This adds a crate containing a new implementation of printf, ported from musl.
This has some advantages:
- locale support is direct instead of being "applied after".
- No dependencies on libc printf. No unsafe code at all.
- No more WideWrite - just uses std::fmt::Write.
- Rounding is handled directly in all cases, instead of relying on Rust and/or
libc.
- No essential dependency on WString.
- Supports %n.
- Implementation is more likely to be correct since it's based on a widely used
printf, instead of a low-traffic Rust crate.
- Significantly faster.
Mostly replacing std::<type>::MAX with <type>::MAX.
Surprising here is replacing
.expect(format!(...))
with
.unwrap_or_else(|_| panic!(...))
It explains that this is because the "format!" would always be called.
This enabled the profile in fish_setlocale, which caused startup
profile to always be on, so
```fish
fish --profile file -c 'foo'
```
would show the entire startup as well
Hex float parsing may come about through wcstod, for example:
printf "%f" '0x8p2'
should output 32.0.
Currently we use a not-great fork of hexponent. Hexponent has been dormant for
years, and has some issues: doesn't round properly, allocates unnecessarily,
doesn't handle denormals, is more complicated than necessary.
Just rewrite hex float parsing, fixing those problems and getting us off of this
weird fork.
ThreadId is way slower than it should be for the sense that we use it in; it
doesn't cache the id and allocates an Arc internally.
We don't care about the thread id used in crate::threads correlating with any
other thread id the code uses anywhere (not that it does) because it's only used
for our own bookkeeping. Change to something much simpler instead.
Verified that std::sync::OnceLock<T> compiles to the same assembly at the
*access* site as the Option<T> we were using. The additional overhead upon init
is fine. No need for extra Box<T> indirection for IO_THREAD_POOL.
While obtaining an uncontested mutex from the same thread (without reentrance)
is basically ~free, the use of `MainThread<RefCell<T>>` instead of `Mutex<T>`
makes it clear that there is no actual synchronization taking place, hopefully
making the code easier to understand.
We don't set this variable ourselves, but some might set it in their config out
of habit coming from shells that don't automatically colorize ls output.
This variable overrides stdout tty detection for `ls --color=auto` (but does not
modify the behavior of `ls --color=never` or `ls --color=always` regardless of
its value) under at least the BSD version of `ls`. (Under the GNU version, it
influences colorization only if stdout *is* a tty.)
If we detect CLICOLOR_FORCE *and* we are not writing directly to the tty, we
skip colorization (by clearing-but-not-erasing `$__fish_ls_color_opt`, so that
we don't end up accidentally using its value from another scope).
This automatically assigns the 'completions' label and the 'fish next-3.x'
milestone to completions-only PRs.
A completions-only PR is defined as being one that touches
share/completions/*.fish but does not touch any files outside of share/
The C++ version of this code simply copied the entire uvar table.
Today we take a reference. It's not clear which one is better.
Removal of locale variables like LC_ALL triggers variable change handlers
which call EnvStackImpl::get. This deadlocks because we still hold the lock
to protect the reference to all uvars. Work around this.
Closes#10513
It is short and simple enough to write yourself if you need it and it encourages
bad behavior by a) always returning owned strings, b) always allocating them in
a vector. If/where possible, it is better to a) use &wstr, b) use an iterator.
In rust, it's an anti-pattern to unnecessarily abstract over allocating
operations. Some of the call sites even called split_string(..).into_iter().
This updates is_windows_subsystem_for_linux() to take a WSL version to test for
(any, v1, or v2) and returns the boolean result depending on the system. I've
benchmarked and when running on regular Linux, this is still just as fast as the
previous binary check; it's only when it's WSL that this takes about 20ns
longer to figure out which variant.
Note that older WSLv2 kernels had a `-microsoft-standard` suffix while newer
ones appear to have a `-microsoft-standard-WSL2` suffix, so we make sure to test
for the least common denominator. (It doesn't matter to us, but note that newer
WSLv2 kernels have four dots in the version string!)
WSL workarounds pertaining to the default Windows terminal or executable
behavior of win32 binaries under a WSL shell are extended to WSLv2 while those
specific to oddities in kernel behavior are confined to WSLv1 only. (It
technically wouldn't hurt to extend them to WSLv2 but there's no good reason to
do so, either.)
A common complaint has been the massive amount of directories Windows appends to
$PATH slowing down fish when it attempts to find a non-existent binary (which it
does a lot more often than someone not in the know might think). The typical
workaround suggested is to trim unneeded entries from $PATH, but this a) has
considerable friction, b) breaks resolution of Windows binaries (you can no
longer use `clip.exe`, `cmd.exe`, etc).
This patch introduces a two-PATH workaround. If the cmd we are executing does
not contain a period (i.e. has no extension) it by definition cannot be a
Windows executable. In this case, we skip searching for it in any of the
auto-mounted, auto-PATH-appended directories like `/mnt/c/Windows/` or
`/mnt/c/Program Files`, but we *do* include those directories if what we're
searching for could be a Windows executable. (For now, instead of hard-coding a
list of known Windows executable extensions like .bat, .cmd, .exe, etc, we just
depend on the presence of an extension at all).
e.g. this is what starting up fish prints with logging enabled (that has been
removed):
bypassing 100 dirs for lookup of kill
bypassing 100 dirs for lookup of zoxide
bypassing 100 dirs for lookup of zoxide
bypassing 100 dirs for lookup of fd
not bypassing dirs for lookup of open.exe
not bypassing dirs for lookup of git.exe
This has resulted in a massive speedup of common fish functions, especially
anywhere we internally use or perform the equivalent of `if command -q foo`.
Note that the `is_windows_subsystem_for_linux()` check will need to be patched to
extend this workaround to WSLv2, but I'll do that separately.
Under WSL:
* Benchmark `external_cmds` improves by 10%
* Benchmark `load_completions` improves by an incredible 77%
c0bcd817ba removed some key bindings, including the bindings of
ESC ESC [ C for Alt-Right. the commit claimed that
"Sequences like \e\eOC are Escape followed by an SS3 arrow key which we
can already decode separately." but for whatever reason this doesn't work:
Alt-Right is broken in iTerm2 by default.
Restore the default ESC ESC [ X bindings for iTerm2 compatibility.
On this binding we fail to disable CSI u
bind c-t '
begin
set -lx FZF_DEFAULT_OPTS --height 40% --bind=ctrl-z:ignore
eval fzf | while read -l r; echo read $r; end
end
'
because for "fzf", ParseExecutionContext::setup_group() returns early with the
parent process group (which should be fish's own) , hence "wants_terminal"
is false. This seems questionable, I don't think the eval should make a
difference here.
For now, don't touch it; use the more accurate way of detecting whether
a process may read keyboard input. In many of such cases "wants_terminal"
is false, like
echo (echo 1\n2\n3 | fzf)
Fixes#10504
Don't unconditionally execute the plumbing to get `rustc -C` completions (use it
only when trying to complete `rustc -C`), filter out deprecated options, and use
fewer calls to the `string` builtin to optimize further.
Need to do the same thing for the `-Z` completions next, those hang the shell
for a good 1.5+ seconds.