|
// allocated on the stack, since j->io wants shared_ptr.
|
|
|
|
//
|
|
|
|
// The write pipe (destined for stdout) needs to occur before redirections. For example,
|
|
|
|
// with a redirection like this:
|
|
|
|
//
|
|
|
|
// `foo 2>&1 | bar`
|
|
|
|
//
|
|
|
|
// what we want to happen is this:
|
|
|
|
//
|
|
|
|
// dup2(pipe, stdout)
|
|
|
|
// dup2(stdout, stderr)
|
|
|
|
//
|
|
|
|
// so that stdout and stderr both wind up referencing the pipe.
|
|
|
|
//
|
|
|
|
// The read pipe (destined for stdin) is more ambiguous. Imagine a pipeline like this:
|
|
|
|
//
|
|
|
|
// echo alpha | cat < beta.txt
|
|
|
|
//
|
|
|
|
// Should cat output alpha or beta? bash and ksh output 'beta', tcsh gets it right and
|
|
|
|
// complains about ambiguity, and zsh outputs both (!). No shells appear to output 'alpha',
|
|
|
|
// so we match bash here. That would mean putting the pipe first, so that it gets trumped by
|
|
|
|
// the file redirection.
|
|
|
|
//
|
|
|
|
// However, eval does this:
|
|
|
|
//
|
|
|
|
// echo "begin; $argv "\n" ;end <&3 3<&-" | source 3<&0
|
|
|
|
//
|
|
|
|
// which depends on the redirection being evaluated before the pipe. So the write end of the
|
|
|
|
// pipe comes first, the read pipe of the pipe comes last. See issue #966.
|
2013-02-05 12:29:44 +08:00
|
|
|
shared_ptr<io_pipe_t> pipe_write;
|
|
|
|
shared_ptr<io_pipe_t> pipe_read;
|
2013-02-04 20:07:16 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Write pipe goes first.
|
2017-01-24 01:28:34 +08:00
|
|
|
if (pipes_to_next_command) {
|
2013-02-05 12:29:44 +08:00
|
|
|
pipe_write.reset(new io_pipe_t(p->pipe_write_fd, false));
|
Big fat refactoring of how redirections work. In fish 1.x and 2.0.0, the redirections for a process were flattened into a big list associated with the job, so there was no way to tell which redirections applied to each process. Each process therefore got all the redirections associated with the job. See https://github.com/fish-shell/fish-shell/issues/877 for how this could manifest.
With this change, jobs only track their block-level redirections. Process level redirections are correctly associated with the process, and at exec time we stitch them together (block, pipe, and process redirects).
This fixes the weird issues where redirects bleed across pipelines (like #877), and also allows us to play with the order in which redirections are applied, since the final list is constructed right before it's needed. This lets us put pipes after block level redirections but before process level redirections, so that a 2>&1-type redirection gets picked up after the pipe, i.e. it should fix https://github.com/fish-shell/fish-shell/issues/110
This is a significant change. The tests all pass. Cross your fingers.
2013-08-20 07:16:41 +08:00
|
|
|
process_net_io_chain.push_back(pipe_write);
|
2013-02-04 20:07:16 +08:00
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// The explicit IO redirections associated with the process.
|
Big fat refactoring of how redirections work. In fish 1.x and 2.0.0, the redirections for a process were flattened into a big list associated with the job, so there was no way to tell which redirections applied to each process. Each process therefore got all the redirections associated with the job. See https://github.com/fish-shell/fish-shell/issues/877 for how this could manifest.
With this change, jobs only track their block-level redirections. Process level redirections are correctly associated with the process, and at exec time we stitch them together (block, pipe, and process redirects).
This fixes the weird issues where redirects bleed across pipelines (like #877), and also allows us to play with the order in which redirections are applied, since the final list is constructed right before it's needed. This lets us put pipes after block level redirections but before process level redirections, so that a 2>&1-type redirection gets picked up after the pipe, i.e. it should fix https://github.com/fish-shell/fish-shell/issues/110
This is a significant change. The tests all pass. Cross your fingers.
2013-08-20 07:16:41 +08:00
|
|
|
process_net_io_chain.append(p->io_chain());
|
2013-10-27 06:27:39 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Read pipe goes last.
|
2017-01-27 12:00:43 +08:00
|
|
|
if (!p->is_first_in_job) {
|
2013-08-22 04:46:11 +08:00
|
|
|
pipe_read.reset(new io_pipe_t(p->pipe_read_fd, true));
|
2016-04-29 10:41:54 +08:00
|
|
|
// Record the current read in pipe_read.
|
2013-08-22 04:46:11 +08:00
|
|
|
pipe_read->pipe_fd[0] = pipe_current_read;
|
|
|
|
process_net_io_chain.push_back(pipe_read);
|
|
|
|
}
|
2013-10-27 06:27:39 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// This call is used so the global environment variable array is regenerated, if needed,
|
|
|
|
// before the fork. That way, we avoid a lot of duplicate work where EVERY child would need
|
|
|
|
// to generate it, since that result would not get written back to the parent. This call
|
|
|
|
// could be safely removed, but it would result in slightly lower performance - at least on
|
|
|
|
// uniprocessor systems.
|
2017-01-27 04:03:14 +08:00
|
|
|
if (p->type == EXTERNAL) {
|
|
|
|
// Apply universal barrier so we have the most recent uvar changes
|
2017-01-27 12:00:43 +08:00
|
|
|
if (!get_proc_had_barrier()) {
|
2017-01-27 04:03:14 +08:00
|
|
|
set_proc_had_barrier(true);
|
|
|
|
env_universal_barrier();
|
|
|
|
}
|
|
|
|
env_export_arr();
|
|
|
|
}
|
Big fat refactoring of how redirections work. In fish 1.x and 2.0.0, the redirections for a process were flattened into a big list associated with the job, so there was no way to tell which redirections applied to each process. Each process therefore got all the redirections associated with the job. See https://github.com/fish-shell/fish-shell/issues/877 for how this could manifest.
With this change, jobs only track their block-level redirections. Process level redirections are correctly associated with the process, and at exec time we stitch them together (block, pipe, and process redirects).
This fixes the weird issues where redirects bleed across pipelines (like #877), and also allows us to play with the order in which redirections are applied, since the final list is constructed right before it's needed. This lets us put pipes after block level redirections but before process level redirections, so that a 2>&1-type redirection gets picked up after the pipe, i.e. it should fix https://github.com/fish-shell/fish-shell/issues/110
This is a significant change. The tests all pass. Cross your fingers.
