Add LaTeX script and sample code

This commit is contained in:
Jim Huang 2021-07-22 06:35:24 +08:00
parent 826b45b3d9
commit 2246e20809
39 changed files with 4310 additions and 0 deletions

13
.gitignore vendored Normal file
View File

@ -0,0 +1,13 @@
*.o
*.ko
*cmd
*.swp
*.symvers
# LaTeX
_minted-lkmpg
*.aux
*.log
*.out
lkmpg.pdf
*.toc

6
Makefile Normal file
View File

@ -0,0 +1,6 @@
all: lkmpg.tex
pdflatex -shell-escap lkmpg.tex
clean:
rm -f *.dvi *.aux *.log *.ps *.pdf *.out lkmpg.bbl lkmpg.blg lkmpg.lof lkmpg.toc
rm -rf _minted-lkmpg

38
examples/Makefile Normal file
View File

@ -0,0 +1,38 @@
obj-m += hello-1.o
obj-m += hello-2.o
obj-m += hello-3.o
obj-m += hello-4.o
obj-m += hello-5.o
obj-m += start.o
obj-m += stop.o
obj-m += chardev.o
obj-m += procfs1.o
obj-m += procfs2.o
obj-m += procfs3.o
obj-m += procfs4.o
obj-m += hello-sysfs.o
obj-m += sleep.o
obj-m += print_string.o
obj-m += kbleds.o
obj-m += sched.o
obj-m += chardev2.o
obj-m += syscall.o
obj-m += intrpt.o
obj-m += cryptosha256.o
obj-m += cryptosk.o
obj-m += completions.o
obj-m += example_tasklet.o
obj-m += devicemodel.o
obj-m += example_spinlock.o
obj-m += example_rwlock.o
obj-m += example_atomic.o
obj-m += example_mutex.o
obj-m += bottomhalf.o
obj-m += ioctl.o
all:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules
clean:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean
rm -f other/ioctl other/cat_noblock *.plist

165
examples/bottomhalf.c Normal file
View File

@ -0,0 +1,165 @@
/*
* bottomhalf.c - Top and bottom half interrupt handling
*
* Copyright (C) 2017 by Bob Mottram
* Based upon the Rpi example by Stefan Wendler (devnull@kaltpost.de)
* from:
* https://github.com/wendlers/rpi-kmod-samples
*
* Press one button to turn on a LED and another to turn it off
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/gpio.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
static int button_irqs[] = { -1, -1 };
/* Define GPIOs for LEDs.
Change the numbers for the GPIO on your board. */
static struct gpio leds[] = {
{ 4, GPIOF_OUT_INIT_LOW, "LED 1" }
};
/* Define GPIOs for BUTTONS
Change the numbers for the GPIO on your board. */
static struct gpio buttons[] = {
{ 17, GPIOF_IN, "LED 1 ON BUTTON" },
{ 18, GPIOF_IN, "LED 1 OFF BUTTON" }
};
/* Tasklet containing some non-trivial amount of processing */
static void bottomhalf_tasklet_fn(unsigned long data)
{
pr_info("Bottom half tasklet starts\n");
/* do something which takes a while */
mdelay(500);
pr_info("Bottom half tasklet ends\n");
}
DECLARE_TASKLET(buttontask, bottomhalf_tasklet_fn, 0L);
/*
* interrupt function triggered when a button is pressed
*/
static irqreturn_t button_isr(int irq, void *data)
{
/* Do something quickly right now */
if (irq == button_irqs[0] && !gpio_get_value(leds[0].gpio))
gpio_set_value(leds[0].gpio, 1);
else if(irq == button_irqs[1] && gpio_get_value(leds[0].gpio))
gpio_set_value(leds[0].gpio, 0);
/* Do the rest at leisure via the scheduler */
tasklet_schedule(&buttontask);
return IRQ_HANDLED;
}
int init_module()
{
int ret = 0;
pr_info("%s\n", __func__);
/* register LED gpios */
ret = gpio_request_array(leds, ARRAY_SIZE(leds));
if (ret) {
pr_err("Unable to request GPIOs for LEDs: %d\n", ret);
return ret;
}
/* register BUTTON gpios */
ret = gpio_request_array(buttons, ARRAY_SIZE(buttons));
if (ret) {
pr_err("Unable to request GPIOs for BUTTONs: %d\n", ret);
goto fail1;
}
pr_info("Current button1 value: %d\n",
gpio_get_value(buttons[0].gpio));
ret = gpio_to_irq(buttons[0].gpio);
if (ret < 0) {
pr_err("Unable to request IRQ: %d\n", ret);
goto fail2;
}
button_irqs[0] = ret;
pr_info("Successfully requested BUTTON1 IRQ # %d\n",
button_irqs[0]);
ret = request_irq(button_irqs[0], button_isr,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"gpiomod#button1", NULL);
if (ret) {
pr_err("Unable to request IRQ: %d\n", ret);
goto fail2;
}
ret = gpio_to_irq(buttons[1].gpio);
if (ret < 0) {
pr_err("Unable to request IRQ: %d\n", ret);
goto fail2;
}
button_irqs[1] = ret;
pr_info("Successfully requested BUTTON2 IRQ # %d\n",
button_irqs[1]);
ret = request_irq(button_irqs[1], button_isr,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"gpiomod#button2", NULL);
if (ret) {
pr_err("Unable to request IRQ: %d\n", ret);
goto fail3;
}
return 0;
/* cleanup what has been setup so far */
fail3:
free_irq(button_irqs[0], NULL);
fail2:
gpio_free_array(buttons, ARRAY_SIZE(leds));
fail1:
gpio_free_array(leds, ARRAY_SIZE(leds));
return ret;
}
void cleanup_module()
{
int i;
pr_info("%s\n", __func__);
/* free irqs */
free_irq(button_irqs[0], NULL);
free_irq(button_irqs[1], NULL);
/* turn all LEDs off */
for (i = 0; i < ARRAY_SIZE(leds); i++)
gpio_set_value(leds[i].gpio, 0);
/* unregister */
gpio_free_array(leds, ARRAY_SIZE(leds));
gpio_free_array(buttons, ARRAY_SIZE(buttons));
}
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Bob Mottram");
MODULE_DESCRIPTION("Interrupt with top and bottom half");

183
examples/chardev.c Normal file
View File

@ -0,0 +1,183 @@
/*
* chardev.c: Creates a read-only char device that says how many times
* you've read from the dev file
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/irq.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <linux/poll.h>
#include <linux/cdev.h>
/*
* Prototypes - this would normally go in a .h file
*/
int init_module(void);
void cleanup_module(void);
static int device_open(struct inode *, struct file *);
static int device_release(struct inode *, struct file *);
static ssize_t device_read(struct file *, char *, size_t, loff_t *);
static ssize_t device_write(struct file *, const char *, size_t, loff_t *);
#define SUCCESS 0
#define DEVICE_NAME "chardev" /* Dev name as it appears in /proc/devices */
#define BUF_LEN 80 /* Max length of the message from the device */
/*
* Global variables are declared as static, so are global within the file.
*/
static int Major; /* Major number assigned to our device driver */
static int Device_Open = 0; /* Is device open?
* Used to prevent multiple access to device */
static char msg[BUF_LEN]; /* The msg the device will give when asked */
static char *msg_Ptr;
static struct class *cls;
static struct file_operations chardev_fops = {
.read = device_read,
.write = device_write,
.open = device_open,
.release = device_release
};
/*
* This function is called when the module is loaded
*/
int init_module(void)
{
Major = register_chrdev(0, DEVICE_NAME, &chardev_fops);
if (Major < 0) {
pr_alert("Registering char device failed with %d\n", Major);
return Major;
}
pr_info("I was assigned major number %d.\n", Major);
cls = class_create(THIS_MODULE, DEVICE_NAME);
device_create(cls, NULL, MKDEV(Major, 0), NULL, DEVICE_NAME);
pr_info("Device created on /dev/%s\n", DEVICE_NAME);
return SUCCESS;
}
/*
* This function is called when the module is unloaded
*/
void cleanup_module(void)
{
device_destroy(cls, MKDEV(Major, 0));
class_destroy(cls);
/*
* Unregister the device
*/
unregister_chrdev(Major, DEVICE_NAME);
}
/*
* Methods
*/
/*
* Called when a process tries to open the device file, like
* "cat /dev/mycharfile"
*/
static int device_open(struct inode *inode, struct file *file)
{
static int counter = 0;
if (Device_Open)
return -EBUSY;
Device_Open++;
sprintf(msg, "I already told you %d times Hello world!\n", counter++);
msg_Ptr = msg;
try_module_get(THIS_MODULE);
return SUCCESS;
}
/*
* Called when a process closes the device file.
*/
static int device_release(struct inode *inode, struct file *file)
{
Device_Open--; /* We're now ready for our next caller */
/*
* Decrement the usage count, or else once you opened the file, you'll
* never get get rid of the module.
*/
module_put(THIS_MODULE);
return SUCCESS;
}
/*
* Called when a process, which already opened the dev file, attempts to
* read from it.
*/
static ssize_t device_read(struct file *filp, /* see include/linux/fs.h */
char *buffer, /* buffer to fill with data */
size_t length, /* length of the buffer */
loff_t * offset)
{
/*
* Number of bytes actually written to the buffer
*/
int bytes_read = 0;
/*
* If we're at the end of the message,
* return 0 signifying end of file
*/
if (*msg_Ptr == 0)
return 0;
/*
* Actually put the data into the buffer
*/
while (length && *msg_Ptr) {
/*
* The buffer is in the user data segment, not the kernel
* segment so "*" assignment won't work. We have to use
* put_user which copies data from the kernel data segment to
* the user data segment.
*/
put_user(*(msg_Ptr++), buffer++);
length--;
bytes_read++;
}
/*
* Most read functions return the number of bytes put into the buffer
*/
return bytes_read;
}
/*
* Called when a process writes to dev file: echo "hi" > /dev/hello
*/
static ssize_t device_write(struct file *filp,
const char *buff,
size_t len,
loff_t * off)
{
pr_alert("Sorry, this operation isn't supported.\n");
return -EINVAL;
}
MODULE_LICENSE("GPL");

