Either add rust wrappers for C++ functions called via ffi or port some pure code
from C++ to rust to provide support for the upcoming `env_dispatch` rewrite.
The global variables are moved (not copied) from C++ to rust and exported as
extern C integers. On the rust side they are accessed only with atomic semantics
but regular int access is preserved from the C++ side (until that code is also
ported).
It's not clear whether or not `system_wcwidth()` was picked solely because of
the namespace conflict (which is easily remedied) but using the most obvious
name for this function should be the way to go.
We already have our own overload of `wcwidth()` (`fish_wcwidth()`) so it should
be more obvious which is the bare system call and which isn't.
(I do want to move this w/ some of the other standalone extern C wrappers to the
unix module later.)
Pull in the correct descriptions merged from across the various C++ header and
source files and get rid of the getter function that's only used in one place
but causes us to split the documentation for FISH_EMOJI_WIDTH across multiple
declarations.
This can be used for functions that accept non-Unicode content (i.e. &CStr or
CString) but are often used in our code base with a UTF-8 or UTF-32 string
on-hand.
When such a function is passed a CString, it's passed through as-is and
allocation-free. But when, as is often the case, we have a static string we can
now pass it in directly with all the nice ergonomics thereof instead of having
to manually create and unwrap a CString at the call location.
There's an upstream request to add this functionality to the standard library:
https://github.com/rust-lang/rust/issues/71448
This is more complicated than it needs to be thanks to the presence of CMake and
the C++ ffi in the picture. rsconf can correctly detect the required libraries
and instruct rustc to link against them, but since we generate a static rust
library and have CMake link it against the C++ binaries, we are still at the
mercy of CMake picking up the symbols we want.
Unfortunately, we could detect the gettext symbols but discover at runtime that
they weren't linked in because CMake was compiled with `-DWITH_GETTEXT=0` or
similar (as the macOS CI runner does). This means we also need to pass state
between CMake and our build script to communicate which CMake options were
enabled.
Delegate the `view` and `view_mut` to the newly added `Projection<T>`, which
makes everything oh so much clearer and cleaner. Add comments to clarify what is
happening.
This can be used when you primarily want to return a reference but in order for
that reference to live long enough it must be returned with an object.
i.e. given `Mutex<Foo { bar }>` you want a function to lock the mutex and return
a reference to `bar` but you can't return that reference since it has a lifetime
dependency on `MutexGuard` (which only derefs to all of `Foo` and not just
`bar`). You can return a `Projection` owning the `MutexGuard<Foo>` and set it up
to deref to `&bar`.
This was always extremely weasel-wordy and I have no idea which one
here is a good choice.
OMF is basically inactive at this point, so we might be doing people a
disservice by linking to it.
This wasn't providing a lot of value, and the license compatibility is iffy.
There's a bit of weirdness in that this now uses a `Box<dyn Error>`,
but since currently nothing actually errors out let's punt that for
later.
This is a terrible way of going about things,
and means we're currently broken on any unix that isn't specifically listed.
But at least it'll build and allow us to keep the FreeBSD CI running.
Historically fish has used the functions `fish_wcstol`, `fish_wcstoi`, and
`fish_wcstoul` (and some long long variants) for most integer conversions.
These have semantics that are deliberately different from the libc
functions, such as consuming trailing whitespace, and disallowing `-` in
unsigned versions.
fish has started to drift away from these semantics; some divergence from
C++ has crept in.
Rename the existing `fish_wcs*` functions in Rust to remove the fish
prefix, to express that they attempt to mirror libc semantics; then
introduce `fish_` wrappers which are ported from C++. Also fix some
miscellaneous bugs which have crept in, such as missing range checks.
This also skips the 192 git- and 64 npm- pages that
1. have better completions already (for the most part)
2. don't have the same name as a command typically in $PATH
In doing so it reduces the runtime on my system from 9s to 7s. Granted
I have all of these, so that's the best case.
This implements the primary environment stack, and other environments such
as the null and snapshot environments, in Rust. These are used to implement
the push and pop from block scoped commands such as `for` and `begin`, and
also function calls.