2013-08-20 07:16:41 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Set up fds that will be used in the pipe.
|
|
|
|
if (pipes_to_next_command) {
|
|
|
|
// debug( 1, L"%ls|%ls" , p->argv[0], p->next->argv[0]);
|
2013-01-30 19:08:06 +08:00
|
|
|
int local_pipe[2] = {-1, -1};
|
2016-04-29 10:41:54 +08:00
|
|
|
if (exec_pipe(local_pipe) == -1) {
|
2012-11-19 08:30:30 +08:00
|
|
|
debug(1, PIPE_ERROR);
|
|
|
|
wperror(L"pipe");
|
|
|
|
exec_error = true;
|
2013-01-30 18:22:38 +08:00
|
|
|
job_mark_process_as_failed(j, p);
|
2012-11-19 08:30:30 +08:00
|
|
|
break;
|
|
|
|
}
|
2013-02-01 07:57:08 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Ensure our pipe fds not conflict with any fd redirections. E.g. if the process is
|
|
|
|
// like 'cat <&5' then fd 5 must not be used by the pipe.
|
|
|
|
if (!pipe_avoid_conflicts_with_io_chain(local_pipe, all_ios)) {
|
|
|
|
// We failed. The pipes were closed for us.
|
2015-01-08 10:07:06 +08:00
|
|
|
wperror(L"dup");
|
|
|
|
exec_error = true;
|
|
|
|
job_mark_process_as_failed(j, p);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// This tells the redirection about the fds, but the redirection does not close them.
|
2015-01-08 10:07:06 +08:00
|
|
|
assert(local_pipe[0] >= 0);
|
|
|
|
assert(local_pipe[1] >= 0);
|
2016-04-29 10:41:54 +08:00
|
|
|
memcpy(pipe_write->pipe_fd, local_pipe, sizeof(int) * 2);
|
2013-02-01 07:57:08 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Record our pipes. The fds should be negative to indicate that we aren't overwriting
|
|
|
|
// an fd we failed to close.
|
2013-01-30 19:08:06 +08:00
|
|
|
assert(pipe_current_write == -1);
|
|
|
|
pipe_current_write = local_pipe[1];
|
2013-02-01 07:57:08 +08:00
|
|
|
|
2013-01-30 19:08:06 +08:00
|
|
|
assert(pipe_next_read == -1);
|
|
|
|
pipe_next_read = local_pipe[0];
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// This is the IO buffer we use for storing the output of a block or function when it is in
|
|
|
|
// a pipeline.
|
Big fat refactoring of how redirections work. In fish 1.x and 2.0.0, the redirections for a process were flattened into a big list associated with the job, so there was no way to tell which redirections applied to each process. Each process therefore got all the redirections associated with the job. See https://github.com/fish-shell/fish-shell/issues/877 for how this could manifest.
With this change, jobs only track their block-level redirections. Process level redirections are correctly associated with the process, and at exec time we stitch them together (block, pipe, and process redirects).
This fixes the weird issues where redirects bleed across pipelines (like #877), and also allows us to play with the order in which redirections are applied, since the final list is constructed right before it's needed. This lets us put pipes after block level redirections but before process level redirections, so that a 2>&1-type redirection gets picked up after the pipe, i.e. it should fix https://github.com/fish-shell/fish-shell/issues/110
This is a significant change. The tests all pass. Cross your fingers.
2013-08-20 07:16:41 +08:00
|
|
|
shared_ptr<io_buffer_t> block_output_io_buffer;
|
2017-07-27 10:45:22 +08:00
|
|
|
|
2017-08-07 06:47:01 +08:00
|
|
|
// Used to SIGCONT the previously SIGSTOP'd process so the main loop or next command in job
|
|
|
|
// can read from its output.
|
|
|
|
auto unblock_previous = [&j]() {
|
|
|
|
// We've already called waitpid after forking the child, so we've guaranteed that
|
|
|
|
// they're already SIGSTOP'd. Otherwise we'd be risking a deadlock because we can call
|
|
|
|
// SIGCONT before they've actually stopped, and they'll remain suspended indefinitely.
|
2017-07-27 04:11:44 +08:00
|
|
|
if (blocked_pid != -1) {
|
2017-07-27 10:45:22 +08:00
|
|
|
debug(2, L"Unblocking process %d.\n", blocked_pid);
|
|
|
|
kill(blocked_pid, SIGCONT);
|
2017-07-30 02:00:29 +08:00
|
|
|
blocked_pid = -1;
|
2017-07-27 04:11:44 +08:00
|
|
|
}
|
|
|
|
};
|
2016-04-29 10:41:54 +08:00
|
|
|
|
|
|
|
// This is the io_streams we pass to internal builtins.
|
2017-07-27 11:17:04 +08:00
|
|
|
std::unique_ptr<io_streams_t> builtin_io_streams(new io_streams_t(stdout_read_limit));
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2017-08-07 07:05:51 +08:00
|
|
|
auto do_fork = [&j, &p, &pid, &exec_error, &process_net_io_chain, &block_child,
|
|
|
|
&child_forked](bool drain_threads, const char *fork_type,
|
|
|
|
std::function<void()> child_action) -> bool {
|
2017-07-31 06:27:02 +08:00
|
|
|
pid = execute_fork(drain_threads);
|
|
|
|
if (pid == 0) {
|
|
|
|
// This is the child process. Setup redirections, print correct output to
|
|
|
|
// stdout and stderr, and then exit.
|
|
|
|
p->pid = getpid();
|
|
|
|
blocked_pid = -1;
|
|
|
|
child_set_group(j, p);
|
2017-08-07 07:05:51 +08:00
|
|
|
// Make child processes pause after executing setup_child_process() to give
|
|
|
|
// down-chain commands in the job a chance to join their process group and read
|
|
|
|
// their pipes. The process will be resumed when the next command in the chain is
|
|
|
|
// started.
|
2017-07-31 06:27:02 +08:00
|
|
|
if (block_child) {
|
|
|
|
kill(p->pid, SIGSTOP);
|
|
|
|
}
|
2017-08-07 06:47:01 +08:00
|
|
|
// The parent will wake us up when we're ready to execute.
|
2017-07-31 06:27:02 +08:00
|
|
|
setup_child_process(p, process_net_io_chain);
|
|
|
|
child_action();
|
|
|
|
DIE("Child process returned control to do_fork lambda!");
|
2017-08-07 07:05:51 +08:00
|
|
|
} else {
|
2017-07-31 06:27:02 +08:00
|
|
|
if (pid < 0) {
|
|
|
|
debug(1, L"Failed to fork %s!\n", fork_type);
|
|
|
|
job_mark_process_as_failed(j, p);
|
|
|
|
exec_error = true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
// This is the parent process. Store away information on the child, and
|
|
|
|
// possibly give it control over the terminal.
|
2017-08-07 07:05:51 +08:00
|
|
|
debug(2, L"Fork #%d, pid %d: %s for '%ls'", g_fork_count, pid, fork_type,
|
|
|
|
p->argv0());
|
2017-07-31 06:27:02 +08:00
|
|
|
child_forked = true;
|
|
|
|
if (block_child) {
|
|
|
|
debug(2, L"Blocking process %d waiting for next command in chain.\n", pid);
|
|
|
|
}
|
|
|
|
p->pid = pid;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
};
|
|
|
|
|
2017-08-07 06:47:01 +08:00
|
|
|
// Helper routine executed by INTERNAL_FUNCTION and INTERNAL_BLOCK_NODE to make sure an
|
|
|
|
// output buffer exists in case there is another command in the job chain that will be
|
|
|
|
// reading from this command's output.
|
2017-08-07 07:05:51 +08:00
|
|
|
auto verify_buffer_output = [&]() {
|
2017-08-03 06:02:22 +08:00
|
|
|
if (!p->is_last_in_job) {
|
|
|
|
// Be careful to handle failure, e.g. too many open fds.
|
|
|
|
block_output_io_buffer = io_buffer_t::create(STDOUT_FILENO, all_ios);
|
|
|
|
if (block_output_io_buffer.get() == NULL) {
|
|
|
|
exec_error = true;
|
|
|
|
job_mark_process_as_failed(j, p);
|
|
|
|
} else {
|
|
|
|
// This looks sketchy, because we're adding this io buffer locally - they
|
|
|
|
// aren't in the process or job redirection list. Therefore select_try won't
|
|
|
|
// be able to read them. However we call block_output_io_buffer->read()
|
|
|
|
// below, which reads until EOF. So there's no need to select on this.