66
examples/chardev.h Normal file
View File

@ -0,0 +1,66 @@
/*
* chardev2.h - the header file with the ioctl definitions.
*
* The declarations here have to be in a header file, because
* they need to be known both to the kernel module
* (in chardev.c) and the process calling ioctl (ioctl.c)
*/
#ifndef CHARDEV_H
#define CHARDEV_H
#include <linux/ioctl.h>
/*
* The major device number. We can't rely on dynamic
* registration any more, because ioctls need to know
* it.
*/
#define MAJOR_NUM 100
/*
* Set the message of the device driver
*/
#define IOCTL_SET_MSG _IOW(MAJOR_NUM, 0, char *)
/*
* _IOW means that we're creating an ioctl command
* number for passing information from a user process
* to the kernel module.
*
* The first arguments, MAJOR_NUM, is the major device
* number we're using.
*
* The second argument is the number of the command
* (there could be several with different meanings).
*
* The third argument is the type we want to get from
* the process to the kernel.
*/
/*
* Get the message of the device driver
*/
#define IOCTL_GET_MSG _IOR(MAJOR_NUM, 1, char *)
/*
* This IOCTL is used for output, to get the message
* of the device driver. However, we still need the
* buffer to place the message in to be input,
* as it is allocated by the process.
*/
/*
* Get the n'th byte of the message
*/
#define IOCTL_GET_NTH_BYTE _IOWR(MAJOR_NUM, 2, int)
/*
* The IOCTL is used for both input and output. It
* receives from the user a number, n, and returns
* Message[n].
*/
/*
* The name of the device file
*/
#define DEVICE_FILE_NAME "char_dev"
#endif

289
examples/chardev2.c Normal file
View File

@ -0,0 +1,289 @@
/*
* chardev2.c - Create an input/output character device
*/
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.h> /* Specifically, a module */
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/irq.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <linux/poll.h>
#include <linux/cdev.h>
#include "chardev.h"
#define SUCCESS 0
#define DEVICE_NAME "char_dev"
#define BUF_LEN 80
/*
* Is the device open right now? Used to prevent
* concurent access into the same device
*/
static int Device_Open = 0;
/*
* The message the device will give when asked
*/
static char Message[BUF_LEN];
/*
* How far did the process reading the message get?
* Useful if the message is larger than the size of the
* buffer we get to fill in device_read.
*/
static char *Message_Ptr;
static int Major; /* Major number assigned to our device driver */
static struct class *cls;
/*
* This is called whenever a process attempts to open the device file
*/
static int device_open(struct inode *inode, struct file *file)
{
#ifdef DEBUG
pr_info("device_open(%p)\n", file);
#endif
/*
* We don't want to talk to two processes at the same time
*/
if (Device_Open)
return -EBUSY;
Device_Open++;
/*
* Initialize the message
*/
Message_Ptr = Message;
try_module_get(THIS_MODULE);
return SUCCESS;
}
static int device_release(struct inode *inode, struct file *file)
{
#ifdef DEBUG
pr_info("device_release(%p,%p)\n", inode, file);
#endif
/*
* We're now ready for our next caller
*/
Device_Open--;
module_put(THIS_MODULE);
return SUCCESS;
}
/*
* This function is called whenever a process which has already opened the
* device file attempts to read from it.
*/
static ssize_t device_read(struct file *file, /* see include/linux/fs.h */
char __user * buffer, /* buffer to be
* filled with data */
size_t length, /* length of the buffer */
loff_t * offset)
{
/*
* Number of bytes actually written to the buffer
*/
int bytes_read = 0;
#ifdef DEBUG
pr_info("device_read(%p,%p,%d)\n", file, buffer, length);
#endif
/*
* If we're at the end of the message, return 0
* (which signifies end of file)
*/
if (*Message_Ptr == 0)
return 0;
/*
* Actually put the data into the buffer
*/
while (length && *Message_Ptr) {
/*
* Because the buffer is in the user data segment,
* not the kernel data segment, assignment wouldn't
* work. Instead, we have to use put_user which
* copies data from the kernel data segment to the
* user data segment.
*/
put_user(*(Message_Ptr++), buffer++);
length--;
bytes_read++;
}
#ifdef DEBUG
pr_info("Read %d bytes, %d left\n", bytes_read, length);
#endif
/*
* Read functions are supposed to return the number
* of bytes actually inserted into the buffer
*/
return bytes_read;
}
/*
* This function is called when somebody tries to
* write into our device file.
*/
static ssize_t
device_write(struct file *file,
const char __user * buffer, size_t length, loff_t * offset)
{
int i;
#ifdef DEBUG
pr_info("device_write(%p,%s,%d)", file, buffer, length);
#endif
for (i = 0; i < length && i < BUF_LEN; i++)
get_user(Message[i], buffer + i);
Message_Ptr = Message;
/*
* Again, return the number of input characters used
*/
return i;
}
/*
* This function is called whenever a process tries to do an ioctl on our
* device file. We get two extra parameters (additional to the inode and file
* structures, which all device functions get): the number of the ioctl called
* and the parameter given to the ioctl function.
*
* If the ioctl is write or read/write (meaning output is returned to the
* calling process), the ioctl call returns the output of this function.
*
*/
long device_ioctl(struct file *file, /* ditto */
unsigned int ioctl_num, /* number and param for ioctl */
unsigned long ioctl_param)
{
int i;
char *temp;
char ch;
/*
* Switch according to the ioctl called
*/
switch (ioctl_num) {
case IOCTL_SET_MSG:
/*
* Receive a pointer to a message (in user space) and set that
* to be the device's message. Get the parameter given to
* ioctl by the process.
*/
temp = (char *)ioctl_param;
/*
* Find the length of the message
*/
get_user(ch, temp);
for (i = 0; ch && i < BUF_LEN; i++, temp++)
get_user(ch, temp);
device_write(file, (char *)ioctl_param, i, 0);
break;
case IOCTL_GET_MSG:
/*
* Give the current message to the calling process -
* the parameter we got is a pointer, fill it.
*/
i = device_read(file, (char *)ioctl_param, 99, 0);
/*
* Put a zero at the end of the buffer, so it will be
* properly terminated
*/
put_user('\0', (char *)ioctl_param + i);
break;
case IOCTL_GET_NTH_BYTE:
/*
* This ioctl is both input (ioctl_param) and
* output (the return value of this function)
*/
return Message[ioctl_param];
break;
}
return SUCCESS;
}
/* Module Declarations */
/*
* This structure will hold the functions to be called
* when a process does something to the device we
* created. Since a pointer to this structure is kept in
* the devices table, it can't be local to
* init_module. NULL is for unimplemented functions.
*/
struct file_operations Fops = {
.read = device_read,
.write = device_write,
.unlocked_ioctl = device_ioctl,
.open = device_open,
.release = device_release, /* a.k.a. close */
};
/*
* Initialize the module - Register the character device
*/
int init_module()
{
int ret_val;
/*
* Register the character device (atleast try)
*/
ret_val = register_chrdev(MAJOR_NUM, DEVICE_NAME, &Fops);
/*
* Negative values signify an error
*/
if (ret_val < 0) {
pr_alert("%s failed with %d\n",
"Sorry, registering the character device ", ret_val);
return ret_val;
}
Major = ret_val;
cls = class_create(THIS_MODULE, DEVICE_FILE_NAME);
device_create(cls, NULL, MKDEV(Major, MAJOR_NUM), NULL, DEVICE_FILE_NAME);
pr_info("Device created on /dev/%s\n", DEVICE_FILE_NAME);
return 0;
}
/*
* Cleanup - unregister the appropriate file from /proc
*/
void cleanup_module()
{
device_destroy(cls, MKDEV(Major, 0));
class_destroy(cls);
/*
* Unregister the device
*/
unregister_chrdev(Major, DEVICE_NAME);
}
MODULE_LICENSE("GPL");

77
examples/completions.c Normal file
View File

@ -0,0 +1,77 @@
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/completion.h>
static struct {
struct completion crank_comp;
struct completion flywheel_comp;
} machine;
static int machine_crank_thread(void* arg)
{
pr_info("Turn the crank\n");
complete_all(&machine.crank_comp);
complete_and_exit(&machine.crank_comp, 0);
}
static int machine_flywheel_spinup_thread(void* arg)
{
wait_for_completion(&machine.crank_comp);
pr_info("Flywheel spins up\n");
complete_all(&machine.flywheel_comp);
complete_and_exit(&machine.flywheel_comp, 0);
}
static int completions_init(void)
{
struct task_struct* crank_thread;
struct task_struct* flywheel_thread;
pr_info("completions example\n");
init_completion(&machine.crank_comp);
init_completion(&machine.flywheel_comp);
crank_thread =
kthread_create(machine_crank_thread,
NULL, "KThread Crank");
if (IS_ERR(crank_thread))
goto ERROR_THREAD_1;
flywheel_thread =
kthread_create(machine_flywheel_spinup_thread,
NULL, "KThread Flywheel");
if (IS_ERR(flywheel_thread))
goto ERROR_THREAD_2;
wake_up_process(flywheel_thread);
wake_up_process(crank_thread);
return 0;
ERROR_THREAD_2:
kthread_stop(crank_thread);
ERROR_THREAD_1:
return -1;
}
void completions_exit(void)
{
wait_for_completion(&machine.crank_comp);
wait_for_completion(&machine.flywheel_comp);
pr_info("completions exit\n");
}
module_init(completions_init);
module_exit(completions_exit);
MODULE_AUTHOR("Bob Mottram");
MODULE_DESCRIPTION("Completions example");
MODULE_LICENSE("GPL");

63
examples/cryptosha256.c Normal file
View File

@ -0,0 +1,63 @@
#include <linux/module.h>
#include <crypto/internal/hash.h>
#define SHA256_LENGTH 32
static void show_hash_result(char * plaintext, char * hash_sha256)
{
int i;
char str[SHA256_LENGTH*2 + 1];
pr_info("sha256 test for string: \"%s\"\n", plaintext);
for (i = 0; i < SHA256_LENGTH ; i++)
sprintf(&str[i*2],"%02x", (unsigned char)hash_sha256[i]);
str[i*2] = 0;
pr_info("%s\n", str);
}
int cryptosha256_init(void)
{
char * plaintext = "This is a test";
char hash_sha256[SHA256_LENGTH];
struct crypto_shash *sha256;
struct shash_desc *shash;
sha256 = crypto_alloc_shash("sha256", 0, 0);
if (IS_ERR(sha256))
return -1;
shash =
kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(sha256),
GFP_KERNEL);
if (!shash)
return -ENOMEM;
shash->tfm = sha256;
if (crypto_shash_init(shash))
return -1;
if (crypto_shash_update(shash, plaintext, strlen(plaintext)))
return -1;
if (crypto_shash_final(shash, hash_sha256))
return -1;
kfree(shash);
crypto_free_shash(sha256);
show_hash_result(plaintext, hash_sha256);
return 0;
}
void cryptosha256_exit(void)
{
}
module_init(cryptosha256_init);
module_exit(cryptosha256_exit);
MODULE_AUTHOR("Bob Mottram");
MODULE_DESCRIPTION("sha256 hash test");
MODULE_LICENSE("GPL");

197
examples/cryptosk.c Normal file
View File

@ -0,0 +1,197 @@
#include <crypto/internal/skcipher.h>
#include <linux/module.h>
#include <linux/crypto.h>
#define SYMMETRIC_KEY_LENGTH 32
#define CIPHER_BLOCK_SIZE 16
struct tcrypt_result {
struct completion completion;
int err;
};
struct skcipher_def {
struct scatterlist sg;
struct crypto_skcipher * tfm;
struct skcipher_request * req;
struct tcrypt_result result;
char * scratchpad;
char * ciphertext;
char * ivdata;
};
static struct skcipher_def sk;
static void test_skcipher_finish(struct skcipher_def * sk)
{
if (sk->tfm)
crypto_free_skcipher(sk->tfm);
if (sk->req)
skcipher_request_free(sk->req);
if (sk->ivdata)
kfree(sk->ivdata);
if (sk->scratchpad)
kfree(sk->scratchpad);
if (sk->ciphertext)
kfree(sk->ciphertext);
}
static int test_skcipher_result(struct skcipher_def * sk, int rc)
{
switch (rc) {
case 0:
break;
case -EINPROGRESS || -EBUSY:
rc = wait_for_completion_interruptible(
&sk->result.completion);
if (!rc && !sk->result.err) {
reinit_completion(&sk->result.completion);
break;
}
pr_info("skcipher encrypt returned with %d result %d\n",
rc, sk->result.err);
break;
default:
pr_info("skcipher encrypt returned with %d result %d\n",
rc, sk->result.err);
break;
}
init_completion(&sk->result.completion);
return rc;
}
static void test_skcipher_callback(struct crypto_async_request *req, int error)
{
struct tcrypt_result *result = req->data;
/* int ret; */
if (error == -EINPROGRESS)
return;
result->err = error;
complete(&result->completion);
pr_info("Encryption finished successfully\n");
/* decrypt data */
/*
memset((void*)sk.scratchpad, '-', CIPHER_BLOCK_SIZE);
ret = crypto_skcipher_decrypt(sk.req);
ret = test_skcipher_result(&sk, ret);
if (ret)
return;
sg_copy_from_buffer(&sk.sg, 1, sk.scratchpad, CIPHER_BLOCK_SIZE);
sk.scratchpad[CIPHER_BLOCK_SIZE-1] = 0;
pr_info("Decryption request successful\n");
pr_info("Decrypted: %s\n", sk.scratchpad);
*/
}
static int test_skcipher_encrypt(char * plaintext, char * password,
struct skcipher_def * sk)
{
int ret = -EFAULT;
unsigned char key[SYMMETRIC_KEY_LENGTH];
if (!sk->tfm) {
sk->tfm = crypto_alloc_skcipher("cbc-aes-aesni", 0, 0);
if (IS_ERR(sk->tfm)) {
pr_info("could not allocate skcipher handle\n");
return PTR_ERR(sk->tfm);
}
}
if (!sk->req) {
sk->req = skcipher_request_alloc(sk->tfm, GFP_KERNEL);
if (!sk->req) {
pr_info("could not allocate skcipher request\n");
ret = -ENOMEM;
goto out;
}
}
skcipher_request_set_callback(sk->req, CRYPTO_TFM_REQ_MAY_BACKLOG,
test_skcipher_callback,
&sk->result);
/* clear the key */
memset((void*)key,'\0',SYMMETRIC_KEY_LENGTH);
/* Use the world's favourite password */
sprintf((char*)key,"%s",password);
/* AES 256 with given symmetric key */
if (crypto_skcipher_setkey(sk->tfm, key, SYMMETRIC_KEY_LENGTH)) {
pr_info("key could not be set\n");
ret = -EAGAIN;
goto out;
}
pr_info("Symmetric key: %s\n", key);
pr_info("Plaintext: %s\n", plaintext);
if (!sk->ivdata) {
/* see https://en.wikipedia.org/wiki/Initialization_vector */
sk->ivdata = kmalloc(CIPHER_BLOCK_SIZE, GFP_KERNEL);
if (!sk->ivdata) {
pr_info("could not allocate ivdata\n");
goto out;
}
get_random_bytes(sk->ivdata, CIPHER_BLOCK_SIZE);
}
if (!sk->scratchpad) {
/* The text to be encrypted */
sk->scratchpad = kmalloc(CIPHER_BLOCK_SIZE, GFP_KERNEL);
if (!sk->scratchpad) {
pr_info("could not allocate scratchpad\n");
goto out;
}
}
sprintf((char*)sk->scratchpad,"%s",plaintext);
sg_init_one(&sk->sg, sk->scratchpad, CIPHER_BLOCK_SIZE);
skcipher_request_set_crypt(sk->req, &sk->sg, &sk->sg,
CIPHER_BLOCK_SIZE, sk->ivdata);
init_completion(&sk->result.completion);
/* encrypt data */
ret = crypto_skcipher_encrypt(sk->req);
ret = test_skcipher_result(sk, ret);
if (ret)
goto out;
pr_info("Encryption request successful\n");
out:
return ret;
}
int cryptoapi_init(void)
{
/* The world's favourite password */
char * password = "password123";
sk.tfm = NULL;
sk.req = NULL;
sk.scratchpad = NULL;
sk.ciphertext = NULL;
sk.ivdata = NULL;
test_skcipher_encrypt("Testing", password, &sk);
return 0;
}
void cryptoapi_exit(void)
{
test_skcipher_finish(&sk);
}
module_init(cryptoapi_init);
module_exit(cryptoapi_exit);
MODULE_AUTHOR("Bob Mottram");
MODULE_DESCRIPTION("Symmetric key encryption example");
MODULE_LICENSE("GPL");

96
examples/devicemodel.c Normal file
View File

@ -0,0 +1,96 @@
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
struct devicemodel_data {
char *greeting;
int number;
};
static int devicemodel_probe(struct platform_device *dev)
{
struct devicemodel_data *pd = (struct devicemodel_data *)(dev->dev.platform_data);
pr_info("devicemodel probe\n");
pr_info("devicemodel greeting: %s; %d\n", pd->greeting, pd->number);
/* Your device initialisation code */
return 0;
}
static int devicemodel_remove(struct platform_device *dev)
{
pr_info("devicemodel example removed\n");
/* Your device removal code */
return 0;
}
static int devicemodel_suspend(struct device *dev)
{
pr_info("devicemodel example suspend\n");
/* Your device suspend code */
return 0;
}
static int devicemodel_resume(struct device *dev)
{
pr_info("devicemodel example resume\n");
/* Your device resume code */
return 0;
}
static const struct dev_pm_ops devicemodel_pm_ops =
{
.suspend = devicemodel_suspend,
.resume = devicemodel_resume,
.poweroff = devicemodel_suspend,
.freeze = devicemodel_suspend,
.thaw = devicemodel_resume,
.restore = devicemodel_resume
};
static struct platform_driver devicemodel_driver = {
.driver = {
.name = "devicemodel_example",
.owner = THIS_MODULE,
.pm = &devicemodel_pm_ops,
},
.probe = devicemodel_probe,
.remove = devicemodel_remove,
};
static int devicemodel_init(void)
{
int ret;
pr_info("devicemodel init\n");
ret = platform_driver_register(&devicemodel_driver);
if (ret) {
pr_err("Unable to register driver\n");
return ret;
}
return 0;
}
static void devicemodel_exit(void)
{
pr_info("devicemodel exit\n");
platform_driver_unregister(&devicemodel_driver);
}
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Bob Mottram");
MODULE_DESCRIPTION("Linux Device Model example");
module_init(devicemodel_init);
module_exit(devicemodel_exit);

76
examples/example_atomic.c Normal file
View File

@ -0,0 +1,76 @@
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#define BYTE_TO_BINARY_PATTERN "%c%c%c%c%c%c%c%c"
#define BYTE_TO_BINARY(byte) \
(byte & 0x80 ? '1' : '0'), \
(byte & 0x40 ? '1' : '0'), \
(byte & 0x20 ? '1' : '0'), \
(byte & 0x10 ? '1' : '0'), \
(byte & 0x08 ? '1' : '0'), \
(byte & 0x04 ? '1' : '0'), \
(byte & 0x02 ? '1' : '0'), \
(byte & 0x01 ? '1' : '0')
static void atomic_add_subtract(void)
{
atomic_t debbie;
atomic_t chris = ATOMIC_INIT(50);
atomic_set(&debbie, 45);
/* subtract one */
atomic_dec(&debbie);
atomic_add(7, &debbie);
/* add one */
atomic_inc(&debbie);
pr_info("chris: %d, debbie: %d\n",
atomic_read(&chris), atomic_read(&debbie));
}
static void atomic_bitwise(void)
{
unsigned long word = 0;
pr_info("Bits 0: "BYTE_TO_BINARY_PATTERN, BYTE_TO_BINARY(word));
set_bit(3, &word);
set_bit(5, &word);
pr_info("Bits 1: "BYTE_TO_BINARY_PATTERN, BYTE_TO_BINARY(word));
clear_bit(5, &word);
pr_info("Bits 2: "BYTE_TO_BINARY_PATTERN, BYTE_TO_BINARY(word));
change_bit(3, &word);
pr_info("Bits 3: "BYTE_TO_BINARY_PATTERN, BYTE_TO_BINARY(word));
if (test_and_set_bit(3, &word))
pr_info("wrong\n");
pr_info("Bits 4: "BYTE_TO_BINARY_PATTERN, BYTE_TO_BINARY(word));
word = 255;
pr_info("Bits 5: "BYTE_TO_BINARY_PATTERN, BYTE_TO_BINARY(word));
}
static int example_atomic_init(void)
{
pr_info("example_atomic started\n");
atomic_add_subtract();
atomic_bitwise();
return 0;
}
static void example_atomic_exit(void)
{
pr_info("example_atomic exit\n");
}
module_init(example_atomic_init);
module_exit(example_atomic_exit);
MODULE_AUTHOR("Bob Mottram");
MODULE_DESCRIPTION("Atomic operations example");
MODULE_LICENSE("GPL");