|
|
|
|
process_net_io_chain.push_back(block_output_io_buffer);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
switch (p->type) {
|
|
|
|
case INTERNAL_FUNCTION: {
|
2015-08-16 04:37:17 +08:00
|
|
|
const wcstring func_name = p->argv0();
|
2013-01-30 18:22:38 +08:00
|
|
|
wcstring def;
|
2015-08-16 04:37:17 +08:00
|
|
|
bool function_exists = function_get_definition(func_name, &def);
|
2016-05-09 06:57:56 +08:00
|
|
|
bool shadow_scope = function_get_shadow_scope(func_name);
|
2016-04-29 10:41:54 +08:00
|
|
|
const std::map<wcstring, env_var_t> inherit_vars =
|
|
|
|
function_get_inherit_vars(func_name);
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
if (!function_exists) {
|
2012-11-19 16:31:03 +08:00
|
|
|
debug(0, _(L"Unknown function '%ls'"), p->argv0());
|
|
|
|
break;
|
|
|
|
}
|
2017-01-22 07:35:35 +08:00
|
|
|
|
2017-01-27 12:00:43 +08:00
|
|
|
function_block_t *fb =
|
|
|
|
parser.push_block<function_block_t>(p, func_name, shadow_scope);
|
2016-04-29 10:41:54 +08:00
|
|
|
function_prepare_environment(func_name, p->get_argv() + 1, inherit_vars);
|
2015-08-16 04:37:17 +08:00
|
|
|
parser.forbid_function(func_name);
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2017-08-03 06:02:22 +08:00
|
|
|
verify_buffer_output();
|
2013-02-01 07:57:08 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
if (!exec_error) {
|
|
|
|
internal_exec_helper(parser, def, NODE_OFFSET_INVALID, TOP,
|
|
|
|
process_net_io_chain);
|
2012-11-19 16:31:03 +08:00
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2012-11-19 16:31:03 +08:00
|
|
|
parser.allow_function();
|
2017-01-22 07:35:35 +08:00
|
|
|
parser.pop_block(fb);
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2012-11-19 16:31:03 +08:00
|
|
|
break;
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
case INTERNAL_BLOCK_NODE: {
|
2017-08-03 06:02:22 +08:00
|
|
|
verify_buffer_output();
|
2013-02-01 07:57:08 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
if (!exec_error) {
|
|
|
|
internal_exec_helper(parser, wcstring(), p->internal_block_node, TOP,
|
|
|
|
process_net_io_chain);
|
2012-11-19 16:31:03 +08:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2014-01-15 17:40:40 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
case INTERNAL_BUILTIN: {
|
2015-01-09 02:44:05 +08:00
|
|
|
int local_builtin_stdin = STDIN_FILENO;
|
2013-08-19 07:55:01 +08:00
|
|
|
bool close_stdin = false;
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// If this is the first process, check the io redirections and see where we should
|
|
|
|
// be reading from.
|
2017-01-24 01:28:34 +08:00
|
|
|
if (p->is_first_in_job) {
|
2016-04-29 10:41:54 +08:00
|
|
|
const shared_ptr<const io_data_t> in =
|
|
|
|
process_net_io_chain.get_io_for_fd(STDIN_FILENO);
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
if (in) {
|
|
|
|
switch (in->io_mode) {
|
|
|
|
case IO_FD: {
|
2016-07-31 03:01:37 +08:00
|
|
|
const io_fd_t *in_fd = static_cast<const io_fd_t *>(in.get());
|
2016-04-29 10:41:54 +08:00
|
|
|
// Ignore user-supplied fd redirections from an fd other than the
|
|
|
|
// standard ones. e.g. in source <&3 don't actually read from fd 3,
|
|
|
|
// which is internal to fish. We still respect this redirection in
|
|
|
|
// that we pass it on as a block IO to the code that source runs,
|
|
|
|
// and therefore this is not an error. Non-user supplied fd
|
|
|
|
// redirections come about through transmogrification, and we need
|
|
|
|
// to respect those here.
|
|
|
|
if (!in_fd->user_supplied ||
|
|
|
|
(in_fd->old_fd >= 0 && in_fd->old_fd < 3)) {
|
2015-01-09 02:44:05 +08:00
|
|
|
local_builtin_stdin = in_fd->old_fd;
|
|
|
|
}
|
2012-11-19 16:31:03 +08:00
|
|
|
break;
|
|
|
|
}
|
2016-04-29 10:41:54 +08:00
|
|
|
case IO_PIPE: {
|
2016-07-31 03:01:37 +08:00
|
|
|
const io_pipe_t *in_pipe = static_cast<const io_pipe_t *>(in.get());
|
2015-01-08 10:07:06 +08:00
|
|
|
local_builtin_stdin = in_pipe->pipe_fd[0];
|
2012-11-19 16:31:03 +08:00
|
|
|
break;
|
|
|
|
}
|
2016-04-29 10:41:54 +08:00
|
|
|
case IO_FILE: {
|
|
|
|
// Do not set CLO_EXEC because child needs access.
|
2016-07-31 03:01:37 +08:00
|
|
|
const io_file_t *in_file = static_cast<const io_file_t *>(in.get());
|
2016-04-29 10:41:54 +08:00
|
|
|
local_builtin_stdin =
|
|
|
|
open(in_file->filename_cstr, in_file->flags, OPEN_MASK);
|
|
|
|
if (local_builtin_stdin == -1) {
|
|
|
|
debug(1, FILE_ERROR, in_file->filename_cstr);
|
2012-11-19 16:31:03 +08:00
|
|
|
wperror(L"open");
|
2016-04-29 10:41:54 +08:00
|
|
|
} else {
|
2013-08-19 07:55:01 +08:00
|
|
|
close_stdin = true;
|
2012-11-19 16:31:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
2016-04-29 10:41:54 +08:00
|
|
|
case IO_CLOSE: {
|
|
|
|
// FIXME: When requesting that stdin be closed, we really don't do
|
|
|
|
// anything. How should this be handled?
|
2015-01-08 10:07:06 +08:00
|
|
|
local_builtin_stdin = -1;
|
2012-11-19 16:31:03 +08:00
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
2016-04-29 10:41:54 +08:00
|
|
|
default: {
|
|
|
|
local_builtin_stdin = -1;
|
|
|
|
debug(1, _(L"Unknown input redirection type %d"), in->io_mode);
|
2012-11-19 16:31:03 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
2016-04-29 10:41:54 +08:00
|
|
|
} else {
|
2015-01-08 10:07:06 +08:00
|
|
|
local_builtin_stdin = pipe_read->pipe_fd[0];
|
2012-11-19 16:31:03 +08:00
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
if (local_builtin_stdin == -1) {
|
2012-11-19 16:31:03 +08:00
|
|
|
exec_error = true;
|
|
|
|
break;
|
2016-04-29 10:41:54 +08:00
|
|
|
} else {
|
|
|
|
// Determine if we have a "direct" redirection for stdin.
|
2015-09-26 05:17:53 +08:00
|
|
|
bool stdin_is_directly_redirected;
|
2017-01-27 12:00:43 +08:00
|
|
|
if (!p->is_first_in_job) {
|
2015-09-26 05:17:53 +08:00
|
|
|
// We must have a pipe
|
|
|
|
stdin_is_directly_redirected = true;
|
2016-04-29 10:41:54 +08:00
|
|
|
} else {
|
|
|
|
// We are not a pipe. Check if there is a redirection local to the process
|
|
|
|
// that's not IO_CLOSE.