40
examples/example_mutex.c Normal file
View File

@ -0,0 +1,40 @@
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/mutex.h>
DEFINE_MUTEX(mymutex);
static int example_mutex_init(void)
{
int ret;
pr_info("example_mutex init\n");
ret = mutex_trylock(&mymutex);
if (ret != 0) {
pr_info("mutex is locked\n");
if (mutex_is_locked(&mymutex) == 0)
pr_info("The mutex failed to lock!\n");
mutex_unlock(&mymutex);
pr_info("mutex is unlocked\n");
}
else
pr_info("Failed to lock\n");
return 0;
}
static void example_mutex_exit(void)
{
pr_info("example_mutex exit\n");
}
module_init(example_mutex_init);
module_exit(example_mutex_exit);
MODULE_AUTHOR("Bob Mottram");
MODULE_DESCRIPTION("Mutex example");
MODULE_LICENSE("GPL");

53
examples/example_rwlock.c Normal file
View File

@ -0,0 +1,53 @@
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
DEFINE_RWLOCK(myrwlock);
static void example_read_lock(void)
{
unsigned long flags;
read_lock_irqsave(&myrwlock, flags);
pr_info("Read Locked\n");
/* Read from something */
read_unlock_irqrestore(&myrwlock, flags);
pr_info("Read Unlocked\n");
}
static void example_write_lock(void)
{
unsigned long flags;
write_lock_irqsave(&myrwlock, flags);
pr_info("Write Locked\n");
/* Write to something */
write_unlock_irqrestore(&myrwlock, flags);
pr_info("Write Unlocked\n");
}
static int example_rwlock_init(void)
{
pr_info("example_rwlock started\n");
example_read_lock();
example_write_lock();
return 0;
}
static void example_rwlock_exit(void)
{
pr_info("example_rwlock exit\n");
}
module_init(example_rwlock_init);
module_exit(example_rwlock_exit);
MODULE_AUTHOR("Bob Mottram");
MODULE_DESCRIPTION("Read/Write locks example");
MODULE_LICENSE("GPL");

View File

@ -0,0 +1,63 @@
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
DEFINE_SPINLOCK(sl_static);
spinlock_t sl_dynamic;
static void example_spinlock_static(void)
{
unsigned long flags;
spin_lock_irqsave(&sl_static, flags);
pr_info("Locked static spinlock\n");
/* Do something or other safely.
Because this uses 100% CPU time this
code should take no more than a few
milliseconds to run */
spin_unlock_irqrestore(&sl_static, flags);
pr_info("Unlocked static spinlock\n");
}
static void example_spinlock_dynamic(void)
{
unsigned long flags;
spin_lock_init(&sl_dynamic);
spin_lock_irqsave(&sl_dynamic, flags);
pr_info("Locked dynamic spinlock\n");
/* Do something or other safely.
Because this uses 100% CPU time this
code should take no more than a few
milliseconds to run */
spin_unlock_irqrestore(&sl_dynamic, flags);
pr_info("Unlocked dynamic spinlock\n");
}
static int example_spinlock_init(void)
{
pr_info("example spinlock started\n");
example_spinlock_static();
example_spinlock_dynamic();
return 0;
}
static void example_spinlock_exit(void)
{
pr_info("example spinlock exit\n");
}
module_init(example_spinlock_init);
module_exit(example_spinlock_exit);
MODULE_AUTHOR("Bob Mottram");
MODULE_DESCRIPTION("Spinlock example");
MODULE_LICENSE("GPL");

View File

@ -0,0 +1,35 @@
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
static void tasklet_fn(unsigned long data)
{
pr_info("Example tasklet starts\n");
mdelay(5000);
pr_info("Example tasklet ends\n");
}
DECLARE_TASKLET(mytask, tasklet_fn, 0L);
static int example_tasklet_init(void)
{
pr_info("tasklet example init\n");
tasklet_schedule(&mytask);
mdelay(200);
pr_info("Example tasklet init continues...\n");
return 0;
}
static void example_tasklet_exit(void)
{
pr_info("tasklet example exit\n");
tasklet_kill(&mytask);
}
module_init(example_tasklet_init);
module_exit(example_tasklet_exit);
MODULE_AUTHOR("Bob Mottram");
MODULE_DESCRIPTION("Tasklet example");
MODULE_LICENSE("GPL");

22
examples/hello-1.c Normal file
View File

@ -0,0 +1,22 @@
/*
* hello-1.c - The simplest kernel module.
*/
#include <linux/module.h> /* Needed by all modules */
#include <linux/kernel.h> /* Needed for KERN_INFO */
int init_module(void)
{
pr_info("Hello world 1.\n");
/*
* A non 0 return means init_module failed; module can't be loaded.
*/
return 0;
}
void cleanup_module(void)
{
pr_info("Goodbye world 1.\n");
}
MODULE_LICENSE("GPL");

23
examples/hello-2.c Normal file
View File

@ -0,0 +1,23 @@
/*
* hello-2.c - Demonstrating the module_init() and module_exit() macros.
* This is preferred over using init_module() and cleanup_module().
*/
#include <linux/module.h> /* Needed by all modules */
#include <linux/kernel.h> /* Needed for KERN_INFO */
#include <linux/init.h> /* Needed for the macros */
static int __init hello_2_init(void)
{
pr_info("Hello, world 2\n");
return 0;
}
static void __exit hello_2_exit(void)
{
pr_info("Goodbye, world 2\n");
}
module_init(hello_2_init);
module_exit(hello_2_exit);
MODULE_LICENSE("GPL");

24
examples/hello-3.c Normal file
View File

@ -0,0 +1,24 @@
/*
* hello-3.c - Illustrating the __init, __initdata and __exit macros.
*/
#include <linux/module.h> /* Needed by all modules */
#include <linux/kernel.h> /* Needed for KERN_INFO */
#include <linux/init.h> /* Needed for the macros */
static int hello3_data __initdata = 3;
static int __init hello_3_init(void)
{
pr_info("Hello, world %d\n", hello3_data);
return 0;
}
static void __exit hello_3_exit(void)
{
pr_info("Goodbye, world 3\n");
}
module_init(hello_3_init);
module_exit(hello_3_exit);
MODULE_LICENSE("GPL");

25
examples/hello-4.c Normal file
View File

@ -0,0 +1,25 @@
/*
* hello-4.c - Demonstrates module documentation.
*/
#include <linux/module.h> /* Needed by all modules */
#include <linux/kernel.h> /* Needed for KERN_INFO */
#include <linux/init.h> /* Needed for the macros */
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Bob Mottram");
MODULE_DESCRIPTION("A sample driver");
MODULE_SUPPORTED_DEVICE("testdevice");
static int __init init_hello_4(void)
{
pr_info("Hello, world 4\n");
return 0;
}
static void __exit cleanup_hello_4(void)
{
pr_info("Goodbye, world 4\n");
}
module_init(init_hello_4);
module_exit(cleanup_hello_4);

70
examples/hello-5.c Normal file
View File

@ -0,0 +1,70 @@
/*
* hello-5.c - Demonstrates command line argument passing to a module.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/stat.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Peter Jay Salzman");
static short int myshort = 1;
static int myint = 420;
static long int mylong = 9999;
static char *mystring = "blah";
static int myintArray[2] = { -1, -1 };
static int arr_argc = 0;
/*
* module_param(foo, int, 0000)
* The first param is the parameters name
* The second param is it's data type
* The final argument is the permissions bits,
* for exposing parameters in sysfs (if non-zero) at a later stage.
*/
module_param(myshort, short, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP);
MODULE_PARM_DESC(myshort, "A short integer");
module_param(myint, int, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
MODULE_PARM_DESC(myint, "An integer");
module_param(mylong, long, S_IRUSR);
MODULE_PARM_DESC(mylong, "A long integer");
module_param(mystring, charp, 0000);
MODULE_PARM_DESC(mystring, "A character string");
/*
* module_param_array(name, type, num, perm);
* The first param is the parameter's (in this case the array's) name
* The second param is the data type of the elements of the array
* The third argument is a pointer to the variable that will store the number
* of elements of the array initialized by the user at module loading time
* The fourth argument is the permission bits
*/
module_param_array(myintArray, int, &arr_argc, 0000);
MODULE_PARM_DESC(myintArray, "An array of integers");
static int __init hello_5_init(void)
{
int i;
pr_info("Hello, world 5\n=============\n");
pr_info("myshort is a short integer: %hd\n", myshort);
pr_info("myint is an integer: %d\n", myint);
pr_info("mylong is a long integer: %ld\n", mylong);
pr_info("mystring is a string: %s\n", mystring);
for (i = 0; i < (sizeof myintArray / sizeof (int)); i++)
pr_info("myintArray[%d] = %d\n", i, myintArray[i]);
pr_info("got %d arguments for myintArray.\n", arr_argc);
return 0;
}
static void __exit hello_5_exit(void)
{
pr_info("Goodbye, world 5\n");
}
module_init(hello_5_init);
module_exit(hello_5_exit);

67
examples/hello-sysfs.c Normal file
View File

@ -0,0 +1,67 @@
/*
* hello-sysfs.c sysfs example
*/
#include <linux/module.h>
#include <linux/kobject.h>
#include <linux/sysfs.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/string.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Bob Mottram");
static struct kobject *mymodule;
/* the variable you want to be able to change */
static int myvariable = 0;
static ssize_t myvariable_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", myvariable);
}
static ssize_t myvariable_store(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf, size_t count)
{
sscanf(buf, "%du", &myvariable);
return count;
}
static struct kobj_attribute myvariable_attribute =
__ATTR(myvariable, 0660, myvariable_show,
(void*)myvariable_store);
static int __init mymodule_init (void)
{
int error = 0;
pr_info("mymodule: initialised\n");
mymodule =
kobject_create_and_add("mymodule", kernel_kobj);
if (!mymodule)
return -ENOMEM;
error = sysfs_create_file(mymodule, &myvariable_attribute.attr);
if (error) {
pr_info("failed to create the myvariable file " \
"in /sys/kernel/mymodule\n");
}
return error;
}
static void __exit mymodule_exit (void)
{
pr_info("mymodule: Exit success\n");
kobject_put(mymodule);
}
module_init(mymodule_init);
module_exit(mymodule_exit);

151
examples/intrpt.c Normal file
View File

@ -0,0 +1,151 @@
/*
* intrpt.c - Handling GPIO with interrupts
*
* Copyright (C) 2017 by Bob Mottram
* Based upon the Rpi example by Stefan Wendler (devnull@kaltpost.de)
* from:
* https://github.com/wendlers/rpi-kmod-samples
*
* Press one button to turn on a LED and another to turn it off
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
static int button_irqs[] = { -1, -1 };
/* Define GPIOs for LEDs.
Change the numbers for the GPIO on your board. */
static struct gpio leds[] = {
{ 4, GPIOF_OUT_INIT_LOW, "LED 1" }
};
/* Define GPIOs for BUTTONS
Change the numbers for the GPIO on your board. */
static struct gpio buttons[] = {
{ 17, GPIOF_IN, "LED 1 ON BUTTON" },
{ 18, GPIOF_IN, "LED 1 OFF BUTTON" }
};
/*
* interrupt function triggered when a button is pressed
*/
static irqreturn_t button_isr(int irq, void *data)
{
/* first button */
if (irq == button_irqs[0] && !gpio_get_value(leds[0].gpio))
gpio_set_value(leds[0].gpio, 1);
/* second button */
else if(irq == button_irqs[1] && gpio_get_value(leds[0].gpio))
gpio_set_value(leds[0].gpio, 0);
return IRQ_HANDLED;
}
int init_module()
{
int ret = 0;
pr_info("%s\n", __func__);
/* register LED gpios */
ret = gpio_request_array(leds, ARRAY_SIZE(leds));
if (ret) {
pr_err("Unable to request GPIOs for LEDs: %d\n", ret);
return ret;
}
/* register BUTTON gpios */
ret = gpio_request_array(buttons, ARRAY_SIZE(buttons));
if (ret) {
pr_err("Unable to request GPIOs for BUTTONs: %d\n", ret);
goto fail1;
}
pr_info("Current button1 value: %d\n",
gpio_get_value(buttons[0].gpio));
ret = gpio_to_irq(buttons[0].gpio);
if (ret < 0) {
pr_err("Unable to request IRQ: %d\n", ret);
goto fail2;
}
button_irqs[0] = ret;
pr_info("Successfully requested BUTTON1 IRQ # %d\n",
button_irqs[0]);
ret = request_irq(button_irqs[0], button_isr,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"gpiomod#button1", NULL);
if (ret) {
pr_err("Unable to request IRQ: %d\n", ret);
goto fail2;
}
ret = gpio_to_irq(buttons[1].gpio);
if (ret < 0) {
pr_err("Unable to request IRQ: %d\n", ret);
goto fail2;
}
button_irqs[1] = ret;
pr_info("Successfully requested BUTTON2 IRQ # %d\n",
button_irqs[1]);
ret = request_irq(button_irqs[1], button_isr,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"gpiomod#button2", NULL);
if (ret) {
pr_err("Unable to request IRQ: %d\n", ret);
goto fail3;
}
return 0;
/* cleanup what has been setup so far */
fail3:
free_irq(button_irqs[0], NULL);
fail2:
gpio_free_array(buttons, ARRAY_SIZE(leds));
fail1:
gpio_free_array(leds, ARRAY_SIZE(leds));
return ret;
}
void cleanup_module()
{
int i;
pr_info("%s\n", __func__);
/* free irqs */
free_irq(button_irqs[0], NULL);
free_irq(button_irqs[1], NULL);
/* turn all LEDs off */
for (i = 0; i < ARRAY_SIZE(leds); i++)
gpio_set_value(leds[i].gpio, 0);
/* unregister */
gpio_free_array(leds, ARRAY_SIZE(leds));
gpio_free_array(buttons, ARRAY_SIZE(buttons));
}
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Bob Mottram");
MODULE_DESCRIPTION("Handle some GPIO interrupts");

205
examples/ioctl.c Normal file
View File

@ -0,0 +1,205 @@
#include <linux/ioctl.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
struct ioctl_arg {
unsigned int reg;
unsigned int val;
};
/* Documentation/ioctl/ioctl-number.txt */
#define IOC_MAGIC '\x66'
#define IOCTL_VALSET _IOW(IOC_MAGIC, 0, struct ioctl_arg)
#define IOCTL_VALGET _IOR(IOC_MAGIC, 1, struct ioctl_arg)
#define IOCTL_VALGET_NUM _IOR(IOC_MAGIC, 2, int)
#define IOCTL_VALSET_NUM _IOW(IOC_MAGIC, 3, int)
#define IOCTL_VAL_MAXNR 3
#define DRIVER_NAME "ioctltest"
static unsigned int test_ioctl_major = 0;
static unsigned int num_of_dev = 1;
static struct cdev test_ioctl_cdev;
static int ioctl_num = 0;
struct test_ioctl_data {
unsigned char val;
rwlock_t lock;
};
static long test_ioctl_ioctl(struct file* filp, unsigned int cmd, unsigned long arg) {
struct test_ioctl_data* ioctl_data = filp->private_data;
int retval = 0;
unsigned char val;
struct ioctl_arg data;
memset(&data, 0, sizeof(data));
switch (cmd) {
case IOCTL_VALSET:
/*
if (!capable(CAP_SYS_ADMIN)) {
retval = -EPERM;
goto done;
}
if (!access_ok(VERIFY_READ, (void __user *)arg, _IOC_SIZE(cmd))) {
retval = -EFAULT;
goto done;
}
*/
if (copy_from_user(&data, (int __user*)arg, sizeof(data))) {
retval = -EFAULT;
goto done;
}
pr_alert("IOCTL set val:%x .\n", data.val);
write_lock(&ioctl_data->lock);
ioctl_data->val = data.val;
write_unlock(&ioctl_data->lock);
break;
case IOCTL_VALGET:
/*
if (!access_ok(VERIFY_WRITE, (void __user *)arg, _IOC_SIZE(cmd))) {
retval = -EFAULT;
goto done;
}
*/
read_lock(&ioctl_data->lock);
val = ioctl_data->val;
read_unlock(&ioctl_data->lock);
data.val = val;
if (copy_to_user((int __user*)arg, &data, sizeof(data))) {
retval = -EFAULT;
goto done;
}
break;
case IOCTL_VALGET_NUM:
retval = __put_user(ioctl_num, (int __user*)arg);
break;
case IOCTL_VALSET_NUM:
/*
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
*/
ioctl_num = arg;
break;
default:
retval = -ENOTTY;
}
done:
return retval;
}
ssize_t test_ioctl_read(struct file* filp, char __user* buf, size_t count, loff_t* f_pos) {
struct test_ioctl_data* ioctl_data = filp->private_data;
unsigned char val;
int retval;
int i = 0;
read_lock(&ioctl_data->lock);
val = ioctl_data->val;
read_unlock(&ioctl_data->lock);
for (; i < count ; i++) {
if (copy_to_user(&buf[i], &val, 1)) {
retval = -EFAULT;
goto out;
}
}
retval = count;
out:
return retval;
}
static int test_ioctl_close(struct inode* inode, struct file* filp) {
pr_alert("%s call.\n", __func__);
if (filp->private_data) {
kfree(filp->private_data);
filp->private_data = NULL;
}
return 0;
}
static int test_ioctl_open(struct inode* inode, struct file* filp) {
struct test_ioctl_data* ioctl_data;
pr_alert("%s call.\n", __func__);
ioctl_data = kmalloc(sizeof(struct test_ioctl_data), GFP_KERNEL);
if (ioctl_data == NULL) {
return -ENOMEM;
}
rwlock_init(&ioctl_data->lock);
ioctl_data->val = 0xFF;
filp->private_data = ioctl_data;
return 0;
}
struct file_operations fops = {
.owner = THIS_MODULE,
.open = test_ioctl_open,
.release = test_ioctl_close,
.read = test_ioctl_read,
.unlocked_ioctl = test_ioctl_ioctl,
};
static int ioctl_init(void) {
dev_t dev = MKDEV(test_ioctl_major, 0);
int alloc_ret = 0;
int cdev_ret = 0;
alloc_ret = alloc_chrdev_region(&dev, 0, num_of_dev, DRIVER_NAME);
if (alloc_ret) {
goto error;
}
test_ioctl_major = MAJOR(dev);
cdev_init(&test_ioctl_cdev, &fops);
cdev_ret = cdev_add(&test_ioctl_cdev, dev, num_of_dev);
if (cdev_ret) {
goto error;
}
pr_alert("%s driver(major: %d) installed.\n", DRIVER_NAME, test_ioctl_major);
return 0;
error:
if (cdev_ret == 0) {
cdev_del(&test_ioctl_cdev);
}
if (alloc_ret == 0) {
unregister_chrdev_region(dev, num_of_dev);
}
return -1;
}
static void ioctl_exit(void) {
dev_t dev = MKDEV(test_ioctl_major, 0);
cdev_del(&test_ioctl_cdev);
unregister_chrdev_region(dev, num_of_dev);
pr_alert("%s driver removed.\n", DRIVER_NAME);
}
module_init(ioctl_init);
module_exit(ioctl_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Wang Chen Shu");
MODULE_DESCRIPTION("This is test_ioctl module");