|
|
|
|
const shared_ptr<const io_data_t> stdin_io =
|
|
|
|
io_chain_get(p->io_chain(), STDIN_FILENO);
|
2015-09-26 05:17:53 +08:00
|
|
|
stdin_is_directly_redirected = stdin_io && stdin_io->io_mode != IO_CLOSE;
|
|
|
|
}
|
2016-04-29 10:41:54 +08:00
|
|
|
|
2015-09-22 02:24:49 +08:00
|
|
|
builtin_io_streams->stdin_fd = local_builtin_stdin;
|
2016-04-29 10:41:54 +08:00
|
|
|
builtin_io_streams->out_is_redirected =
|
|
|
|
has_fd(process_net_io_chain, STDOUT_FILENO);
|
|
|
|
builtin_io_streams->err_is_redirected =
|
|
|
|
has_fd(process_net_io_chain, STDERR_FILENO);
|
2015-09-26 05:17:53 +08:00
|
|
|
builtin_io_streams->stdin_is_directly_redirected = stdin_is_directly_redirected;
|
2015-09-22 02:24:49 +08:00
|
|
|
builtin_io_streams->io_chain = &process_net_io_chain;
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Since this may be the foreground job, and since a builtin may execute another
|
|
|
|
// foreground job, we need to pretend to suspend this job while running the
|
|
|
|
// builtin, in order to avoid a situation where two jobs are running at once.
|
|
|
|
//
|
|
|
|
// The reason this is done here, and not by the relevant builtins, is that this
|
|
|
|
// way, the builtin does not need to know what job it is part of. It could
|
|
|
|
// probably figure that out by walking the job list, but it seems more robust to
|
|
|
|
// make exec handle things.
|
2017-01-27 07:06:58 +08:00
|
|
|
const int fg = j->get_flag(JOB_FOREGROUND);
|
|
|
|
j->set_flag(JOB_FOREGROUND, false);
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2017-08-07 06:47:01 +08:00
|
|
|
// Main loop may need to perform a blocking read from previous command's output.
|
|
|
|
// Make sure read source is not blocked.
|
2017-07-27 04:11:44 +08:00
|
|
|
unblock_previous();
|
2015-09-22 02:24:49 +08:00
|
|
|
p->status = builtin_run(parser, p->get_argv(), *builtin_io_streams);
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Restore the fg flag, which is temporarily set to false during builtin
|
|
|
|
// execution so as not to confuse some job-handling builtins.
|
2017-01-27 07:06:58 +08:00
|
|
|
j->set_flag(JOB_FOREGROUND, fg);
|
2012-11-19 16:31:03 +08:00
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// If stdin has been redirected, close the redirection stream.
|
|
|
|
if (close_stdin) {
|
2015-01-08 10:07:06 +08:00
|
|
|
exec_close(local_builtin_stdin);
|
2012-11-19 16:31:03 +08:00
|
|
|
}
|
|
|
|
break;
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
2014-01-15 17:40:40 +08:00
|
|
|
|
2014-01-02 07:49:41 +08:00
|
|
|
case EXTERNAL:
|
2016-04-29 10:41:54 +08:00
|
|
|
// External commands are handled in the next switch statement below.
|
2014-01-02 07:49:41 +08:00
|
|
|
break;
|
2014-01-15 17:40:40 +08:00
|
|
|
|
2014-01-02 07:49:41 +08:00
|
|
|
case INTERNAL_EXEC:
|
2016-04-29 10:41:54 +08:00
|
|
|
// We should have handled exec up above.
|
2016-11-02 12:19:34 +08:00
|
|
|
DIE("INTERNAL_EXEC process found in pipeline, where it should never be. Aborting.");
|
2016-11-02 13:36:30 +08:00
|
|
|
break;
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
if (exec_error) {
|
2012-11-19 08:30:30 +08:00
|
|
|
break;
|
2012-11-18 18:23:22 +08:00
|
|
|
}
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
switch (p->type) {
|
2013-12-27 17:38:43 +08:00
|
|
|
case INTERNAL_BLOCK_NODE:
|
2016-04-29 10:41:54 +08:00
|
|
|
case INTERNAL_FUNCTION: {
|
2012-11-19 16:31:03 +08:00
|
|
|
int status = proc_get_last_status();
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Handle output from a block or function. This usually means do nothing, but in the
|
|
|
|
// case of pipes, we have to buffer such io, since otherwise the internal pipe
|
|
|
|
// buffer might overflow.
|
|
|
|
if (!block_output_io_buffer.get()) {
|
|
|
|
// No buffer, so we exit directly. This means we have to manually set the exit
|
|
|
|
// status.
|
2017-01-24 01:28:34 +08:00
|
|
|
if (p->is_last_in_job) {
|
2017-01-27 07:06:58 +08:00
|
|
|
proc_set_last_status(j->get_flag(JOB_NEGATE) ? (!status) : status);
|
2012-11-19 16:31:03 +08:00
|
|
|
}
|
|
|
|
p->completed = 1;
|
|
|
|
break;
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
2012-11-19 16:31:03 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Here we must have a non-NULL block_output_io_buffer.
|
Big fat refactoring of how redirections work. In fish 1.x and 2.0.0, the redirections for a process were flattened into a big list associated with the job, so there was no way to tell which redirections applied to each process. Each process therefore got all the redirections associated with the job. See https://github.com/fish-shell/fish-shell/issues/877 for how this could manifest.
With this change, jobs only track their block-level redirections. Process level redirections are correctly associated with the process, and at exec time we stitch them together (block, pipe, and process redirects).
This fixes the weird issues where redirects bleed across pipelines (like #877), and also allows us to play with the order in which redirections are applied, since the final list is constructed right before it's needed. This lets us put pipes after block level redirections but before process level redirections, so that a 2>&1-type redirection gets picked up after the pipe, i.e. it should fix https://github.com/fish-shell/fish-shell/issues/110
This is a significant change. The tests all pass. Cross your fingers.
2013-08-20 07:16:41 +08:00
|
|
|
assert(block_output_io_buffer.get() != NULL);
|
2014-04-12 00:50:12 +08:00
|
|
|
process_net_io_chain.remove(block_output_io_buffer);
|
2012-11-19 16:31:03 +08:00
|
|
|
|
Big fat refactoring of how redirections work. In fish 1.x and 2.0.0, the redirections for a process were flattened into a big list associated with the job, so there was no way to tell which redirections applied to each process. Each process therefore got all the redirections associated with the job. See https://github.com/fish-shell/fish-shell/issues/877 for how this could manifest.
With this change, jobs only track their block-level redirections. Process level redirections are correctly associated with the process, and at exec time we stitch them together (block, pipe, and process redirects).
This fixes the weird issues where redirects bleed across pipelines (like #877), and also allows us to play with the order in which redirections are applied, since the final list is constructed right before it's needed. This lets us put pipes after block level redirections but before process level redirections, so that a 2>&1-type redirection gets picked up after the pipe, i.e. it should fix https://github.com/fish-shell/fish-shell/issues/110
This is a significant change. The tests all pass. Cross your fingers.
2013-08-20 07:16:41 +08:00
|
|
|
block_output_io_buffer->read();
|
2012-11-19 16:31:03 +08:00
|
|
|
|
Big fat refactoring of how redirections work. In fish 1.x and 2.0.0, the redirections for a process were flattened into a big list associated with the job, so there was no way to tell which redirections applied to each process. Each process therefore got all the redirections associated with the job. See https://github.com/fish-shell/fish-shell/issues/877 for how this could manifest.
With this change, jobs only track their block-level redirections. Process level redirections are correctly associated with the process, and at exec time we stitch them together (block, pipe, and process redirects).
This fixes the weird issues where redirects bleed across pipelines (like #877), and also allows us to play with the order in which redirections are applied, since the final list is constructed right before it's needed. This lets us put pipes after block level redirections but before process level redirections, so that a 2>&1-type redirection gets picked up after the pipe, i.e. it should fix https://github.com/fish-shell/fish-shell/issues/110
This is a significant change. The tests all pass. Cross your fingers.
2013-08-20 07:16:41 +08:00
|
|
|
const char *buffer = block_output_io_buffer->out_buffer_ptr();
|
|
|
|
size_t count = block_output_io_buffer->out_buffer_size();
|
2012-11-19 16:31:03 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
if (block_output_io_buffer->out_buffer_size() > 0) {
|
|
|
|
// We don't have to drain threads here because our child process is simple.
|
2017-07-31 06:27:02 +08:00
|
|
|
if (!do_fork(false, "internal block or function", [&] {
|
|
|
|
exec_write_and_exit(block_output_io_buffer->fd, buffer, count, status);
|
|
|
|
})) {
|
|
|
|
break;
|
2012-11-19 16:31:03 +08:00
|
|
|
}
|
2016-04-29 10:41:54 +08:00
|
|
|
} else {
|
2017-01-24 01:28:34 +08:00
|
|
|
if (p->is_last_in_job) {
|
2017-01-27 07:06:58 +08:00
|
|
|
proc_set_last_status(j->get_flag(JOB_NEGATE) ? (!status) : status);
|
2012-11-19 16:31:03 +08:00
|
|
|
}
|
|
|
|
p->completed = 1;
|
|
|
|
}
|
|
|
|
|
Big fat refactoring of how redirections work. In fish 1.x and 2.0.0, the redirections for a process were flattened into a big list associated with the job, so there was no way to tell which redirections applied to each process. Each process therefore got all the redirections associated with the job. See https://github.com/fish-shell/fish-shell/issues/877 for how this could manifest.
With this change, jobs only track their block-level redirections. Process level redirections are correctly associated with the process, and at exec time we stitch them together (block, pipe, and process redirects).
This fixes the weird issues where redirects bleed across pipelines (like #877), and also allows us to play with the order in which redirections are applied, since the final list is constructed right before it's needed. This lets us put pipes after block level redirections but before process level redirections, so that a 2>&1-type redirection gets picked up after the pipe, i.e. it should fix https://github.com/fish-shell/fish-shell/issues/110
This is a significant change. The tests all pass. Cross your fingers.
2013-08-20 07:16:41 +08:00
|
|
|
block_output_io_buffer.reset();
|
2012-11-19 08:30:30 +08:00
|
|
|
break;
|
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
case INTERNAL_BUILTIN: {
|
|
|
|
// Handle output from builtin commands. In the general case, this means forking of a
|
|
|
|
// worker process, that will write out the contents of the stdout and stderr buffers
|
|
|
|
// to the correct file descriptor. Since forking is expensive, fish tries to avoid
|
|
|
|
// it when possible.
|
2013-06-17 14:26:43 +08:00
|
|
|
bool fork_was_skipped = false;
|
2013-10-27 06:27:39 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
const shared_ptr<io_data_t> stdout_io =
|
|
|
|
process_net_io_chain.get_io_for_fd(STDOUT_FILENO);
|
|
|
|
const shared_ptr<io_data_t> stderr_io =
|
|
|
|
process_net_io_chain.get_io_for_fd(STDERR_FILENO);
|
|
|
|
|
2015-09-22 02:24:49 +08:00
|
|
|
assert(builtin_io_streams.get() != NULL);
|
|
|
|
const wcstring &stdout_buffer = builtin_io_streams->out.buffer();
|
|
|
|
const wcstring &stderr_buffer = builtin_io_streams->err.buffer();
|
2013-10-27 06:27:39 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// If we are outputting to a file, we have to actually do it, even if we have no
|
|
|
|
// output, so that we can truncate the file. Does not apply to /dev/null.
|
|
|
|
bool must_fork = redirection_is_to_real_file(stdout_io.get()) ||
|
|
|
|
redirection_is_to_real_file(stderr_io.get());
|
2017-07-28 06:33:17 +08:00
|
|
|
if (!must_fork && p->is_last_in_job) {
|
2017-08-07 06:47:01 +08:00
|
|
|
// We are handling reads directly in the main loop. Make sure source is
|
|
|
|
// unblocked. Note that we may still end up forking.
|
2017-07-27 04:11:44 +08:00
|
|
|
unblock_previous();
|
2016-10-23 02:21:13 +08:00
|
|
|
const bool stdout_is_to_buffer = stdout_io && stdout_io->io_mode == IO_BUFFER;
|
|
|
|
const bool no_stdout_output = stdout_buffer.empty();
|
|
|
|
const bool no_stderr_output = stderr_buffer.empty();
|
2017-07-27 11:17:04 +08:00
|
|
|
const bool stdout_discarded = builtin_io_streams->out.output_discarded();
|
2016-10-23 02:21:13 +08:00
|
|
|
|
2017-07-27 11:17:04 +08:00
|
|
|
if (!stdout_discarded && no_stdout_output && no_stderr_output) {
|
2016-10-23 02:21:13 +08:00
|
|
|
// The builtin produced no output and is not inside of a pipeline. No
|
|
|
|
// need to fork or even output anything.
|
|
|
|
debug(3, L"Skipping fork: no output for internal builtin '%ls'",
|
|
|
|
p->argv0());
|
|
|
|
fork_was_skipped = true;
|
|
|
|
} else if (no_stderr_output && stdout_is_to_buffer) {
|
|
|
|
// The builtin produced no stderr, and its stdout is going to an
|
|
|
|
// internal buffer. There is no need to fork. This helps out the
|
|
|
|
// performance quite a bit in complex completion code.
|
|
|
|
debug(3, L"Skipping fork: buffered output for internal builtin '%ls'",
|
|
|
|
p->argv0());
|
|
|
|
|
|
|
|
io_buffer_t *io_buffer = static_cast<io_buffer_t *>(stdout_io.get());
|
2017-07-27 11:17:04 +08:00
|
|
|
if (stdout_discarded) {
|
|
|
|
io_buffer->set_discard();
|
|
|
|
} else {
|
|
|
|
const std::string res = wcs2string(builtin_io_streams->out.buffer());
|
|
|
|
io_buffer->out_buffer_append(res.data(), res.size());
|
|
|
|
}
|
2016-10-23 02:21:13 +08:00
|
|
|
fork_was_skipped = true;
|
|
|
|
} else if (stdout_io.get() == NULL && stderr_io.get() == NULL) {
|
2017-07-27 11:17:04 +08:00
|
|
|
// We are writing to normal stdout and stderr. Just do it - no need to fork.