93
examples/kbleds.c Normal file
View File

@ -0,0 +1,93 @@
/*
* kbleds.c - Blink keyboard leds until the module is unloaded.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/vt_kern.h> /* for fg_console */
#include <linux/tty.h> /* For fg_console, MAX_NR_CONSOLES */
#include <linux/kd.h> /* For KDSETLED */
#include <linux/vt.h>
#include <linux/console_struct.h> /* For vc_cons */
MODULE_DESCRIPTION("Example module illustrating the use of Keyboard LEDs.");
MODULE_AUTHOR("Daniele Paolo Scarpazza");
MODULE_LICENSE("GPL");
struct timer_list my_timer;
struct tty_driver *my_driver;
char kbledstatus = 0;
#define BLINK_DELAY HZ/5
#define ALL_LEDS_ON 0x07
#define RESTORE_LEDS 0xFF
/*
* Function my_timer_func blinks the keyboard LEDs periodically by invoking
* command KDSETLED of ioctl() on the keyboard driver. To learn more on virtual
* terminal ioctl operations, please see file:
* /usr/src/linux/drivers/char/vt_ioctl.c, function vt_ioctl().
*
* The argument to KDSETLED is alternatively set to 7 (thus causing the led
* mode to be set to LED_SHOW_IOCTL, and all the leds are lit) and to 0xFF
* (any value above 7 switches back the led mode to LED_SHOW_FLAGS, thus
* the LEDs reflect the actual keyboard status). To learn more on this,
* please see file:
* /usr/src/linux/drivers/char/keyboard.c, function setledstate().
*
*/
static void my_timer_func(unsigned long ptr)
{
unsigned long *pstatus = (unsigned long *)ptr;
struct tty_struct* t = vc_cons[fg_console].d->port.tty;
if (*pstatus == ALL_LEDS_ON)
*pstatus = RESTORE_LEDS;
else
*pstatus = ALL_LEDS_ON;
(my_driver->ops->ioctl) (t, KDSETLED, *pstatus);
my_timer.expires = jiffies + BLINK_DELAY;
add_timer(&my_timer);
}
static int __init kbleds_init(void)
{
int i;
pr_info("kbleds: loading\n");
pr_info("kbleds: fgconsole is %x\n", fg_console);
for (i = 0; i < MAX_NR_CONSOLES; i++) {
if (!vc_cons[i].d)
break;
pr_info("poet_atkm: console[%i/%i] #%i, tty %lx\n", i,
MAX_NR_CONSOLES, vc_cons[i].d->vc_num,
(unsigned long)vc_cons[i].d->port.tty);
}
pr_info("kbleds: finished scanning consoles\n");
my_driver = vc_cons[fg_console].d->port.tty->driver;
pr_info("kbleds: tty driver magic %x\n", my_driver->magic);
/*
* Set up the LED blink timer the first time
*/
timer_setup(&my_timer, (void*)&my_timer_func, (unsigned long)&kbledstatus);
my_timer.expires = jiffies + BLINK_DELAY;
add_timer(&my_timer);
return 0;
}
static void __exit kbleds_cleanup(void)
{
pr_info("kbleds: unloading...\n");
del_timer(&my_timer);
(my_driver->ops->ioctl) (vc_cons[fg_console].d->port.tty,
KDSETLED, RESTORE_LEDS);
}
module_init(kbleds_init);
module_exit(kbleds_cleanup);

View File

@ -0,0 +1,65 @@
/* cat_noblock.c - open a file and display its contents, but exit rather than
* wait for input */
/* Copyright (C) 1998 by Ori Pomerantz */
#include <stdio.h> /* standard I/O */
#include <fcntl.h> /* for open */
#include <unistd.h> /* for read */
#include <stdlib.h> /* for exit */
#include <errno.h> /* for errno */
#define MAX_BYTES 1024*4
int main(int argc, char *argv[])
{
int fd; /* The file descriptor for the file to read */
size_t bytes; /* The number of bytes read */
char buffer[MAX_BYTES]; /* The buffer for the bytes */
/* Usage */
if (argc != 2) {
printf("Usage: %s <filename>\n", argv[0]);
puts("Reads the content of a file, but doesn't wait for input");
exit(-1);
}
/* Open the file for reading in non blocking mode */
fd = open(argv[1], O_RDONLY | O_NONBLOCK);
/* If open failed */
if (fd == -1) {
if (errno = EAGAIN)
puts("Open would block");
else
puts("Open failed");
exit(-1);
}
/* Read the file and output its contents */
do {
int i;
/* Read characters from the file */
bytes = read(fd, buffer, MAX_BYTES);
/* If there's an error, report it and die */
if (bytes == -1) {
if (errno = EAGAIN)
puts("Normally I'd block, but you told me not to");
else
puts("Another read error");
exit(-1);
}
/* Print the characters */
if (bytes > 0) {
for(i=0; i<bytes; i++)
putchar(buffer[i]);
}
/* While there are no errors and the file isn't over */
} while (bytes > 0);
return 0;
}

108
examples/print_string.c Normal file
View File

@ -0,0 +1,108 @@
/*
* print_string.c - Send output to the tty we're running on, regardless if it's
* through X11, telnet, etc. We do this by printing the string to the tty
* associated with the current task.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h> /* For current */
#include <linux/tty.h> /* For the tty declarations */
#include <linux/version.h> /* For LINUX_VERSION_CODE */
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Peter Jay Salzman");
static void print_string(char *str)
{
struct tty_struct *my_tty;
const struct tty_operations *ttyops;
/*
* tty struct went into signal struct in 2.6.6
*/
#if ( LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,5) )
/*
* The tty for the current task
*/
my_tty = current->tty;
#else
/*
* The tty for the current task, for 2.6.6+ kernels
*/
my_tty = get_current_tty();
#endif
ttyops = my_tty->driver->ops;
/*
* If my_tty is NULL, the current task has no tty you can print to
* (ie, if it's a daemon). If so, there's nothing we can do.
*/
if (my_tty != NULL) {
/*
* my_tty->driver is a struct which holds the tty's functions,
* one of which (write) is used to write strings to the tty.
* It can be used to take a string either from the user's or
* kernel's memory segment.
*
* The function's 1st parameter is the tty to write to,
* because the same function would normally be used for all
* tty's of a certain type. The 2nd parameter controls
* whether the function receives a string from kernel
* memory (false, 0) or from user memory (true, non zero).
* BTW: this param has been removed in Kernels > 2.6.9
* The (2nd) 3rd parameter is a pointer to a string.
* The (3rd) 4th parameter is the length of the string.
*
* As you will see below, sometimes it's necessary to use
* preprocessor stuff to create code that works for different
* kernel versions. The (naive) approach we've taken here
* does not scale well. The right way to deal with this
* is described in section 2 of
* linux/Documentation/SubmittingPatches
*/
(ttyops->write) (my_tty, /* The tty itself */
#if ( LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,9) )
0, /* Don't take the string
from user space */
#endif
str, /* String */
strlen(str)); /* Length */
/*
* ttys were originally hardware devices, which (usually)
* strictly followed the ASCII standard. In ASCII, to move to
* a new line you need two characters, a carriage return and a
* line feed. On Unix, the ASCII line feed is used for both
* purposes - so we can't just use \n, because it wouldn't have
* a carriage return and the next line will start at the
* column right after the line feed.
*
* This is why text files are different between Unix and
* MS Windows. In CP/M and derivatives, like MS-DOS and
* MS Windows, the ASCII standard was strictly adhered to,
* and therefore a newline requirs both a LF and a CR.
*/
#if ( LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,9) )
(ttyops->write) (my_tty, 0, "\015\012", 2);
#else
(ttyops->write) (my_tty, "\015\012", 2);
#endif
}
}
static int __init print_string_init(void)
{
print_string("The module has been inserted. Hello world!");
return 0;
}
static void __exit print_string_exit(void)
{
print_string("The module has been removed. Farewell world!");
}
module_init(print_string_init);
module_exit(print_string_exit);

51
examples/procfs1.c Normal file
View File

@ -0,0 +1,51 @@
/*
procfs1.c
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/proc_fs.h>
#include <linux/uaccess.h>
#define procfs_name "helloworld"
struct proc_dir_entry *Our_Proc_File;
ssize_t procfile_read(struct file *filePointer,char *buffer,
size_t buffer_length, loff_t * offset)
{
int ret=0;
if(strlen(buffer) ==0) {
pr_info("procfile read %s\n",filePointer->f_path.dentry->d_name.name);
ret=copy_to_user(buffer,"HelloWorld!\n",sizeof("HelloWorld!\n"));
ret=sizeof("HelloWorld!\n");
}
return ret;
}
static const struct proc_ops proc_file_fops = {
.proc_read = procfile_read,
};
int init_module()
{
Our_Proc_File = proc_create(procfs_name,0644,NULL,&proc_file_fops);
if(NULL==Our_Proc_File) {
proc_remove(Our_Proc_File);
pr_alert("Error:Could not initialize /proc/%s\n",procfs_name);
return -ENOMEM;
}
pr_info("/proc/%s created\n", procfs_name);
return 0;
}
void cleanup_module()
{
proc_remove(Our_Proc_File);
pr_info("/proc/%s removed\n", procfs_name);
}
MODULE_LICENSE("GPL");