|
2016-10-23 02:21:13 +08:00
|
|
|
debug(3, L"Skipping fork: ordinary output for internal builtin '%ls'",
|
|
|
|
p->argv0());
|
|
|
|
const std::string outbuff = wcs2string(stdout_buffer);
|
|
|
|
const std::string errbuff = wcs2string(stderr_buffer);
|
|
|
|
bool builtin_io_done = do_builtin_io(outbuff.data(), outbuff.size(),
|
|
|
|
errbuff.data(), errbuff.size());
|
|
|
|
if (!builtin_io_done && errno != EPIPE) {
|
2017-01-16 11:27:53 +08:00
|
|
|
redirect_tty_output(); // workaround glibc bug
|
|
|
|
debug(0, "!builtin_io_done and errno != EPIPE");
|
2016-10-23 02:21:13 +08:00
|
|
|
show_stackframe(L'E');
|
2013-02-23 05:20:27 +08:00
|
|
|
}
|
2017-07-27 11:17:04 +08:00
|
|
|
if (stdout_discarded) p->status = STATUS_READ_TOO_MUCH;
|
2016-10-23 02:21:13 +08:00
|
|
|
fork_was_skipped = true;
|
2012-11-19 16:31:03 +08:00
|
|
|
}
|
2012-03-09 15:21:07 +08:00
|
|
|
}
|
2013-10-27 06:27:39 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
if (fork_was_skipped) {
|
|
|
|
p->completed = 1;
|
2017-01-24 01:28:34 +08:00
|
|
|
if (p->is_last_in_job) {
|
2016-04-29 10:41:54 +08:00
|
|
|
debug(3, L"Set status of %ls to %d using short circuit", j->command_wcstr(),
|
|
|
|
p->status);
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2012-11-19 16:31:03 +08:00
|
|
|
int status = p->status;
|
2017-01-27 07:06:58 +08:00
|
|
|
proc_set_last_status(j->get_flag(JOB_NEGATE) ? (!status) : status);
|
2012-11-19 16:31:03 +08:00
|
|
|
}
|
2016-04-29 10:41:54 +08:00
|
|
|
} else {
|
|
|
|
// Ok, unfortunately, we have to do a real fork. Bummer. We work hard to make
|
|
|
|
// sure we don't have to wait for all our threads to exit, by arranging things
|
|
|
|
// so that we don't have to allocate memory or do anything except system calls
|
|
|
|
// in the child.
|
|
|
|
//
|
|
|
|
// These strings may contain embedded nulls, so don't treat them as C strings.
|
2015-09-22 02:24:49 +08:00
|
|
|
const std::string outbuff_str = wcs2string(stdout_buffer);
|
2013-06-17 14:26:43 +08:00
|
|
|
const char *outbuff = outbuff_str.data();
|
|
|
|
size_t outbuff_len = outbuff_str.size();
|
2012-12-20 05:31:06 +08:00
|
|
|
|
2015-09-22 02:24:49 +08:00
|
|
|
const std::string errbuff_str = wcs2string(stderr_buffer);
|
2013-06-17 14:26:43 +08:00
|
|
|
const char *errbuff = errbuff_str.data();
|
|
|
|
size_t errbuff_len = errbuff_str.size();
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2013-06-17 14:26:43 +08:00
|
|
|
fflush(stdout);
|
|
|
|
fflush(stderr);
|
2017-07-31 06:27:02 +08:00
|
|
|
if (!do_fork(false, "internal builtin", [&] {
|
|
|
|
do_builtin_io(outbuff, outbuff_len, errbuff, errbuff_len);
|
|
|
|
exit_without_destructors(p->status);
|
|
|
|
})) {
|
|
|
|
break;
|
2013-06-17 14:26:43 +08:00
|
|
|
}
|
2012-11-19 16:31:03 +08:00
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2012-11-19 16:31:03 +08:00
|
|
|
break;
|
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
case EXTERNAL: {
|
|
|
|
// Get argv and envv before we fork.
|
2013-02-23 08:22:56 +08:00
|
|
|
null_terminated_array_t<char> argv_array;
|
|
|
|
convert_wide_array_to_narrow(p->get_argv_array(), &argv_array);
|
2013-05-05 17:33:17 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Ensure that stdin is blocking before we hand it off (see issue #176). It's a
|
|
|
|
// little strange that we only do this with stdin and not with stdout or stderr.
|
|
|
|
// However in practice, setting or clearing O_NONBLOCK on stdin also sets it for the
|
|
|
|
// other two fds, presumably because they refer to the same underlying file
|
|
|
|
// (/dev/tty?).
|
2013-04-08 03:40:08 +08:00
|
|
|
make_fd_blocking(STDIN_FILENO);
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
const char *const *argv = argv_array.get();
|
2017-01-27 04:03:14 +08:00
|
|
|
const char *const *envv = env_export_arr();
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2012-11-19 16:31:03 +08:00
|
|
|
std::string actual_cmd_str = wcs2string(p->actual_cmd);
|
|
|
|
const char *actual_cmd = actual_cmd_str.c_str();
|
2016-05-06 11:05:45 +08:00
|
|
|
const wchar_t *file = reader_current_filename();
|
2012-11-19 08:30:30 +08:00
|
|
|
|
|
|
|
#if FISH_USE_POSIX_SPAWN
|
2016-04-29 10:41:54 +08:00
|
|
|
// Prefer to use posix_spawn, since it's faster on some systems like OS X.
|
2012-11-19 16:31:03 +08:00
|
|
|
bool use_posix_spawn = g_use_posix_spawn && can_use_posix_spawn_for_job(j, p);
|
2016-04-29 10:41:54 +08:00
|
|
|
if (use_posix_spawn) {
|
2016-05-06 11:05:45 +08:00
|
|
|
g_fork_count++; // spawn counts as a fork+exec
|
2016-04-29 10:41:54 +08:00
|
|
|
// Create posix spawn attributes and actions.
|
2012-11-19 16:31:03 +08:00
|
|
|
posix_spawnattr_t attr = posix_spawnattr_t();
|
|
|
|
posix_spawn_file_actions_t actions = posix_spawn_file_actions_t();
|
2016-04-29 10:41:54 +08:00
|
|
|
bool made_it = fork_actions_make_spawn_properties(&attr, &actions, j, p,
|
|
|
|
process_net_io_chain);
|
|
|
|
if (made_it) {
|
|
|
|
// We successfully made the attributes and actions; actually call
|
|
|
|
// posix_spawn.
|
|
|
|
int spawn_ret = posix_spawn(&pid, actual_cmd, &actions, &attr,
|
|
|
|
const_cast<char *const *>(argv),
|
|
|
|
const_cast<char *const *>(envv));
|
|
|
|
|
|
|
|
// This usleep can be used to test for various race conditions
|
|
|
|
// (https://github.com/fish-shell/fish-shell/issues/360).
|
|
|
|
// usleep(10000);
|
|
|
|
|
|
|
|
if (spawn_ret != 0) {
|
2012-11-19 16:31:03 +08:00
|
|
|
safe_report_exec_error(spawn_ret, actual_cmd, argv, envv);
|
2016-04-29 10:41:54 +08:00
|
|
|
// Make sure our pid isn't set.
|
2012-11-19 16:31:03 +08:00
|
|
|
pid = 0;
|
|
|
|
}
|
2012-11-19 08:30:30 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Clean up our actions.
|
2012-11-19 16:31:03 +08:00
|
|
|
posix_spawn_file_actions_destroy(&actions);
|
|
|
|
posix_spawnattr_destroy(&attr);
|
|
|
|
}
|
2012-11-19 08:30:30 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// A 0 pid means we failed to posix_spawn. Since we have no pid, we'll never get
|
|
|
|
// told when it's exited, so we have to mark the process as failed.
|
2016-05-20 10:27:22 +08:00
|
|
|
debug(2, L"Fork #%d, pid %d: spawn external command '%s' from '%ls'",
|
2016-05-06 11:05:45 +08:00
|
|
|
g_fork_count, pid, actual_cmd, file ? file : L"<no file>");
|
2016-04-29 10:41:54 +08:00
|
|
|
if (pid == 0) {
|
2012-11-19 16:31:03 +08:00
|
|
|
job_mark_process_as_failed(j, p);
|
|
|
|
exec_error = true;
|
2017-08-07 07:05:51 +08:00
|
|
|
} else {
|
2017-07-28 02:47:25 +08:00
|
|
|
child_spawned = true;
|
|
|
|
}
|
2016-04-29 10:41:54 +08:00
|
|
|
} else
|
2012-08-15 15:57:56 +08:00
|
|
|
#endif
|
|
|
|
{
|
2017-08-07 07:05:51 +08:00
|
|
|
if (!do_fork(false, "external command",
|
|
|
|
[&] { safe_launch_process(p, actual_cmd, argv, envv); })) {
|
2017-07-31 06:27:02 +08:00
|
|
|
break;
|
2013-01-30 18:22:38 +08:00
|
|
|
}
|
2012-03-08 03:35:22 +08:00
|
|
|
}
|
2005-09-20 21:26:39 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// This is the parent process. Store away information on the child, and possibly
|
|
|
|
// fice it control over the terminal.
|
2012-11-19 16:31:03 +08:00
|
|
|
p->pid = pid;
|
|
|
|
break;
|
|
|
|
}
|
2014-01-15 17:40:40 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
case INTERNAL_EXEC: {
|
|
|
|
// We should have handled exec up above.
|
2016-11-02 12:19:34 +08:00
|
|
|
DIE("INTERNAL_EXEC process found in pipeline, where it should never be. Aborting.");
|
2016-11-02 13:36:30 +08:00
|
|
|
break;
|
2014-01-02 07:49:41 +08:00
|
|
|
}
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2017-07-29 10:52:01 +08:00
|
|
|
bool child_blocked = block_child && child_forked;
|
2017-07-28 06:12:51 +08:00
|
|
|
if (child_blocked) {
|
2017-08-07 06:47:01 +08:00
|
|
|
// We have to wait to ensure the child has set their progress group and is in SIGSTOP
|
|
|
|
// state otherwise, we can later call SIGCONT before they call SIGSTOP and they'll be
|
|
|
|
// blocked indefinitely. The child is SIGSTOP'd and is guaranteed to have called
|
|
|
|
// child_set_group() at this point. but we only need to call set_child_group for the
|
|
|
|
// first process in the group. If needs_keepalive is set, this has already been called
|
|
|
|
// for the keepalive process.
|
2017-07-27 10:45:22 +08:00
|
|
|
pid_t pid_status{};
|
2017-07-30 05:42:06 +08:00
|
|
|
int result;
|
|
|
|
while ((result = waitpid(p->pid, &pid_status, WUNTRACED)) == -1 && errno == EINTR) {
|
2017-08-07 06:47:01 +08:00
|
|
|
// This could be a superfluous interrupt or Ctrl+C at the terminal In all cases, it
|
|
|
|
// is OK to retry since the forking code above is specifically designed to never,
|
|
|
|
// ever hang/block in a child process before the SIGSTOP call is reached.
|
|
|
|
; // do nothing
|
2017-07-30 05:42:06 +08:00
|
|
|
}
|
|
|
|
if (result == -1) {
|
2017-07-28 06:12:51 +08:00
|
|
|
exec_error = true;
|
2017-07-28 05:40:13 +08:00
|
|
|
debug(1, L"waitpid(%d) call in unblock_pid failed:!\n", p->pid);
|
2017-07-27 10:45:22 +08:00
|
|
|
wperror(L"waitpid");
|
2017-07-28 06:12:51 +08:00
|
|
|
break;
|
|
|
|
}
|
2017-08-07 06:47:01 +08:00
|
|
|
// We are not unblocking the child via SIGCONT just yet to give the next process a
|
|
|
|
// chance to open the pipes and join the process group. We only unblock the last process
|
|
|
|
// in the job chain because no one awaits it.
|
2017-07-28 06:12:51 +08:00
|
|
|
}
|
2017-08-07 06:47:01 +08:00
|
|
|
// Regardless of whether the child blocked or not: only once per job, and only once we've
|
|
|
|
// actually executed an external command.
|
2017-07-30 02:00:29 +08:00
|
|
|
if ((child_spawned || child_forked) && !pgrp_set) {
|
2017-08-07 06:47:01 +08:00
|
|
|
// This should be called after waitpid if child_forked and pipes_to_next_command it can
|
|
|
|
// be called at any time if child_spawned.
|
2017-07-30 02:00:29 +08:00
|
|
|
set_child_group(j, p->pid);
|
2017-08-07 06:47:01 +08:00
|
|
|
// we can't rely on p->is_first_in_job because a builtin may have been the first.
|
2017-07-30 02:00:29 +08:00
|
|
|
pgrp_set = true;
|
2017-07-27 10:45:22 +08:00
|
|
|
}
|
2017-08-07 06:47:01 +08:00
|
|
|
// If the command we ran _before_ this one was SIGSTOP'd to let this one catch up, unblock
|
|
|
|
// it now. this must be after the wait_pid on the process we just started, if any.
|
2017-07-27 04:11:44 +08:00
|
|
|
unblock_previous();
|
2017-07-27 10:45:22 +08:00
|
|
|
|
2017-07-28 06:12:51 +08:00
|
|
|
if (child_blocked) {
|
2017-08-07 06:47:01 +08:00
|
|
|
// Store the newly-blocked command's PID so that it can be SIGCONT'd once the next
|
|
|
|
// process in the chain is started. That may be in this job or in another job.
|
2017-07-26 11:50:38 +08:00
|
|
|
blocked_pid = p->pid;
|
|
|
|
}
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Close the pipe the current process uses to read from the previous process_t.
|
|
|
|
if (pipe_current_read >= 0) {
|
2013-01-30 19:08:06 +08:00
|
|
|
exec_close(pipe_current_read);
|
|
|
|
pipe_current_read = -1;
|
2013-01-30 18:22:38 +08:00
|
|
|
}
|
2013-02-01 07:57:08 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Close the write end too, since the curent child subprocess already has a copy of it.
|
|
|
|
if (pipe_current_write >= 0) {
|
2013-01-30 19:08:06 +08:00
|
|
|
exec_close(pipe_current_write);
|
|
|
|
pipe_current_write = -1;
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
2017-07-30 01:37:17 +08:00
|
|
|
|
2017-08-07 06:47:01 +08:00
|
|
|
// Unblock the last process because there's no need for it to stay SIGSTOP'd for anything.
|
2017-07-30 01:37:17 +08:00
|
|
|
if (p->is_last_in_job) {
|
|
|
|
unblock_previous();
|
|
|
|
}
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
2013-02-01 07:57:08 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// Clean up any file descriptors we left open.
|
|
|
|
if (pipe_current_read >= 0) exec_close(pipe_current_read);
|
|
|
|
if (pipe_current_write >= 0) exec_close(pipe_current_write);
|
|
|
|
if (pipe_next_read >= 0) exec_close(pipe_next_read);
|
|
|
|
|
|
|
|
// The keepalive process is no longer needed, so we terminate it with extreme prejudice.