99
examples/procfs2.c Normal file
View File

@ -0,0 +1,99 @@
/**
* procfs2.c - create a "file" in /proc
*
*/
#include <linux/module.h> /* Specifically, a module */
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/proc_fs.h> /* Necessary because we use the proc fs */
#include <linux/uaccess.h> /* for copy_from_user */
#define PROCFS_MAX_SIZE 1024
#define PROCFS_NAME "buffer1k"
/**
* This structure hold information about the /proc file
*
*/
static struct proc_dir_entry *Our_Proc_File;
/**
* The buffer used to store character for this module
*
*/
static char procfs_buffer[PROCFS_MAX_SIZE];
/**
* The size of the buffer
*
*/
static unsigned long procfs_buffer_size = 0;
/**
* This function is called then the /proc file is read
*
*/
ssize_t procfile_read(struct file *filePointer,char *buffer,
size_t buffer_length, loff_t * offset)
{
int ret=0;
if(strlen(buffer) ==0) {
pr_info("procfile read %s\n",filePointer->f_path.dentry->d_name.name);
ret=copy_to_user(buffer,"HelloWorld!\n",sizeof("HelloWorld!\n"));
ret=sizeof("HelloWorld!\n");
}
return ret;
}
/**
* This function is called with the /proc file is written
*
*/
static ssize_t procfile_write(struct file *file, const char *buff,
size_t len, loff_t *off)
{
procfs_buffer_size = len;
if (procfs_buffer_size > PROCFS_MAX_SIZE)
procfs_buffer_size = PROCFS_MAX_SIZE;
if (copy_from_user(procfs_buffer, buff, procfs_buffer_size))
return -EFAULT;
procfs_buffer[procfs_buffer_size] = '\0';
return procfs_buffer_size;
}
static const struct proc_ops proc_file_fops = {
.proc_read = procfile_read,
.proc_write = procfile_write,
};
/**
*This function is called when the module is loaded
*
*/
int init_module()
{
Our_Proc_File = proc_create(PROCFS_NAME,0644,NULL,&proc_file_fops);
if(NULL==Our_Proc_File) {
proc_remove(Our_Proc_File);
pr_alert("Error:Could not initialize /proc/%s\n",PROCFS_NAME);
return -ENOMEM;
}
pr_info("/proc/%s created\n", PROCFS_NAME);
return 0;
}
/**
*This function is called when the module is unloaded
*
*/
void cleanup_module()
{
proc_remove(Our_Proc_File);
pr_info("/proc/%s removed\n", PROCFS_NAME);
}
MODULE_LICENSE("GPL");

85
examples/procfs3.c Normal file
View File

@ -0,0 +1,85 @@
/*
procfs3.c
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/proc_fs.h>
#include <linux/sched.h>
#include <linux/uaccess.h>
#define PROCFS_MAX_SIZE 2048
#define PROCFS_ENTRY_FILENAME "buffer2k"
struct proc_dir_entry *Our_Proc_File;
static char procfs_buffer[PROCFS_MAX_SIZE];
static unsigned long procfs_buffer_size = 0;
static ssize_t procfs_read(struct file *filp, char *buffer,
size_t length, loff_t *offset)
{
static int finished = 0;
if(finished)
{
pr_debug("procfs_read: END\n");
finished = 0;
return 0;
}
finished = 1;
if(copy_to_user(buffer, procfs_buffer, procfs_buffer_size))
return -EFAULT;
pr_debug("procfs_read: read %lu bytes\n", procfs_buffer_size);
return procfs_buffer_size;
}
static ssize_t procfs_write(struct file *file, const char *buffer,
size_t len, loff_t *off)
{
if(len>PROCFS_MAX_SIZE)
procfs_buffer_size = PROCFS_MAX_SIZE;
else
procfs_buffer_size = len;
if(copy_from_user(procfs_buffer, buffer, procfs_buffer_size))
return -EFAULT;
pr_debug("procfs_write: write %lu bytes\n", procfs_buffer_size);
return procfs_buffer_size;
}
int procfs_open(struct inode *inode, struct file *file)
{
try_module_get(THIS_MODULE);
return 0;
}
int procfs_close(struct inode *inode, struct file *file)
{
module_put(THIS_MODULE);
return 0;
}
static struct proc_ops File_Ops_4_Our_Proc_File = {
.proc_read = procfs_read,
.proc_write = procfs_write,
.proc_open = procfs_open,
.proc_release = procfs_close,
};
int init_module()
{
Our_Proc_File = proc_create(PROCFS_ENTRY_FILENAME, 0644, NULL,&File_Ops_4_Our_Proc_File);
if(Our_Proc_File == NULL)
{
remove_proc_entry(PROCFS_ENTRY_FILENAME, NULL);
pr_debug("Error: Could not initialize /proc/%s\n", PROCFS_ENTRY_FILENAME);
return -ENOMEM;
}
proc_set_size(Our_Proc_File, 80);
proc_set_user(Our_Proc_File, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID);
pr_debug("/proc/%s created\n", PROCFS_ENTRY_FILENAME);
return 0;
}
void cleanup_module()
{
remove_proc_entry(PROCFS_ENTRY_FILENAME, NULL);
pr_debug("/proc/%s removed\n", PROCFS_ENTRY_FILENAME);
}
MODULE_LICENSE("GPL");

133
examples/procfs4.c Normal file
View File

@ -0,0 +1,133 @@
/**
* procfs4.c - create a "file" in /proc
* This program uses the seq_file library to manage the /proc file.
*
*/
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.h> /* Specifically, a module */
#include <linux/proc_fs.h> /* Necessary because we use proc fs */
#include <linux/seq_file.h> /* for seq_file */
#define PROC_NAME "iter"
MODULE_AUTHOR("Philippe Reynes");
MODULE_LICENSE("GPL");
/**
* This function is called at the beginning of a sequence.
* ie, when:
* - the /proc file is read (first time)
* - after the function stop (end of sequence)
*
*/
static void *my_seq_start(struct seq_file *s, loff_t *pos)
{
static unsigned long counter = 0;
/* beginning a new sequence ? */
if ( *pos == 0 ) {
/* yes => return a non null value to begin the sequence */
return &counter;
}
else {
/* no => it's the end of the sequence, return end to stop reading */
*pos = 0;
return NULL;
}
}
/**
* This function is called after the beginning of a sequence.
* It's called untill the return is NULL (this ends the sequence).
*
*/
static void *my_seq_next(struct seq_file *s, void *v, loff_t *pos)
{
unsigned long *tmp_v = (unsigned long *)v;
(*tmp_v)++;
(*pos)++;
return NULL;
}
/**
* This function is called at the end of a sequence
*
*/
static void my_seq_stop(struct seq_file *s, void *v)
{
/* nothing to do, we use a static value in start() */
}
/**
* This function is called for each "step" of a sequence
*
*/
static int my_seq_show(struct seq_file *s, void *v)
{
loff_t *spos = (loff_t *) v;
seq_printf(s, "%Ld\n", *spos);
return 0;
}
/**
* This structure gather "function" to manage the sequence
*
*/
static struct seq_operations my_seq_ops = {
.start = my_seq_start,
.next = my_seq_next,
.stop = my_seq_stop,
.show = my_seq_show
};
/**
* This function is called when the /proc file is open.
*
*/
static int my_open(struct inode *inode, struct file *file)
{
return seq_open(file, &my_seq_ops);
};
/**
* This structure gather "function" that manage the /proc file
*
*/
static struct proc_ops my_file_ops = {
.proc_open = my_open,
.proc_read = seq_read,
.proc_lseek = seq_lseek,
.proc_release = seq_release
};
/**
* This function is called when the module is loaded
*
*/
int init_module(void)
{
struct proc_dir_entry *entry;
entry = proc_create(PROC_NAME, 0, NULL, &my_file_ops);
if(entry == NULL)
{
remove_proc_entry(PROC_NAME, NULL);
pr_debug("Error: Could not initialize /proc/%s\n", PROC_NAME);
return -ENOMEM;
}
return 0;
}
/**
* This function is called when the module is unloaded.
*
*/
void cleanup_module(void)
{
remove_proc_entry(PROC_NAME, NULL);
pr_debug("/proc/%s removed\n", PROC_NAME);
}

29
examples/sched.c Normal file
View File

@ -0,0 +1,29 @@
#include <linux/module.h>
#include <linux/init.h>
#include <linux/workqueue.h>
static struct workqueue_struct *queue=NULL;
static struct work_struct work;
static void work_handler(struct work_struct *data)
{
pr_info ("work handler function.\n");
}
int init_module()
{
queue = alloc_workqueue("HELLOWORLD", WQ_UNBOUND, 1);
INIT_WORK(&work, work_handler);
schedule_work(&work);
return 0;
}
void cleanup_module()
{
destroy_workqueue(queue);
}
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Bob Mottram");
MODULE_DESCRIPTION("Workqueue example");