|
|
|
|
if (needs_keepalive) {
|
2012-11-19 08:30:30 +08:00
|
|
|
kill(keepalive.pid, SIGKILL);
|
2012-11-18 18:23:22 +08:00
|
|
|
}
|
|
|
|
|
2012-11-19 08:30:30 +08:00
|
|
|
debug(3, L"Job is constructed");
|
2017-01-27 07:06:58 +08:00
|
|
|
j->set_flag(JOB_CONSTRUCTED, true);
|
|
|
|
if (!j->get_flag(JOB_FOREGROUND)) {
|
2012-11-19 08:30:30 +08:00
|
|
|
proc_last_bg_pid = j->pgid;
|
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
if (!exec_error) {
|
2013-01-30 18:22:38 +08:00
|
|
|
job_continue(j, false);
|
2016-04-29 10:41:54 +08:00
|
|
|
} else {
|
|
|
|
// Mark the errored job as not in the foreground. I can't fully justify whether this is the
|
|
|
|
// right place, but it prevents sanity_lose from complaining.
|
2017-01-27 07:06:58 +08:00
|
|
|
j->set_flag(JOB_FOREGROUND, false);
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
2011-12-27 11:18:46 +08:00
|
|
|
}
|
2010-09-18 09:51:16 +08:00
|
|
|
|
2017-07-27 11:17:04 +08:00
|
|
|
static int exec_subshell_internal(const wcstring &cmd, wcstring_list_t *lst, bool apply_exit_status,
|
|
|
|
bool is_subcmd) {
|
2012-02-27 05:27:31 +08:00
|
|
|
ASSERT_IS_MAIN_THREAD();
|
2017-06-20 12:05:34 +08:00
|
|
|
bool prev_subshell = is_subshell;
|
2013-02-01 07:57:08 +08:00
|
|
|
const int prev_status = proc_get_last_status();
|
2016-04-29 10:41:54 +08:00
|
|
|
bool split_output = false;
|
2014-01-15 17:40:40 +08:00
|
|
|
|
2017-08-06 09:22:49 +08:00
|
|
|
const env_var_t ifs = env_get(L"IFS");
|
2016-04-29 10:41:54 +08:00
|
|
|
if (!ifs.missing_or_empty()) {
|
|
|
|
split_output = true;
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2017-06-20 12:05:34 +08:00
|
|
|
is_subshell = true;
|
2016-04-29 10:41:54 +08:00
|
|
|
int subcommand_status = -1; // assume the worst
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// IO buffer creation may fail (e.g. if we have too many open files to make a pipe), so this may
|
|
|
|
// be null.
|
2017-07-27 11:17:04 +08:00
|
|
|
const shared_ptr<io_buffer_t> io_buffer(
|
|
|
|
io_buffer_t::create(STDOUT_FILENO, io_chain_t(), is_subcmd ? read_byte_limit : 0));
|
2016-04-29 10:41:54 +08:00
|
|
|
if (io_buffer.get() != NULL) {
|
2013-01-30 18:22:38 +08:00
|
|
|
parser_t &parser = parser_t::principal_parser();
|
2016-04-29 10:41:54 +08:00
|
|
|
if (parser.eval(cmd, io_chain_t(io_buffer), SUBST) == 0) {
|
2013-02-01 07:57:08 +08:00
|
|
|
subcommand_status = proc_get_last_status();
|
2013-01-30 18:22:38 +08:00
|
|
|
}
|
2013-02-01 07:57:08 +08:00
|
|
|
|
2013-01-30 18:22:38 +08:00
|
|
|
io_buffer->read();
|
2012-11-19 08:30:30 +08:00
|
|
|
}
|
2012-11-18 18:23:22 +08:00
|
|
|
|
2017-07-27 11:17:04 +08:00
|
|
|
if (io_buffer->output_discarded()) subcommand_status = STATUS_READ_TOO_MUCH;
|
|
|
|
|
2016-04-29 10:41:54 +08:00
|
|
|
// If the caller asked us to preserve the exit status, restore the old status. Otherwise set the
|
|
|
|
// status of the subcommand.
|
2013-02-01 07:57:08 +08:00
|
|
|
proc_set_last_status(apply_exit_status ? subcommand_status : prev_status);
|
2012-11-19 08:30:30 +08:00
|
|
|
is_subshell = prev_subshell;
|
2012-12-21 04:25:35 +08:00
|
|
|
|
2016-10-31 07:04:13 +08:00
|
|
|
if (lst == NULL || io_buffer.get() == NULL) {
|
|
|
|
return subcommand_status;
|
|
|
|
}
|
2014-08-29 09:27:23 +08:00
|
|
|
|
2016-10-31 07:04:13 +08:00
|
|
|
const char *begin = io_buffer->out_buffer_ptr();
|
|
|
|
const char *end = begin + io_buffer->out_buffer_size();
|
|
|
|
if (split_output) {
|
|
|
|
const char *cursor = begin;
|
|
|
|
while (cursor < end) {
|
|
|
|
// Look for the next separator.
|
|
|
|
const char *stop = (const char *)memchr(cursor, '\n', end - cursor);
|
|
|
|
const bool hit_separator = (stop != NULL);
|
|
|
|
if (!hit_separator) {
|
|
|
|
// If it's not found, just use the end.
|
|
|
|
stop = end;
|
2014-08-29 09:27:23 +08:00
|
|
|
}
|
2016-10-31 07:04:13 +08:00
|
|
|
// Stop now points at the first character we do not want to copy.
|
|
|
|
const wcstring wc = str2wcstring(cursor, stop - cursor);
|
2012-12-20 08:40:10 +08:00
|
|
|
lst->push_back(wc);
|
2016-10-31 07:04:13 +08:00
|
|
|
|
|
|
|
// If we hit a separator, skip over it; otherwise we're at the end.
|
|
|
|
cursor = stop + (hit_separator ? 1 : 0);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// We're not splitting output, but we still want to trim off a trailing newline.
|
|
|
|
if (end != begin && end[-1] == '\n') {
|
|
|
|
--end;
|
2012-11-18 18:23:22 +08:00
|
|
|
}
|
2016-10-31 07:04:13 +08:00
|
|
|
const wcstring wc = str2wcstring(begin, end - begin);
|
|
|
|
lst->push_back(wc);
|
2012-11-18 18:23:22 +08:00
|
|
|
}
|
2012-12-21 04:25:35 +08:00
|
|
|
|
2013-02-01 07:57:08 +08:00
|
|
|
return subcommand_status;
|
2005-09-20 21:26:39 +08:00
|
|
|
}
|
2012-02-08 15:35:41 +08:00
|
|
|
|
2017-07-27 11:17:04 +08:00
|
|
|
int exec_subshell(const wcstring &cmd, std::vector<wcstring> &outputs, bool apply_exit_status,
|
|
|
|
bool is_subcmd) {
|
2012-02-27 05:27:31 +08:00
|
|
|
ASSERT_IS_MAIN_THREAD();
|
2017-07-27 11:17:04 +08:00
|
|
|
return exec_subshell_internal(cmd, &outputs, apply_exit_status, is_subcmd);
|
2012-02-08 15:35:41 +08:00
|
|
|
}
|
|
|
|
|
2017-07-27 11:17:04 +08:00
|
|
|
int exec_subshell(const wcstring &cmd, bool apply_exit_status, bool is_subcmd) {
|
2012-02-27 05:27:31 +08:00
|
|
|
ASSERT_IS_MAIN_THREAD();
|
2017-07-27 11:17:04 +08:00
|
|
|
return exec_subshell_internal(cmd, NULL, apply_exit_status, is_subcmd);
|
2012-02-08 15:35:41 +08:00
|
|
|
}
|