267
examples/sleep.c Normal file
View File

@ -0,0 +1,267 @@
/*
* sleep.c - create a /proc file, and if several processes try to open it at
* the same time, put all but one to sleep
*/
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.h> /* Specifically, a module */
#include <linux/proc_fs.h> /* Necessary because we use proc fs */
#include <linux/sched.h> /* For putting processes to sleep and
waking them up */
#include <linux/uaccess.h> /* for get_user and put_user */
/*
* The module's file functions
*/
/*
* Here we keep the last message received, to prove that we can process our
* input
*/
#define MESSAGE_LENGTH 80
static char Message[MESSAGE_LENGTH];
static struct proc_dir_entry *Our_Proc_File;
#define PROC_ENTRY_FILENAME "sleep"
/*
* Since we use the file operations struct, we can't use the special proc
* output provisions - we have to use a standard read function, which is this
* function
*/
static ssize_t module_output(struct file *file, /* see include/linux/fs.h */
char *buf, /* The buffer to put data to
(in the user segment) */
size_t len, /* The length of the buffer */
loff_t * offset)
{
static int finished = 0;
int i;
char message[MESSAGE_LENGTH + 30];
/*
* Return 0 to signify end of file - that we have nothing
* more to say at this point.
*/
if (finished) {
finished = 0;
return 0;
}
/*
* If you don't understand this by now, you're hopeless as a kernel
* programmer.
*/
sprintf(message, "Last input:%s\n", Message);
for (i = 0; i < len && message[i]; i++)
put_user(message[i], buf + i);
finished = 1;
return i; /* Return the number of bytes "read" */
}
/*
* This function receives input from the user when the user writes to the /proc
* file.
*/
static ssize_t module_input(struct file *file, /* The file itself */
const char *buf, /* The buffer with input */
size_t length, /* The buffer's length */
loff_t * offset) /* offset to file - ignore */
{
int i;
/*
* Put the input into Message, where module_output will later be
* able to use it
*/
for (i = 0; i < MESSAGE_LENGTH - 1 && i < length; i++)
get_user(Message[i], buf + i);
/*
* we want a standard, zero terminated string
*/
Message[i] = '\0';
/*
* We need to return the number of input characters used
*/
return i;
}
/*
* 1 if the file is currently open by somebody
*/
int Already_Open = 0;
/*
* Queue of processes who want our file
*/
DECLARE_WAIT_QUEUE_HEAD(WaitQ);
/*
* Called when the /proc file is opened
*/
static int module_open(struct inode *inode, struct file *file)
{
/*
* If the file's flags include O_NONBLOCK, it means the process doesn't
* want to wait for the file. In this case, if the file is already
* open, we should fail with -EAGAIN, meaning "you'll have to try
* again", instead of blocking a process which would rather stay awake.
*/
if ((file->f_flags & O_NONBLOCK) && Already_Open)
return -EAGAIN;
/*
* This is the correct place for try_module_get(THIS_MODULE) because
* if a process is in the loop, which is within the kernel module,
* the kernel module must not be removed.
*/
try_module_get(THIS_MODULE);
/*
* If the file is already open, wait until it isn't
*/
while (Already_Open) {
int i, is_sig = 0;
/*
* This function puts the current process, including any system
* calls, such as us, to sleep. Execution will be resumed right
* after the function call, either because somebody called
* wake_up(&WaitQ) (only module_close does that, when the file
* is closed) or when a signal, such as Ctrl-C, is sent
* to the process
*/
wait_event_interruptible(WaitQ, !Already_Open);
/*
* If we woke up because we got a signal we're not blocking,
* return -EINTR (fail the system call). This allows processes
* to be killed or stopped.
*/
/*
* Emmanuel Papirakis:
*
* This is a little update to work with 2.2.*. Signals now are contained in
* two words (64 bits) and are stored in a structure that contains an array of
* two unsigned longs. We now have to make 2 checks in our if.
*
* Ori Pomerantz:
*
* Nobody promised me they'll never use more than 64 bits, or that this book
* won't be used for a version of Linux with a word size of 16 bits. This code
* would work in any case.
*/
for (i = 0; i < _NSIG_WORDS && !is_sig; i++)
is_sig =
current->pending.signal.sig[i] & ~current->
blocked.sig[i];
if (is_sig) {
/*
* It's important to put module_put(THIS_MODULE) here,
* because for processes where the open is interrupted
* there will never be a corresponding close. If we
* don't decrement the usage count here, we will be
* left with a positive usage count which we'll have no
* way to bring down to zero, giving us an immortal
* module, which can only be killed by rebooting
* the machine.
*/
module_put(THIS_MODULE);
return -EINTR;
}
}
/*
* If we got here, Already_Open must be zero
*/
/*
* Open the file
*/
Already_Open = 1;
return 0; /* Allow the access */
}
/*
* Called when the /proc file is closed
*/
int module_close(struct inode *inode, struct file *file)
{
/*
* Set Already_Open to zero, so one of the processes in the WaitQ will
* be able to set Already_Open back to one and to open the file. All
* the other processes will be called when Already_Open is back to one,
* so they'll go back to sleep.
*/
Already_Open = 0;
/*
* Wake up all the processes in WaitQ, so if anybody is waiting for the
* file, they can have it.
*/
wake_up(&WaitQ);
module_put(THIS_MODULE);
return 0; /* success */
}
/*
* Structures to register as the /proc file, with pointers to all the relevant
* functions.
*/
/*
* File operations for our proc file. This is where we place pointers to all
* the functions called when somebody tries to do something to our file. NULL
* means we don't want to deal with something.
*/
static struct proc_ops File_Ops_4_Our_Proc_File = {
.proc_read = module_output, /* "read" from the file */
.proc_write = module_input, /* "write" to the file */
.proc_open = module_open, /* called when the /proc file is opened */
.proc_release = module_close, /* called when it's closed */
};
/*
* Module initialization and cleanup
*/
/*
* Initialize the module - register the proc file
*/
int init_module()
{
Our_Proc_File = proc_create(PROC_ENTRY_FILENAME, 0644, NULL, &File_Ops_4_Our_Proc_File);
if(Our_Proc_File == NULL)
{
remove_proc_entry(PROC_ENTRY_FILENAME, NULL);
pr_debug("Error: Could not initialize /proc/%s\n", PROC_ENTRY_FILENAME);
return -ENOMEM;
}
proc_set_size(Our_Proc_File, 80);
proc_set_user(Our_Proc_File, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID);
pr_info("/proc/test created\n");
return 0;
}
/*
* Cleanup - unregister our file from /proc. This could get dangerous if
* there are still processes waiting in WaitQ, because they are inside our
* open function, which will get unloaded. I'll explain how to avoid removal
* of a kernel module in such a case in chapter 10.
*/
void cleanup_module()
{
remove_proc_entry(PROC_ENTRY_FILENAME, NULL);
pr_debug("/proc/%s removed\n", PROC_ENTRY_FILENAME);
}
MODULE_LICENSE("GPL");

14
examples/start.c Normal file
View File

@ -0,0 +1,14 @@
/*
* start.c - Illustration of multi filed modules
*/
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.h> /* Specifically, a module */
int init_module(void)
{
pr_info("Hello, world - this is the kernel speaking\n");
return 0;
}
MODULE_LICENSE("GPL");

13
examples/stop.c Normal file
View File

@ -0,0 +1,13 @@
/*
* stop.c - Illustration of multi filed modules
*/
#include <linux/kernel.h> /* We're doing kernel work */
#include <linux/module.h> /* Specifically, a module */
void cleanup_module()
{
pr_info("Short is the life of a kernel module\n");
}
MODULE_LICENSE("GPL");

155
examples/syscall.c Normal file
View File

@ -0,0 +1,155 @@
/*
* syscall.c
*
* System call "stealing" sample.
*
* Disables page protection at a processor level by
* changing the 16th bit in the cr0 register (could be Intel specific)
*
* Based on example by Peter Jay Salzman and
* https://bbs.archlinux.org/viewtopic.php?id=139406
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/syscalls.h>
#include <linux/delay.h>
#include <asm/paravirt.h>
#include <linux/moduleparam.h> /* which will have params */
#include <linux/unistd.h> /* The list of system calls */
/*
* For the current (process) structure, we need
* this to know who the current user is.
*/
#include <linux/sched.h>
#include <linux/uaccess.h>
unsigned long **sys_call_table;
unsigned long original_cr0;
/*
* UID we want to spy on - will be filled from the
* command line
*/
static int uid;
module_param(uid, int, 0644);
/*
* A pointer to the original system call. The reason
* we keep this, rather than call the original function
* (sys_open), is because somebody else might have
* replaced the system call before us. Note that this
* is not 100% safe, because if another module
* replaced sys_open before us, then when we're inserted
* we'll call the function in that module - and it
* might be removed before we are.
*
* Another reason for this is that we can't get sys_open.
* It's a static variable, so it is not exported.
*/
asmlinkage int (*original_call) (const char *, int, int);
/*
* The function we'll replace sys_open (the function
* called when you call the open system call) with. To
* find the exact prototype, with the number and type
* of arguments, we find the original function first
* (it's at fs/open.c).
*
* In theory, this means that we're tied to the
* current version of the kernel. In practice, the
* system calls almost never change (it would wreck havoc
* and require programs to be recompiled, since the system
* calls are the interface between the kernel and the
* processes).
*/
asmlinkage int our_sys_open(const char *filename, int flags, int mode)
{
int i = 0;
char ch;
/*
* Report the file, if relevant
*/
pr_info("Opened file by %d: ", uid);
do {
get_user(ch, filename + i);
i++;
pr_info("%c", ch);
} while (ch != 0);
pr_info("\n");
/*
* Call the original sys_open - otherwise, we lose
* the ability to open files
*/
return original_call(filename, flags, mode);
}
static unsigned long **aquire_sys_call_table(void)
{
unsigned long int offset = PAGE_OFFSET;
unsigned long **sct;
while (offset < ULLONG_MAX) {
sct = (unsigned long **)offset;
if (sct[__NR_close] == (unsigned long *) ksys_close)
return sct;
offset += sizeof(void *);
}
return NULL;
}
static int __init syscall_start(void)
{
if(!(sys_call_table = aquire_sys_call_table()))
return -1;
original_cr0 = read_cr0();
write_cr0(original_cr0 & ~0x00010000);
/* keep track of the original open function */
original_call = (void*)sys_call_table[__NR_open];
/* use our open function instead */
sys_call_table[__NR_open] = (unsigned long *)our_sys_open;
write_cr0(original_cr0);
pr_info("Spying on UID:%d\n", uid);
return 0;
}
static void __exit syscall_end(void)
{
if(!sys_call_table) {
return;
}
/*
* Return the system call back to normal
*/
if (sys_call_table[__NR_open] != (unsigned long *)our_sys_open) {
pr_alert("Somebody else also played with the ");
pr_alert("open system call\n");
pr_alert("The system may be left in ");
pr_alert("an unstable state.\n");
}
write_cr0(original_cr0 & ~0x00010000);
sys_call_table[__NR_open] = (unsigned long *)original_call;
write_cr0(original_cr0);
msleep(2000);
}
module_init(syscall_start);
module_exit(syscall_end);
MODULE_LICENSE("GPL");

BIN
img/seq_file.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

34
lib/codeblock.tex Normal file
View File

@ -0,0 +1,34 @@
\newminted[code]{c}{frame=single,
framesep=2mm,
baselinestretch=1,
fontsize=\footnotesize,
breaklines,
breakafter=d,
linenos
}
\usemintedstyle{vs}
\NewDocumentCommand{\samplec}{oom}{%
\IfNoValueTF{#1}%
{%
\inputminted[frame=single, framesep=2mm, baselinestretch=1, fontsize=\footnotesize, breaklines, breakafter=d, linenos]{c}{#3}%
}%
{%
\IfNoValueTF{#2}%
{%
\inputminted[frame=single, framesep=2mm, baselinestretch=1, fontsize=\footnotesize, breaklines, breakafter=d, firstline=#1, linenos]{c}{#3}%
}%
{%
\inputminted[frame=single, framesep=2mm, baselinestretch=1, fontsize=\footnotesize, breaklines, breakafter=d, firstline=#1, lastline=#2, linenos]{c}{#3}%
}%
}%
}
\newminted[codebash]{bash}{frame=single,
framesep=2mm,
baselinestretch=1.2,
breaklines,
breakafter=d,
linenos
}

1117
lkmpg.tex Normal file

File diff suppressed because it is too large Load Diff